# Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 14.03.01 Ядерная энергетика и теплофизика Наименование образовательной программы: Атомные электростанции и установки

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Термодинамика

> Москва 2022

### ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Преподаватель (должность)



O.B. Егошина (расшифровка

подписи)

#### СОГЛАСОВАНО:

Руководитель образовательной программы

(должность, ученая степень, ученое звание)

Заведующий выпускающей кафедры (должность, ученая степень, ученое

звание)

| NCM NCM   | Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ» |                              |  |  |  |
|-----------|----------------------------------------------------|------------------------------|--|--|--|
|           | Сведения о владельце ЦЭП МЭИ                       |                              |  |  |  |
|           | Владелец                                           | Аникеев А.В.                 |  |  |  |
|           | Идентификатор                                      | R64fa5fd7-AnikeevAV-ee466b65 |  |  |  |
| (подпись) |                                                    |                              |  |  |  |

| MON I | Подписано электронн          | ой подписью ФГБОУ ВО «НИУ «МЭИ» |  |
|-------|------------------------------|---------------------------------|--|
|       | Сведения о владельце ЦЭП МЭИ |                                 |  |
|       | Владелец                     | Аникеев А.В.                    |  |
|       | Идентификатор                | R64fa5fd7-AnikeevAV-ee466b65    |  |

(подпись)

A.B.

Аникеев

(расшифровка подписи)

A.B. Аникеев

(расшифровка подписи)

#### ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

1. ПК-2 Демонстрирует понимание основных способов получения, преобразования, транспорта и использования теплоты в теплотехнических установках и системах ИД-1 Демонстрирует понимание основ термодинамики, основных законов термодинамики и применяет их для расчетов термодинамических процессов, циклов и их показателей

#### и включает:

#### для текущего контроля успеваемости:

Форма реализации: Компьютерное задание

1. Лабораторная работа №1-4 (Тестирование)

#### Форма реализации: Письменная работа

- 1. Контрольная работа №1 «Расчет термодинамических свойств бинарной смеси идеальных газов» (Контрольная работа)
- 2. Контрольная работа №2 «Расчет термодинамических процессов идеального газа» (Контрольная работа)
- 3. Контрольная работа №3 «Определение термодинамических свойств и расчет процессов воды и водяного пара» (Контрольная работа)
- 4. Контрольная работа №4 «Расчет процессов в суживающихся соплах и соплах Лаваля» (Контрольная работа)
- 5. Контрольная работа №5 "Расчет термодинамических циклов паротурбинных установок" (Контрольная работа)
- 6. Контрольная работа №6 "Расчет термодинамических циклов газотурбинных, парогазовых установок, холодильных и теплонасосных установок" (Контрольная работа)
- 7. Расчетное задание №1 «Расчет произвольного термодинамического цикла, состоящего из пяти различных процессов, совершаемых идеальным газом » (Домашнее задание)
- 8. Расчетное задание №2 "Расчет термодинамического цикла АЭС цикла паротурбинной установки на насыщенном паре с сепаратором пароперегревателем (СПП) и двумя регенеративными подогревателями питательной воды" (Домашнее задание)

#### БРС дисциплины

#### 5 семестр

|                             | Веса контрольных мероприятий, % |      |      |      |      |
|-----------------------------|---------------------------------|------|------|------|------|
| <b>Р</b> оодол ниоминалим ( | Индекс                          | KM-1 | KM-2 | KM-3 | KM-4 |
| Раздел дисциплины           | KM:                             |      |      |      |      |
|                             | Срок КМ:                        | 4    | 8    | 10   | 12   |

| Основные законы термодинамики и общие закономерности |    |    |    |    |
|------------------------------------------------------|----|----|----|----|
| Основные определения и термины                       | +  |    |    |    |
| Первый закон термодинамики                           | +  |    |    |    |
| Второй закон термодинамики                           | +  |    |    |    |
| Дифференциальные уравнения термодинамики             | +  |    |    |    |
| Процессы идеального газа                             |    |    |    |    |
| Законы и уравнения идеального газа                   |    | +  | +  |    |
| Смеси газов                                          |    | +  |    |    |
| Свойства и процессы реального газа                   |    |    |    |    |
| Термодинамические свойства реального газа            |    |    |    | +  |
| Термодинамические процессы реального газа.           |    |    |    | +  |
| Термические уравнения состояния реального газа.      |    |    |    | +  |
| Bec KM:                                              | 15 | 20 | 35 | 30 |

