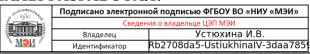
Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 14.03.01 Ядерная энергетика и теплофизика Наименование образовательной программы: Атомные электростанции и установки

Уровень образования: высшее образование - бакалавриат


Форма обучения: Очная

Оценочные материалы по дисциплине Методы решения инженерных задач

Москва 2025

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Разработчик

И.В. Устюхина

Понуровская

B.B.

Разработник		
Lasuadolanik	Разработчик	

O NOSO	Подписано электроні	ной подписью ФГБОУ ВО «НИУ «МЭИ»			
2 HH 100 100 100 100 100 100 100 100 100	Сведения о владельце ЦЭП МЭИ				
-	Владелец	Понуровская В.В.			
» <u>МЭИ</u> »	Идентификатор F	RBaea5d0a-PonurovskyaVV-147233			

СОГЛАСОВАНО:

Руководитель образовательной программы

1930 telig	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»	
	Сведения о владельце ЦЭП МЭИ		
	Владелец	Мелихов В.И.	
» <u>МэИ</u> »	Идентификатор	Rf4bcbd4b-MelikhovVI-7cf385d8	

В.И. Мелихов

Заведующий выпускающей кафедрой

NOSO PE	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»			
SHIP CHINESES	Сведения о владельце ЦЭП МЭИ				
MOM	Владелец	Хвостова М.С.			
	Идентификатор	R5ead212f-KhvostovaMS-a4cf11ca			

М.С. Хвостова

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-3 Способен к участию в эксплуатации и проектировании основного оборудования атомных электростанций и других энергетических установок с учетом экологических требований и обеспечения безопасной работы
 - ИД-2 Владеет навыками принятия и обоснования конкретных технических решений при конструировании оборудования АЭС
 - ИД-5 Владеет методами решения оптимизационных задач, связанных с атомной энергетикой

и включает:

для текущего контроля успеваемости:

Форма реализации: Письменная работа

- 1. Математическое моделирование технических устройств, решение оптимизационных задач (Домашнее задание)
- 2. Методы решения оптимизационных задач (Контрольная работа)
- 3. Методы решения оптимизационных задач. Способы учета ограничений (Домашнее задание)
- 4. Решение задач на основе дифференциальных уравнений методом конечных разностей. (Контрольная работа)

БРС дисциплины

7 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Математическое моделирование технических устройств, решение оптимизационных задач (Домашнее задание)
- КМ-2 Методы решения оптимизационных задач (Контрольная работа)
- КМ-3 Методы решения оптимизационных задач. Способы учета ограничений (Домашнее задание)
- КМ-4 Решение задач на основе дифференциальных уравнений методом конечных разностей. (Контрольная работа)

Вид промежуточной аттестации – Экзамен.

	Веса контрольных мероприятий, %				
Розная жизжиния	Индекс	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	1	2	3	4
	Срок КМ:	4	9	12	15

Математическое моделирование технических устройств				
Математическое моделирование как метод решения инженерных задач	+	+		
Понятие математической модели.	+	+		
Математическая модель технического устройства	+	+		
Методы решения оптимизационных задач				
Постановка оптимизационной задачи	+	+		
Методы одномерной минимизации	+	+		
Классические методы	+	+		
Методы направленного поиска		+		
Методы перебора вариантов	+	+		
Учет ограничений в оптимизационных задачах		+		
Решение задач на основе дифференциальных уравнений методом конечных разностей				
Общая характеристика задач на основе дифференциальных уравнений теплообмена и диффузии и способов решения.			+	+
Особенности решения двумерных задач			+	+
Решение задач теплопроводности и диффузии в условиях разрывности свойств среды			+	+
Задача о распределении энерговыделения в шестигранной кассете реактора			+	+
Bec KM:	15	35	15	35

