Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.04.01 Теплоэнергетика и теплотехника

Наименование образовательной программы: Теплотехника и малая распределенная энергетика

Уровень образования: высшее образование - магистратура

Форма обучения: Очная

Оценочные материалы по дисциплине Численное моделирование термогидродинамических процессов в энергетическом оборудовании

Москва 2023

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

 Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

 Сведения о владельце ЦЭП МЭИ

 Владелец
 Сиденков Д.В.

 Идентификатор
 R7ad01b54-SidenkovDV-41309924

Разработчик

СОГЛАСОВАНО:

Руководитель образовательной программы

1930	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»		
	Сведения о владельце ЦЭП МЭИ		
	Владелец	Шацких Ю.В.	
³ MoN ∜	Идентификатор	R6ca75b8e-ShatskikhYV-f045f12f	

Ю.В. Шацких

Д.В.

Сиденков

Заведующий выпускающей кафедрой

HANGE HOME TO SEE	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»				
	Сведения о владельце ЦЭП МЭИ				
	Владелец	Шацких Ю.В.			
* <u>M⊚M</u> *	Идентификатор	R6ca75b8e-ShatskikhYV-f045f12f			

Ю.В. Шацких

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-1 Способен к проведению расчетно-теоретических исследований теплогидравлических процессов объектах профессиональной деятельности
 - ИД-2 Имеет навыки математического моделирования теплогидравлических процессов в объектах профессиональной деятельности
- 2. РПК-1 Способен применять информационные технологии для проведения исследований в профессиональной деятельности
 - ИД-1 Демонстрирует знание информационных технологий, используемых в профессиональной деятельности
 - ИД-2 Проводит исследования с использованием информационных технологий

и включает:

для текущего контроля успеваемости:

Форма реализации: Компьютерное задание

- 1. Контрольная работа №1: «Численное решение задачи теплопроводности» (Контрольная работа)
- 2. Контрольная работа №2: «Численное решение конвективно-диффузионной задачи» (Контрольная работа)
- 3. Контрольная работа №3: «Численное моделирование теплообменного аппарата» (Контрольная работа)

Форма реализации: Письменная работа

1. Терминологический тест: «Метод контрольного объема» (Тестирование)

БРС дисциплины

2 семестр

	Веса контрольных мероприяти		приятий	i, %	
Возной имогинализм	Индекс	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	1	2	3	4
	Срок КМ:	4	8	12	15
ЧМТГДП					
Введение. Процессы теплообмена и гидродинамики в элементах теплоэнергетических установок.					
Система интегральных и дифференциальных уравнений конвективного теплообмена.					
Стационарная теплопроводность.			+		

Нестационарная теплопроводность.		+		+
Система уравнений Навье-Стокса.			+	
Особенности решения задач вынужденной и свободной конвекции.			+	
Верификация ANSYS, набор тестовых задач.			+	
Численное моделирование теплообменного аппарата				+
Bec KM:	15	25	30	30

\$Общая часть/Для промежуточной аттестации\$

БРС курсовой работы/проекта

2 семестр

	Веса контрольных мероприятий, %			й, %	
Роздол дуюмун нууу	Индекс	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	1	2	3	4
	Срок КМ:	4	8	12	16
Обзор литературы, изучение экспериментальных ст	ендов,				
подготовка их к работе, формирование навыков раб	оты с	+			
тепловизором, формирование соответствующих разделов КР					
Проведение экспериментальных исследований, проведение					
вычислительного эксперимента с помощью програм	имы ANSYS,		+	+	
формирование соответствующих разделов КР					
Обработка результатов натурного и вычислительного					
эксперимента, формирование соответствующих разделов КР,				+	+
подготовка презентации к защите КР					
	Bec KM:	20	30	40	10

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	1	результаты обучения по	•
		дисциплине	
ПК-1	ИД-2пк-1 Имеет навыки	Знать:	Терминологический тест: «Метод контрольного объема»
	математического	численные методы расчета	(Тестирование)
	моделирования	вариантов разработки и	Контрольная работа №1: «Численное решение задачи
	теплогидравлических	построения адекватных	теплопроводности» (Контрольная работа)
	процессов в объектах	математических моделей	Контрольная работа №2: «Численное решение конвективно-
	профессиональной	на основе	диффузионной задачи» (Контрольная работа)
	деятельности	вычислительного	Контрольная работа №3: «Численное моделирование теплообменного
		эксперимента при	аппарата» (Контрольная работа)
		проектировании	
		теплоэнергетических	
		объектов с учётом	
		особенностей	
		протекающих в них	
		физических процессов;	
		принципы декомпозиции	
		теплоэнергетического	
		объекта;	
		Уметь:	
		разрабатывать	
		математические модели	
		простейших элементов	
		теплоэнергетических	
		объектов;	
		записывать в виде системы	
		интегральных и	