### 6 семестр

| Индекс<br>КМ:<br>Срок КМ:                      | KM-<br>5<br>4               | KM-<br>6<br>8                            | KM-<br>7<br>10                        | KM-<br>8<br>12                        | KM-<br>9                              |
|------------------------------------------------|-----------------------------|------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
|                                                |                             |                                          |                                       |                                       |                                       |
| Срок КМ:                                       | 4                           | 8                                        | 10                                    | 12                                    | 13                                    |
|                                                |                             |                                          |                                       |                                       |                                       |
|                                                |                             |                                          |                                       |                                       |                                       |
|                                                | +                           |                                          |                                       |                                       | +                                     |
|                                                | +                           |                                          |                                       |                                       |                                       |
|                                                | +                           |                                          |                                       |                                       |                                       |
| х установок                                    |                             |                                          |                                       |                                       |                                       |
|                                                |                             | +                                        |                                       |                                       | +                                     |
| ГУ на                                          |                             | +                                        |                                       |                                       |                                       |
|                                                |                             | +                                        |                                       |                                       |                                       |
| Сепарация пара в циклах ПТУ на насыщенном паре |                             | +                                        | +                                     |                                       |                                       |
| У-ТЭЦ)                                         |                             | +                                        |                                       |                                       |                                       |
| И                                              |                             |                                          |                                       |                                       |                                       |
| ]                                              | ГУ на<br>ном паре<br>У-ТЭЦ) | + + + yстановок  ГУ на  ном паре  У-ТЭЦ) | + + + + + + + + + + + + + + + + + + + | + + + + + + + + + + + + + + + + + + + | + + + + + + + + + + + + + + + + + + + |

| Цикл простой газотурбинной установки                                   |    |    |    | +  |    |
|------------------------------------------------------------------------|----|----|----|----|----|
| Цикл газотурбинной установки с регенерацией                            |    |    |    | +  |    |
| Теплофикационный цикл газотурбинной установки                          |    |    |    | +  |    |
| Термодинамический цикл парогазовой установки с котлом-утилизатором     |    |    |    | +  |    |
| Термодинамические циклы двигателей внутреннего<br>сгорания             |    |    |    | +  |    |
| Обратные термодинамические циклы холодильных и теплонасосных установок |    |    |    |    |    |
| Обратные термодинамические циклы холодильных установок                 |    |    |    | +  |    |
| Термодинамические циклы теплонасосных установок                        |    |    |    | +  |    |
| Bec KM:                                                                | 20 | 20 | 20 | 20 | 20 |

<sup>\$</sup>Общая часть/Для промежуточной аттестации\$

### СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

# I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

| Индекс      | Индикатор                          | Запланированные          | Контрольная точка                                                 |
|-------------|------------------------------------|--------------------------|-------------------------------------------------------------------|
| компетенции | _                                  | результаты обучения по   |                                                                   |
|             |                                    | дисциплине               |                                                                   |
| ПК-2        | ИД-1 <sub>ПК-2</sub> Демонстрирует | Знать:                   | Контрольная работа №1 «Расчет термодинамических свойств бинарной  |
|             | понимание основ                    | методы расчета           | смеси идеальных газов» (Контрольная работа)                       |
|             | термодинамики, основных            | термодинамических        | Контрольная работа №2 «Расчет термодинамических процессов         |
|             | законов термодинамики и            | свойств и процессов      | идеального газа» (Контрольная работа)                             |
|             | применяет их для расчетов          | идеального газа          | Расчетное задание №1 «Расчет произвольного термодинамического     |
|             | термодинамических                  | методы расчета обратимых | цикла, состоящего из пяти различных процессов, совершаемых        |
|             | процессов, циклов и их             | и необратимых процессов  | идеальным газом » (Домашнее задание)                              |
|             | показателей                        | в потоке идеального и    | Контрольная работа №3 «Определение термодинамических свойств и    |
|             |                                    | реального газа           | расчет процессов воды и водяного пара» (Контрольная работа)       |
|             |                                    | способы определения      | Контрольная работа №4 «Расчет процессов в суживающихся соплах и   |
|             |                                    | свойств и методы расчета | соплах Лаваля» (Контрольная работа)                               |
|             |                                    | термодинамических        | Контрольная работа №5 "Расчет термодинамических циклов            |
|             |                                    | процессов реального газа | паротурбинных установок" (Контрольная работа)                     |
|             |                                    | основные законы          | Расчетное задание №2 "Расчет термодинамического цикла АЭС -       |
|             |                                    | термодинамики и условия  | цикла паротурбинной установки на насыщенном паре с сепаратором -  |
|             |                                    | их применения            | пароперегревателем (СПП) и двумя регенеративными подогревателями  |
|             |                                    | Уметь:                   | питательной воды" (Домашнее задание)                              |
|             |                                    | рассчитывать             | Контрольная работа №6 "Расчет термодинамических циклов            |
|             |                                    | термодинамические циклы  | газотурбинных, парогазовых установок, холодильных и теплонасосных |
|             |                                    | паротурбинных,           | установок" (Контрольная работа)                                   |
|             |                                    | газотурбинных,           | Лабораторная работа №1-4 (Тестирование)                           |
|             |                                    | холодильных и            |                                                                   |
|             |                                    | теплонасосных установок  |                                                                   |
|             |                                    | рассчитывать             |                                                                   |
|             |                                    | произвольные             |                                                                   |