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции		результаты обучения по	
		дисциплине	
ПК-3	ИД-2пк-3 Владеет	Знать:	КМ-1 Математическое моделирование технических устройств,
	навыками принятия и	Особенности	решение оптимизационных задач (Домашнее задание)
	обоснования конкретных	математического	КМ-2 Методы решения оптимизационных задач (Контрольная работа)
	технических решений при	моделирования	
	конструировании	теплообменных	
	оборудования АЭС	технических устройств	
		Уметь:	
		Поставить задачу	
		оптимизации параметров	
		технического устройства	
ПК-3	ИД-5 _{ПК-3} Владеет	Знать:	КМ-1 Математическое моделирование технических устройств,
	методами решения	Основные подходы к	решение оптимизационных задач (Домашнее задание)
	оптимизационных задач,	решению задач	КМ-2 Методы решения оптимизационных задач (Контрольная работа)
	связанных с атомной	теплопроводности и	КМ-3 Методы решения оптимизационных задач. Способы учета
	энергетикой	диффузии нейтронов	ограничений (Домашнее задание)
		методом конечных	КМ-4 Решение задач на основе дифференциальных уравнений методом
		разностей	конечных разностей. (Контрольная работа)
		Особенности практической	
		реализации некоторых	
		численных методов	
		направленного поиска при	
		решении	
		оптимизационных задач	
		Способы учета	
		ограничений в	

оптимизационных задачах	
Особенности	
оптимизационных задач в	
атомной энергетике	
Особенности и области	
применения классических	
методов оптимизации и	
методов перебора	
вариантов	
Уметь:	
Анализировать результаты	
решения оптимизационной	
задачи	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Математическое моделирование технических устройств, решение оптимизационных задач

Формы реализации: Письменная работа

Тип контрольного мероприятия: Домашнее задание

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: Решение задачи.

Краткое содержание задания:

Решить линейную оптимизационную задачу

Контрольные вопросы/задания:

топтропыные вопросы, задания.	
Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
Знать: Особенности	1. Что входит в состав математической модели
математического моделирования	парогенератора?
теплообменных технических	2. Что относиться к задаваемым, рассчитываемым,
устройств	оптимизируемым параметрам в задаче
	конструирования парогенератора?
Знать: Особенности и области	1. Что может являться критерием оптимальности?
применения классических методов	
оптимизации и методов перебора	
вариантов	
Знать: Особенности	1.В чем заключаются особенности
оптимизационных задач в атомной	оптимизационных задач ядерной энергетики
энергетике	(количество параметров, вид целевой функции,
	наличие ограничений, количество критериев
	оптимальности)?

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-2. Методы решения оптимизационных задач

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 35

Процедура проведения контрольного мероприятия: Решение задачи.

Краткое содержание задания:

Задачи на методы направленного поиска, задачи одномерной минимизации, задачи на учет ограничений

Контрольные вопросы/задания:

Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	Вопросы задания для проверки
	1 Hay Mayret an Hart of Mayren May
	1. Что может являться критерием оптимальности?
'' =	оптимальности:
технических устройств	1 D
Знать: Особенности и области применения	1.В каких случаях можно применять
классических методов оптимизации и	классические методы оптимизации?
методов перебора вариантов	2. Какие способы применения классических
	методов известны?
	3.В чем преимущества и недостатки
	методов перебора вариантов?
Знать: Особенности практической	1.Какие способы выбора шага
реализации некоторых численных методов	применяются в методах направленного
направленного поиска при решении	поиска?
оптимизационных задач	2.Что определяет эффективность того или
	иного метода направленного поиска?
	3. Какие критерии окончания поиска
	решения используются в данных методах?
Знать: Способы учета ограничений в	1.Какие способы учета ограничений
оптимизационных задачах	существуют?
	2.Чем характеризуются методы штрафных
	функций?
	3.В чем отличие методов внутренних и
	внешних штрафных функций?
Уметь: Поставить задачу оптимизации	1. Что выбирается в качестве критериев
параметров технического устройства	оптимальности в задачах оптимизации
J 1	технического устройства?
Уметь: Анализировать результаты решения	1. Каковы основные этапы решения
оптимизационной задачи	математической модели?
	2.Каков возможный порядок (алгоритм)
	решения задачи оптимизации?
	3. На каком этапе необходимо
	сопоставление результатов с
	экспериментальными данными?
	экспериментальными данными:

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-3. Методы решения оптимизационных задач. Способы учета ограничений

Формы реализации: Письменная работа

Тип контрольного мероприятия: Домашнее задание

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: Решение задачи.