	<u> </u>	1 1	
		дифференциальных	
		уравнений процессы	
		теплообмена и	
		гидродинамики в	
		элементах	
		теплоэнергетических	
		установок;	
		формулировать цели и	
		задачи исследования	
		термогидродинамических	
		процессов в	
		энергетическом	
		оборудовании, выявлять	
		приоритеты решения	
		задач, выбирать и	
		создавать критерии	
	оценки;		
РПК-1	ИД-1РПК-1 Демонстрирует	Знать:	Терминологический тест: «Метод контрольного объема»
	знание информационных	особенности	(Тестирование)
	технологий, используемых	моделирования процессов	
	в профессиональной	теплообмена и	
	деятельности	гидродинамики в	
		элементах	
		теплоэнергетических	
		установок;	
РПК-1	ИД-2 _{РПК-1} Проводит	Уметь:	Контрольная работа №2: «Численное решение конвективно-
	исследования с	применять пакет ANSYS	диффузионной задачи» (Контрольная работа)
	использованием	для решения задач	
	информационных	стационарной и	
	технологий	нестационароной	
		теплопроводности,	
		свободной и вынужденной	
		конвекции, сложных задач	

	T T		
		теплообмена и	
		ги продинемнии:	
		гидродинамики,	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Терминологический тест: «Метод контрольного объема»

Формы реализации: Письменная работа

Тип контрольного мероприятия: Тестирование **Вес контрольного мероприятия в БРС:** 15

Процедура проведения контрольного мероприятия: Ответы письменно на вопросы теста

Краткое содержание задания:

- 1 Метод контрольного объема
- 2 Дискретный аналог
- 3 ДУ нестационарной теплопроводности
- 4 ГУ 3-го рода
- 5 ДУ энергии
- 6 Дискретный аналог ДУ энергии
- 7 Уравнение конвективной теплоотдачи
- 8 Трехточечный шаблон
- 9 Суть метода прогонки
- 10 Применение ГУ в методе прогонки

Контрольные вопросы/задания:

Знать: особенности	1.1 Метод контрольного объема
моделирования процессов	2 Дискретный аналог
теплообмена и гидродинамики в	3 ДУ нестационарной теплопроводности
элементах теплоэнергетических	4 ГУ 3-го рода
установок;	5 ДУ энергии
	6 Уравнение конвективной теплоотдачи
Уметь: записывать в виде	1.1 ДУ энергии
системы интегральных и	2 Дискретный аналог ДУ энергии
дифференциальных уравнений	3 Трехточечный шаблон
процессы теплообмена и	4 Суть метода прогонки
гидродинамики в элементах	5 Применение ГУ в методе прогонки
теплоэнергетических установок;	- · · · · · · · · · · · · · · · · · · ·

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-2. Контрольная работа №1: «Численное решение задачи теплопроводности»

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Решение вариантов задания из двух

задач по изучаемой теме на компьютере в MathCad и в Ansys

Краткое содержание задания:

1.46. Температура на поверхности охлаждаемого цилиндрического уранового стержня [λ = 30 Bt/($\mathbf{m} \cdot \mathbf{K}$)] не должна превышать 650 °C. Определить допустимый диаметр и перепад температур в стержне при мощности внутренних источников $q_v = 8 \cdot 10^7$ Вт/м³, если температура охлаждающего теплоносителя $t_{\mathbf{ж}} = 370$ °C, а коэффициент теплоотдачи $\alpha = 6500$ Bt/($\mathbf{m}^2 \cdot \mathbf{K}$).