термодинамические циклы идеального газа и оценивать их эффективность рассчитывать термодинамические циклы ПТУ экспериментально определять термодинамические характеристики процессов идеального газа, влажного воздуха, воды и водяного пара самостоятельно анализировать термодинамические процессы и циклы, методы их расчета и применять их для решения поставленной задачи

#### II. Содержание оценочных средств. Шкала и критерии оценивания

#### 5 семестр

### КМ-1. Контрольная работа №1 «Расчет термодинамических свойств бинарной смеси идеальных газов»

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 15

**Процедура проведения контрольного мероприятия:** Раздается каждому студенту свой вариант контрольной работы, в которой содержится 2 задачи. При выполнении контрольной работы разрешается пользоваться только калькулятором и справочными таблицами для идеального газа.

#### Краткое содержание задания:

Контрольная точка направлена на освоение знаний о смесях идеальных газов, расчета парциальных давлений и объемов идеальных газов, а также расчета термодинамических свойств смесей идеальных газов.

#### Контрольные вопросы/задания:

| контрольные вопросы/задания. |                                                   |
|------------------------------|---------------------------------------------------|
| Знать: основные законы       | 1.1.Смесь состоит из 0,5 кг кислорода и 0,2 кг    |
| термодинамики и условия их   | двуокиси углерода. Определить удельный объем и    |
| применения                   | удельную энтальпию смеси, если ее температура 104 |
|                              | 0F, а давление 1,02 кгс/см2.                      |
|                              | 2.В смеси азота и NO2 парциальное давление азота  |
|                              | равно 0,2 МПа. Определить мольную долю NO2 и      |
|                              | удельную изохорную теплоемкость смеси (по         |
|                              | молекулярно- кинетической теории), если полное    |
|                              | давление смеси 5 бар.                             |

#### Описание шкалы оценивания:

#### Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

#### Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

#### Оценка: 3

Нижний порог выполнения задания в процентах: 55

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

### КМ-2. Контрольная работа №2 «Расчет термодинамических процессов идеального газа»

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

**Процедура проведения контрольного мероприятия:** Раздается каждому студенту свой вариант контрольной работы, в которой содержится 2 задачи. При выполнении контрольной работы разрешается пользоваться только калькулятором и справочными таблицами для идеального газа.

#### Краткое содержание задания:

Контрольная точка направлена на освоение знаний о термодинамических процессах идеальных газов, построения р, v и Т, s- диаграмм.

#### Контрольные вопросы/задания:

| контрольные вопросы/задания. |                                                    |
|------------------------------|----------------------------------------------------|
| Знать: методы расчета        | 1.1. 2,2 кг воздуха с начальной температурой t1    |
| термодинамических свойств и  | =12°C и давлением p1 =0,5 МПа сжимается            |
| процессов идеального газа    | политропно до давления р2 =0,75 МПа. Показатель    |
|                              | политропы n =1,12. Определить изменение его        |
|                              | внутренней энергии, затраченную работу и           |
|                              | количество отведенной теплоты, а также удельный    |
|                              | объем газа в конечном состоянии.                   |
|                              | 2. СО при температуре t1 =22°С занимает объём 0,18 |
|                              | м3. Определить конечную температуру и количество   |
|                              | теплоты, которую нужно затратить при постоянном    |
|                              | объёме для того, чтобы начальное давление СО р1    |
|                              | =0,15 МПа повысилось до p2=0,35 МПа.               |

#### Описание шкалы оценивания:

#### Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

#### Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

#### Оценка: 3

Нижний порог выполнения задания в процентах: 55

*Описание характеристики выполнения знания:* Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

# КМ-3. Расчетное задание №1 «Расчет произвольного термодинамического цикла, состоящего из пяти различных процессов, совершаемых идеальным газом »

Формы реализации: Письменная работа

Тип контрольного мероприятия: Домашнее задание

Вес контрольного мероприятия в БРС: 35

**Процедура проведения контрольного мероприятия:** Студентам выдается задание со сроком исполнения 4 недели. По истечению срока студент должен сдать преподавателю

полностью оформленное задание на листах форматом А4 с подробным расчетом каждого процесса и оформленными в масштабе диаграммами

#### Краткое содержание задания:

В качестве расчетного задания предлагается выполнить расчет термодинамического цикла, совершаемого идеальным газом и состоящего из пяти процессов – изохорного, изобарного, изотермического, адиабатного и политропного процессов. Особенностью расчета процессов идеального газа в курсе Термодинамика, в отличие от расчета аналогичных процессов, изучаемых в курсе физики, является использование специальной методики, позволяющей учитывать зависимость теплоемкости идеального газа от температуры. Такая методика обеспечивает точный (инженерный) расчет процессов и циклов идеального газа. При этом расчеты выполняются с помощью специальных таблиц, содержащих значения удельной внутренней энергии, энтальпии и энтропии, рассчитанных с учетом зависимости теплоемкости от температуры

| Контрольные вопросы/задания: |                   |                                                                               |  |  |
|------------------------------|-------------------|-------------------------------------------------------------------------------|--|--|
| Уметь:                       | рассчитывать      | 1. Цикл состоит из следующих процессов:                                       |  |  |
| произвольные                 |                   | 1-2 n =const                                                                  |  |  |
| термодинамич                 | еские циклы       | 2-3 v=const                                                                   |  |  |
| идеального газ               | ва и оценивать их | 3-4 s=const                                                                   |  |  |
| эффективность                |                   | 4-5 t=const                                                                   |  |  |
|                              |                   | 5-1 p =const                                                                  |  |  |
|                              |                   | Рабочее тело- двуокись углерода.                                              |  |  |
|                              |                   | Для расчета цикла заданы следующие величины:                                  |  |  |
|                              |                   | P1=0,8 бар, t1=10 °C, P2=3,5 бар, p3=4,4 бар, t4=630°C.                       |  |  |
|                              |                   | Показатель политропы процесса n=2,4.                                          |  |  |
|                              |                   | Рассчитать:                                                                   |  |  |
|                              |                   | 1) параметры (р, υ, Τ) в каждой точке цикла и                                 |  |  |
|                              |                   | функции состояния (u, h, s);                                                  |  |  |
|                              |                   | 2) теплоту, работу расширения, изменение                                      |  |  |
|                              |                   | внутренней энергии, энтальпии и энтропии для                                  |  |  |
|                              |                   | каждого процесса. Рассчитать это же за весь цикл;                             |  |  |
|                              |                   | 3) термический коэффициент полезного действия                                 |  |  |
|                              |                   | цикла.                                                                        |  |  |
|                              |                   | Газ считать идеальным, его теплоемкость –                                     |  |  |
|                              |                   | зависящей от температуры, процессы – обратимыми.                              |  |  |
|                              |                   | Представить две сводные таблицы: первая –                                     |  |  |
|                              |                   | параметров и функций состояния для каждой точки                               |  |  |
|                              |                   | цикла, и вторая – для теплоты, работы, $\Delta U$ , $\Delta h$ , $\Delta s$ и |  |  |
|                              |                   | Тср для всех процессов.                                                       |  |  |
|                              |                   | Представить цикл в масштабе в р-υ и Т-ѕ диаграммах.                           |  |  |
|                              |                   | Для вычерчивания цикла при необходимости                                      |  |  |
|                              |                   | рассчитать несколько промежуточных точек.                                     |  |  |
|                              |                   | Считать, что $s=0$ при $T0=273,15$ K и $p0=0,1$ МПа.                          |  |  |

#### Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

#### Оценка: 3

Нижний порог выполнения задания в процентах: 55
Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

# КМ-4. Контрольная работа №3 «Определение термодинамических свойств и расчет процессов воды и водяного пара»

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 30

**Процедура проведения контрольного мероприятия:** Работа выполняется в течение пары в аудитории. При написании контрольной работы можно пользоваться калькулятором и таблицами свойств воды и водяного пара Александрова А.А.

#### Краткое содержание задания:

Контрольная точка направлена на освоение знаний о термодинамических свойствах и процессах воды и водяного пара, построения диаграмм p,v-, T,s-, p,T- и h,s- диаграмм.

#### Контрольные вопросы/задания:

| Знать:                      | спос | обы оі | пределения |  |
|-----------------------------|------|--------|------------|--|
| свойств                     | И    | методы | расчета    |  |
| термодинамических процессов |      |        |            |  |
| реального газа              |      |        |            |  |

- 1.1. Заданы параметры : P=110 бар, t=300 0 С. Определить состояние и найти v,h,s,u; показать это состояние на p,v-, p, T- и T, s- диаграммах.
- 2. P=200 бар, s=4,35 кДж/кг.К. Определить состояние и найти удельный объем; показать это состояние на p,v-, p, T- и T, s- диаграммах.
- 3. Состояние задано параметрами:  $t = 274 \square \text{ C}$ , s = 4,024 кДж/(кг·К). Определить это состояние, найти давление, удельный объем и удельную энтальпию. Показать это состояние в p,v-, p,T- и T,s- диаграммах.
- 4. Начальное состояние пара : P1 =5 бар, X1 = 0.9 . Пар расширяется изотермически до давления 0.5 бар. Найти t, q, l, u. Представить процесс в pv, Ts, hs и pt диаграммах.