Указание: Решить в MathCad и в Ansys

Контрольные вопросы/задания:

Знать: принципн	и декомпозиции	1.1 Дифференциальное уравнение составляющее
теплоэнергетиче	ского объекта;	математическое описание этой задачи
		2 Какие граничные условия заданы
Уметь:	разрабатывать	1.1 Построить в Ansys этот трехмерный объект
математические	модели	2 Задать внутренний источник в 2 раза большей
простейших	элементов	мощности, сравнить результаты численного решения
теплоэнергетических объектов;		в MathCad и в Ansys

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-3. Контрольная работа №2: «Численное решение конвективнодиффузионной задачи»

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 30

Процедура проведения контрольного мероприятия: Решение вариантов задания из двух задач по изучаемой теме на компьютере в MathCad и в Ansys

Краткое содержание задания:

С помощью программы Ansys решить задачу Пуазейля течения в плоском канале с обогреваемой стенкой, построить профиль скорости, температуры, давления. Определить средний коэффициент теплоотдачи и коэффициент гидравлического сопротивления

Контрольные вопросы/задания:

контрольные вопросы/задания.	
Знать: численные методы	1.1 Что такое начальный термический участок
расчета вариантов разработки и	2 Где находится максимум скорости в профиле
построения адекватных	скорости задачи Пуазейля
математических моделей на	3 Что такое тепловой пограничный слой
основе вычислительного	
эксперимента при	
проектировании	
теплоэнергетических объектов с	
учётом особенностей	
протекающих в них физических	
процессов;	
Уметь: применять пакет ANSYS	1.1 Как задать граничные условия на стенке в Ansys
для решения задач стационарной	для рассматриваемой задачи
и нестационароной	2 Как сделать режим течения в этой задаче
теплопроводности, свободной и	ламинарным при моделировании в Ansys
вынужденной конвекции,	
сложных задач теплообмена и	
гидродинамики;	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-4. Контрольная работа №3: «Численное моделирование теплообменного аппарата»

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 30

Процедура проведения контрольного мероприятия: Решение вариантов задания из одной задачи по изучаемой теме на компьютере в MathCad и в Ansys

Краткое содержание задания:

Создать в Ansys теплообменник типа "труба в трубе" заданной геометрии. Задать теплофизические свойства и граничные условия на входе по каждого теплоносителя, протекающего во внутренней трубе и в кольцевом канале. Рассчитать с помощью Ansys изменение полей скорости, температуры и давления каждого теплоносителя. Определить средние коэффициенты теплоотдачи, рассчитать коэффициент теплопередачи и теплопроизводительность теплообменного аппарата, а также гидродинамическое сопротивление по каждому теплоносителю.

Контрольные вопросы/задания:

коптрольные вопросы/задания.	
Уметь: формулировать цели и	1.1 Расчет среднего коэффициента теплоотдачи в
задачи исследования	Ansys
термогидродинамических	2 Расчет сопротивления трения в Ansys
процессов в энергетическом	3 Сравнение потерь давления за счет трения с
оборудовании, выявлять	формулой Дарси-Вейсбаха
приоритеты решения задач,	
выбирать и создавать критерии	
оценки;	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

2 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

Нестационарное одномерное уравнение теплопроводности в декартовой системе координат. Дискретизация по явной схеме и метод решения. Условие на шаг по времени.
 Бетонная плита с размерами 3×5×0,3 м и начальной температурой 90 °C в вертикальном положении охлаждается на открытом воздухе (t_ж = −10 °C). Определить температуру в средней плоскости плиты и на ее поверхности через 3,3 ч после начала охлаждения, если значения коэффициентов теплопроводности, теплоемкости и плотность для бетона составляют 1,28 Вт/(м · K), 0,84 кДж/(кт · K) и 2000 кг/м³ соответственно. Коэффициент теплоотдачи с поверхности к воздуху принять равным 15 Вт/(м² · K).
 построить график распределения температуры по толщине плиты.
 Указание: Решение в Ansys

Процедура проведения

Очно по билетам устно

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД- $2_{\Pi K-1}$ Имеет навыки математического моделирования теплогидравлических процессов в объектах профессиональной деятельности