#### Описание шкалы оценивания:

#### Оценка: 5

Нижний порог выполнения задания в процентах: 95

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

#### Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

#### Оценка: 3

Нижний порог выполнения задания в процентах: 55 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

#### 6 семестр

### КМ-5. Контрольная работа №4 «Расчет процессов в суживающихся соплах и соплах Лаваля»

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

**Процедура проведения контрольного мероприятия:** Контрольная работа проводится в аудитории и рассчитана на одну пару. Студенты могут пользоваться калькулятором и таблицами термодинамических свойств идеального газа Ривкина и воды и водяного пара Александрова А.А.

#### Краткое содержание задания:

Контрольная точка направлена на освоение знаний о суживающихся соплах и соплах Лаваля, определение режима истечения, скорости пара (газа) на выходе их сопла, выходного сечения сопла.

#### Контрольные вопросы/задания:

| контрольные вопросы/задания.    |                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Знать: методы расчета           | 1.                                                                                                                                                                                                                                                                                                                                |
| обратимых и необратимых         | 1. 1. Водяной пар при давлении 2 МПа и температуре 450 С                                                                                                                                                                                                                                                                          |
| процессов в потоке идеального и | поступает к соплу Лаваля. Давление среды за соплом 0,3                                                                                                                                                                                                                                                                            |
| реального газа                  | МПа. Определить скорость пара на выходе из сопла и                                                                                                                                                                                                                                                                                |
|                                 | расход пара, если площадь минимального сечения сопла                                                                                                                                                                                                                                                                              |
|                                 | 75 мм.                                                                                                                                                                                                                                                                                                                            |
|                                 | 2. Воздух при давлении 1МПа и температуре 500 С поступает со скоростью 140 м/с к суживающимся соплам. Давление среды за соплами 0,2 МПа. Определить расход воздуха и его температуру на выходе из сопла. Площадь выходного сечения сопла 130 мм2. Скоростной коэффициент сопла φ=0,93. Изобразить процесс в диаграммах h,S и T,S. |

#### Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 95

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 75 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 55

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

# КМ-6. Контрольная работа №5 "Расчет термодинамических циклов паротурбинных установок"

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

**Процедура проведения контрольного мероприятия:** Контрольная работа проводится в аудитории и рассчитана на одну пару. Студенты могут пользоваться калькулятором и таблицами термодинамических свойств воды и водяного пара Александрова А.А.

#### Краткое содержание задания:

Контрольная точка направлена на освоение знаний о термодинамических циклах паротурбинных установок, расчет цикла ПТУ и его изображение в p,v- и T,s- диаграммах.

Контрольные вопросы/задания:

| Уметь:                      | рассчитывать | 1.Рассчитать внутренний КПД цикла АЭС с                                                                                                         |
|-----------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| термодинамические циклы ПТУ |              | сепаратором- пароперегревателем (СПП). Дано: $p1 =$                                                                                             |
|                             |              | 5 МПа, давление в СПП 1 МПа, в конденсаторе 3                                                                                                   |
|                             |              | кПа, температура промежуточного перегрева на 23,9                                                                                               |
|                             |              | С меньше, чем $t1$ , $\eta$ чвдоі = $\eta$ чндоі = $1$ . Определить                                                                             |
|                             |              | паропроизводительность парогенератора, мощность ЧВД и ЧНД, если суммарная мощность турбин 500 МВт. Работой насосов пренебречь. Представить цикл |
|                             |              | АЭС в $T$ , $s$ - диаграмме и процессы в турбинах в $h$ , $s$ -                                                                                 |
|                             |              | диаграмме.                                                                                                                                      |

#### Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 95 Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

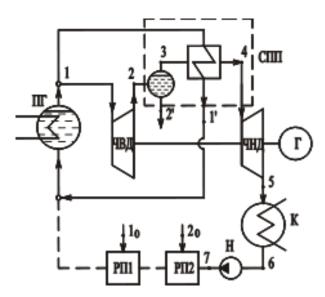
Нижний порог выполнения задания в процентах: 75 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 65 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-7. Расчетное задание №2 "Расчет термодинамического цикла АЭС - цикла паротурбинной установки на насыщенном паре с сепаратором - пароперегревателем (СПП) и двумя регенеративными подогревателями питательной воды"

Формы реализации: Письменная работа


Тип контрольного мероприятия: Домашнее задание

Вес контрольного мероприятия в БРС: 20

**Процедура проведения контрольного мероприятия:** Студентам выдается задание со сроком исполнения 4 недели. По истечению срока студент должен сдать преподавателю полностью оформленное задание на листах форматом A4 с подробным расчетом каждого процесса и оформленными в масштабе диаграммами

#### Краткое содержание задания:

Контрольная точка направлена на освоение знаний о термодинамическом цикле АЭС - цикле паротурбинной установки на насыщенном паре с сепаратором - пароперегревателем (СПП) и двумя регенеративными подогревателями питательной воды. Студентам предлагается дорисовать схему АЭС С СПП и 2 регенеративными подогревателями тип которых индивидуален в каждом задании. Требуется рассчитать давление 2 отбора исходя из условия постоянства изменения энтропии или изменения температуры в подогревателях.