Вопросы, задания

•	1.	Стационарное одномерное уравнение теплопроводности в декартовой системе координат. Построение дискретного аналога и метод решения.
	3.	Построить дискретный аналог дифференциального уравнения
1.		$\frac{\partial t}{\partial \tau} = \frac{\partial^2 t}{\partial x^2} + 1$
	1.	Сущность метода контрольного объема. Дискретизация стационарного одномерного уравнения теплопроводности. Основные правила построения дискретных аналогов.
	3.	Стальная заготовка [$\lambda = 37~{\rm Br/(M \cdot K)}$, $a = 7 \cdot 10^{-6}~{\rm m^2/c}$] в форме параллелепипеда $600 \times 420 \times 360~{\rm mm}$ с начальной температурой $t_0 = 15~{\rm ^{\circ}C}$ загружена в нагревательную печь с температурой $t_{\rm w} = 1500~{\rm ^{\circ}C}$. Вычислить температуры в центре бруса и в центре каждой из его граней через $1,2$ ч после начала нагревания при коэффициенте теплоотдачи $\alpha = 120~{\rm Br/(m^2 \cdot K)}$.
2.		построить соответственно их распределение по длинной оси бруса и по длинному его ребру. Указание: Решение в Ansys

1. Метод прогонки. Алгоритм решения стационарного одномерного уравнения теплопроводности методом прогонки и заданных граничных условиях 1-го рода.

3. Вычислить температуры на оси и поверхности бетонного столба уличного освещения $[d=300\text{ мм},\ \lambda=1,28\text{ Br/(m}\cdot\text{K}),\ c_p==0,84\text{ кДж/(кг}\cdot\text{K}),\ \rho=2000\text{ кг/м}^3]$ через 2,5 ч после резкого понижения температуры воздуха от 0 °C (удерживалась несколько суток) до -20 °C. Коэффициент теплоотдачи с поверхности столба принять равным 20,5 Вт/(м 2 · K).

построить график распределения температуры по радиусу столба.

Материалы для проверки остаточных знаний

1. Метод контрольного объема

Ответы:

из лекционного материала и материала практических занятий и из литературы Верный ответ: из лекционного материала и материала практических занятий

- 2. Дискретный аналог
- 3. Дифференциальное уравнение нестационарной теплопроводности
- 4. Дифференциальное уравнение энергии
- 5. Уравнение конвективной теплоотдачи
- **2. Компетенция/Индикатор:** ИД-1_{РПК-1} Демонстрирует знание информационных технологий, используемых в профессиональной деятельности

Вопросы, задания

Сушность объема. Лискретизация метола контрольного стационарного двумерного уравнения теплопроводности, записанного в координатах r-θ. Основные правила построения дискретных аналогов Решить численно олномерную нестационарную теплопроводности в плоской пластине с помощью метода прогонки (толщина пластины 300 мм, материал – бетон), при заданных постоянных температурах на левой и правой стенке пластины, 120 ⁰С и 30 ⁰С соответственно, распределением температуры в начальный момент времени на уровне 30 °C и временем нагрева 10800 сек. Расчет изменения температуры по толщине выполнить с помощью 1. пакета ANSYS

Материалы для проверки остаточных знаний

- 1. Граничные условия 3-го рода
- 2. Дискретный аналог дифференциального уравнения энергии
- 3.Суть метода прогонки
- **3. Компетенция/Индикатор:** ИД-2_{РПК-1} Проводит исследования с использованием информационных технологий

Вопросы, задания

(система уравнений Навье-Стокса). Обобщенное дифференциальное уравнение.

3. Решить численно одномерную нестационарную задачу теплопроводности в плоской пластине с помощью метода прогонки (толщина пластины 100 мм, материал − сталь), при заданных постоянных температурах на левой и правой стенке пластины, 100 °C и 20 °C соответственно, распределением температуры в начальный момент времени на уровне 20 °C и временем нагрева 120

Дифференциальные уравнения конвективного тепломассообмена

Расчет изменения температуры по толщине выполнить с помощью пакета ANSYS.

Материалы для проверки остаточных знаний

- 1.Метод SIMPLE
- 2.Трехточечный шаблон

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70 Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оиенка: 4

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

Оценка: 2

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

III. Правила выставления итоговой оценки по курсу

Экзамен. Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и экзаменационной составляющих

Для курсового проекта/работы:

2 семестр

Форма проведения: Защита КП/КР

І. Процедура защиты КП/КР

Презентация работы в виде публичного доклада, устный опрос/обсуждение

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70 Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого"

уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные нелостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

Оценка: 2

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

III. Правила выставления итоговой оценки по курсу

Оценка за курсовой работу определяется в соответствии с Положением о балльнорейтинговой системе для студентов НИУ «МЭИ».