#### Контрольные вопросы/задания:

Уметь: самостоятельно анализировать термодинамические процессы и циклы, методы их расчета и применять их для решения поставленной задачи

1.На рисунке изображена незавершенная схема паротурбинной установки с двумя регенеративными подогревателями: РП1- подогреватель смешивающего типа, РП2-подогреватель . смешивающего типа. Дано: p1 = 5.8 МПа, pcnn = 0.30 МПа, x1 = x3 = 1, t1 - t4 = 23.4 OC, p1o = 0.35 МПа, p2o выбирается из условия DT воды = const, p5 = p6 = 3.5 кПа, oi460 = 0.84, oi440 = 0.85, oih = 0.72, mex = 0.98, c = 0.98, ch = 0.92.

Считать, что в регенеративных подогревателях смешивающего типа вода нагревается до температуры конденсата греющего пара, а в подогревателях поверхностного типа недогрев воды равен Dt = 5~OC.

Требуется:

- 1. Изобразить принципиальную схему установки.
- 2. Определить параметры (p, T, h, s, x) воды и

водяного пара во всех характерных точках цикла и представить их в табличной форме.

3. Рассчитать внутренний КПД цикла, удельный расход пара и условного топлива.

4. Представить цикл в Т, s – диаграмме (в масштабе) и процессы в ЧВД, ЧНД и СПП в h, s – диаграмме (эскизно). Для вычерчивания кривых в Т, s – диаграмме при необходимости рассчитать параметры дополнительных точек.

#### Описание шкалы оценивания:

#### Оценка: 5

Нижний порог выполнения задания в процентах: 95

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

#### Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

#### Оценка: 3

Нижний порог выполнения задания в процентах: 65
Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

# **КМ-8.** Контрольная работа №6 "Расчет термодинамических циклов газотурбинных, парогазовых установок, холодильных и теплонасосных установок"

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

**Процедура проведения контрольного мероприятия:** Контрольная работа проводится в аудитории и рассчитана на одну пару. Студенты могут пользоваться калькулятором и таблицами термодинамических свойств идеального газа Ривкина и воды и водяного пара Александрова А.А.

#### Краткое содержание задания:

Контрольная точка направлена на освоение знаний о термодинамических циклах газотурбинных, парогазовых установок, холодильных и теплонасосных установок, построение диаграмм, расчет эффективности установок.

#### Контрольные вопросы/задания:

| Уметь: рассчитывать           | 1.1. Параметры воздуха на входе в компрессор         |
|-------------------------------|------------------------------------------------------|
| термодинамические циклы       | простой ГТУ $p = 0,1$ МПа и $t = -10$ °C, давление в |
| паротурбинных, газотурбинных, | камере сгорания – 1,0 МПа, температура газа перед    |
| холодильных и теплонасосных   | газовой турбиной 880°C, внутренний относительный     |
| установок                     | КПД компрессора 0,85, турбины 0,88. Рассчитать       |
|                               | термический и внутренний КПД цикла ГТУ.              |
|                               | Определить мощность турбины, компрессора и всей      |
|                               | установки, если расход газа 50 кг/с. Представить     |
|                               | цикл в $T$ , $s$ – диаграмме.                        |
|                               | 2. В котел-утилизатор (КУ) поступают газы от ГТУ     |

| при температуре $460^{\circ}$ С в количестве $60$ кг/с и питательная вода при $p=4,5$ МПа, $t=40^{\circ}$ С. Разность                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| температур между газом и водяным паром на горячем конце КУ равна $\Delta t1 = 40$ °C, а минимальная разность температур $\Delta t2 = 12$ °C. Определить абсолютный и                                                                                                                             |
| относительный расходы пара, температуру уходящих газов, количество теплоты, передаваемой за единицу времени в КУ, КПД КУ и потерю эксергии (работоспособности) в КУ из-за теплообмена, если температура окружающего воздуха 20°С. Представить процессы в <i>Т,Q</i> - и <i>T,S</i> - диаграммах. |

#### Описание шкалы оценивания:

#### Оценка: 5

Нижний порог выполнения задания в процентах: 95
Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

#### Оценка: 4

Нижний порог выполнения задания в процентах: 75 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

#### Оценка: 3

Нижний порог выполнения задания в процентах: 65 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

#### КМ-9. Лабораторная работа №1-4

**Формы реализации**: Компьютерное задание **Тип контрольного мероприятия**: Тестирование **Вес контрольного мероприятия в БРС**: 20

**Процедура проведения контрольного мероприятия:** За определенное время студенту надо ответить на 5 вопросов - выбрать правильный ответ из предложенных. За каждый правильный ответ - студент получает 1 балл, если студент ответил со второй попытки, то получает 0,5 балла. Минимальный проходной балл для защиты тестирования - 3,5

#### Краткое содержание задания:

Программой курса предусмотрено выполнение 4-х лабораторных работ на стендах Лаборатории Технической термодинамики, выполненных "в железе". При дистанционном обучении используются виртуальные модели этих лабораторных работ. После выполнения лабораторной работы студент в течении двух недель выполняет необходимые расчеты и графические материалы. После проверки оформленного отчета при отсутствии замечаний студент допускается к защите. Тест к каждой лабораторной работе включает 5 вопросов и варианты ответов. Используются разные типы ответов: "один из многих", "несколько из многих", "расположить в порядке возрастания", "поле ввода" и др.

#### Контрольные вопросы/задания:

| Уметь:      | экспериментально  | 1.Используя молекулярно-кинетическую теорию       |
|-------------|-------------------|---------------------------------------------------|
| определять  | термодинамические | теплоемкости, рассчитать удельную изобарную       |
| характерист | ики процессов     | теплоемкость хлора Cl2 ( $\mu = 70,90$ кг/кмоль). |

| идеального газа, влаж       | ного 1. | 1.0,176кДж/(кг·К)                                                 |
|-----------------------------|---------|-------------------------------------------------------------------|
| воздуха, воды и водяного па | pa      | 2. 0,293 кДж/(кг·К)<br>3. 0,352 кДж/(кг·К)<br>4. 0,410 кДж/(кг·К) |
|                             |         | 5. 0,469 кДж/(кг·К)<br>Ответ: 3                                   |

#### Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 100 Описание характеристики выполнения знания: 5 правильных ответов

Оценка: 4

Нижний порог выполнения задания в процентах: 80 Описание характеристики выполнения знания: 4 правильных ответа

Оценка: 3

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: 3 правильных ответа

### СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

#### 5 семестр

Форма промежуточной аттестации: Экзамен

#### Пример билета

- 1. Первый закон термодинамики. Формулировки. Аналитические выражения первого закона термодинамики.
- 2. Уравнение Ван дер Ваальса. Изотермы Ван дер Ваальса в p,v диаграмме. Правило Максвелла.
- 3. При изотермическом сжатии 1кг водяного пара его объем уменьшился в 5 раз. Определить теплоту и работу процесса, если в начальном состоянии p1 = 1 МПа, t1 = 200°C. Представить процесс в p,v-, p,T-, T,s- и h,s- диаграммах.

#### Процедура проведения

Промежуточная аттестация по дисциплине в форме экзамена проводится в период экзаменационной сессии. Экзамен проводится в устной форме. Студенту на подготовку к билету отводится время 60 мин. Время опроса обучающегося не более 30 мин. Экзаменатор оценивает объем ответа по билету, вправе задать обучающемуся дополнительные теоретические и практические вопросы из перечня вопросов дисциплины. Студент может пользоваться рабочей программой дисциплины, калькулятором и справочной литературой.

### I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

**1. Компетенция/Индикатор:** ИД- $1_{\Pi K-2}$  Демонстрирует понимание основ термодинамики, основных законов термодинамики и применяет их для расчетов термодинамических процессов, циклов и их показателей

#### Вопросы, задания

- 1.Вывод аналитического выражения второго закона термодинамики для обратимых процессов.
- 2. Расчёт энтропии идеального газа. T, s диаграмма идеального газа, изображение процессов в T, s диаграмме.

#### Материалы для проверки остаточных знаний

1. Чему равна теплота, работа и изменение внутренней энергии в политропном процессе для идеального газа?

Ответы:

 $1.Q=U2-U1, L=0, U2-U1=Q \ 2.Q=H2-H1, L=p(V2-V1), U2-U1=Q-L \ 3.Q=mRT1ln(v2/v1), L=mRT2ln(p1/p2), U2-U1=0 \ 4.Q=0, L=U1-U2, U2-U1=-L \ 5.Q=Cn(T2-T1), L=R(T1-T2)/(n-1), U2-U1=Q-L$ 

Верный ответ: 5

Верный ответ: 1

- 2. Как определить абсолютное давление, если оно выше атмосферного? Ответы:
- 1. р\_абс= рб+р\_изб; 2. р\_абс= рб-р\_изб; 3. р\_абс= р\_изб.
- 3. Чему равна теплота, работа и изменение внутренней энергии в адиабатном процессе для идеального газа?

Ответы:

 $1.Q=U2-U1, L=0, U2-U1=Q \ 2.Q=H2-H1, L=p(V2-V1), U2-U1=Q-L \ 3.Q=mRT1ln(v2/v1), L=mRT2ln(p1/p2), U2-U1=0 \ 4.Q=0, L=U1-U2, U2-U1=-L \ 5.Q=Cn(T2-T1), L=R(T1-T2)/(n-1), U2-U1=Q-L$ 

Верный ответ: 4

4. Дросселирование это...

Ответы:

1. Необратимый процесс протекания газа (пара) через местное сопротивление, в результате которого снижается давление газа без совершения им работы; 2. необратимый процесс протекания газа (пара) через местное сопротивление, применяемый для уменьшения температуры газа; 3. необратимый процесс протекания газа (пара) через местное сопротивление, в результате которого уменьшается скорость потока.

Верный ответ: 1

#### II. Описание шкалы оценивания

#### Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка «ОТЛИЧНО» выставляется студенту, правильно выполнившему практическое зада-ние, который показал при ответе на вопросы экзаменационного билета и на дополнительные вопросы, что владеет материалом изученной дисциплины, свободно применяет свои знания для объяснения различных явлений и решения задач

#### Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка «ХОРОШО» выставляется студенту, правильно выполнившему практическое зада-ние и в основном правильно ответившему на вопросы экзаменационного билета и на допол-нительные вопросы, но допустившему при этом непринципиальные ошибки.

#### Оценка: 3

Нижний порог выполнения задания в процентах: 55

Описание характеристики выполнения знания: Оценка «УДОВЛЕТВОРИТЕЛЬНО» выставляется студенту, который в ответах на вопросы экзаменационного билета допустил существенные и даже грубые ошибки, но затем исправил их сам, а также не выполнил практическое задание из экзаменационного билета, но либо наметил правильный путь его выполнения, либо по указанию экзаменатора решил другую задачу из того же раздела дисциплины

#### III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.

#### 6 семестр

Форма промежуточной аттестации: Экзамен

#### Пример билета

1. Принципиальная схема и цикл АЭС с сепаратором – пароперегревателем (СПП). Схема и цикл в Т,s- диаграмме, процессы в h,s- диаграмме, удельная работа и КПД цикла.

2. Параметры воздуха на входе в компрессор ГТУ-ТЭЦ p = 0,11 МПа и t = -18°C, давление в камере сгорания 0,7 МПа, температура газа перед газовой турбиной 800°C, КПД компрессора 0,85, турбины 0,90. Определить мощность и внутренний КПД ГТУ, коэффициент использования теплоты ГТУ-ТЭЦ и количество теплоты, отданной тепловому потребителю за 1 секунду, если расход газа 100кг/с, а КПД котла-утилизатора 0,82. Представить цикл ГТУ-ТЭЦ в T,s- диаграмме.

#### Процедура проведения

Промежуточная аттестация по дисциплине в форме экзамена проводится в период экзаменационной сессии. Экзамен проводится в устной форме. Студенту на подготовку к билету отводится время 60 мин. Время опроса обучающегося не более 30 мин. Экзаменатор оценивает объем ответа по билету, вправе задать обучающемуся дополнительные теоретические и практические вопросы из перечня вопросов дисциплины. Студент может пользоваться рабочей программой дисциплины, калькулятором и справочной литературой.

### I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

**1. Компетенция/Индикатор:** ИД- $1_{\Pi K-2}$  Демонстрирует понимание основ термодинамики, основных законов термодинамики и применяет их для расчетов термодинамических процессов, циклов и их показателей

#### Вопросы, задания

1. Принципиальная схема и цикл ПТУ на перегретом паре в T, s- диаграмме. Влияние начальных (давление и температура) и конечных (давление) параметров пара на КПД пикла ПТУ.

#### II. Описание шкалы оценивания

#### Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка «ОТЛИЧНО» выставляется студенту, правильно выполнившему практическое зада-ние, который показал при ответе на вопросы экзаменационного билета и на дополнительные вопросы, что владеет материалом изученной дисциплины, свободно применяет свои знания для объяснения различных явлений и решения задач

#### Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка «ХОРОШО» выставляется студенту, правильно выполнившему практическое зада-ние и в основном правильно ответившему на вопросы экзаменационного билета и на допол-нительные вопросы, но допустившему при этом непринципиальные ошибки.

#### Оценка: 3

Нижний порог выполнения задания в процентах: 55

Описание характеристики выполнения знания: Оценка «УДОВЛЕТВОРИТЕЛЬНО» выставляется студенту, который в ответах на вопросы экзаменационного билета допустил существенные и даже грубые ошибки, но затем исправил их сам, а также не выполнил практическое задание из экзаменационного билета, но либо наметил правильный путь его выполнения, либо по указанию экзаменатора решил другую задачу из того же раздела дисциплины

### ІІІ. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.