Краткое содержание задания:

Решить задачу на основе дифференциальных уравнений методом конечных разностей

Контрольные вопросы/задания:

Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	
Знать: Основные подходы к решению задач	-
теплопроводности и диффузии нейтронов	2.В чем заключается основная идея
методом конечных разностей	численного решения
	дифференциальных уравнений?

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-4. Решение задач на основе дифференциальных уравнений методом конечных разностей.

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 35

Процедура проведения контрольного мероприятия: Решение задачи.

Краткое содержание задания:

Построить разностные уравнения

Контрольные вопросы/задания:

Запланированные	результаты	обучения	ПО	Вопросы/задания для проверки
дисциплине				
Знать: Основные	подходы к р	ешению за	адач	1. Что такое разностная сетка?
теплопроводности	и диффуз	ии нейтро	НОВ	2.Какие способы перехода от
методом конечных	разностей			дифференциальных уравнений к
				разностным известны?

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

7 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

ниу МЭИ	ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №	Утверждаю: Зав. кафедрой
	Кафедра Атомных электростанций	20 г.
		Дисциплина: Методы решения инженерных задач
		Институт: Тепловой и атомной энергетики

- 1. Градиентный метод решения оптимизационных задач.
- 2. Причины возможной неустойчивости решения одномерной нестационарной задачи теплопроводности.
- 3. Задача: Одним из классических методов определить координаты точки минимума функции z(x1,x2)=x12+x22 при ограничении g(x1,x2)=x1+x2/5=1.

Процедура проведения

Проводится в устной форме по билетам в виде подготовки и изложения развернутого ответа. Время на выполнение экзаменационного задания/подготовку ответа -60 минут.

- I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины
- **1. Компетенция/Индикатор:** ИД- $2_{\Pi K-3}$ Владеет навыками принятия и обоснования конкретных технических решений при конструировании оборудования АЭС

Вопросы, задания

- 1.Решить классическим методом задачу минимизации утечки нейтронов из ядерного реактора, имеющего форму прямоугольного параллелепипеда заданного объема V=xyz, где x,y,z- параметры параллелепипеда. Утечка нейтронов пропорциональна параметру $B2=\pi 2/x 2+\pi 2/y 2+\pi 2/z 2$
- 2.Классификация методов оптимизации. Особенности оптимизационных задач ядерной энергетики.

Материалы для проверки остаточных знаний

1.Перечислить виды параметров математической модели, привести пример математической модели теплообменного устройства

Верный ответ: Параметры математической модели внешние, управляемые, числовые, конструктивно-компоновочные, рассчитываемые.

2. Компетенция/Индикатор: ИД- $5_{\Pi K-3}$ Владеет методами решения оптимизационных задач, связанных с атомной энергетикой

Вопросы, задания

1.

1.		
ниу МЭИ	ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №	Утверждаю: Зав. кафедрой
	Кафедра Атомных электростанций	20 г.
		Дисциплина: Методы решения
		инженерных задач
		Институт: Тепловой и атомной энергетики

- 1. Градиентный метод решения оптимизационных задач.
- 2. Причины возможной неустойчивости решения одномерной нестационарной задачи теплопроводности.
- 3. Задача: Одним из классических методов определить координаты точки минимума функции z(x1,x2)=x12+x22 при ограничении g(x1,x2)=x1+x2/5=1.

2.

НИУ МЭИ	ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №	Утверждаю: Зав. кафедрой
	Кафедра Атомных электростанций	20 г.
WIGH		Дисциплина: Методы решения
		инженерных задач
		Институт: Тепловой и атомной энергетики

- 1. Особенности решения двумерной задачи теплопроводности. Локально-одномерная разностная схема.
- 2. Общая характеристика методов направленного поиска.
- 3. Используя метод внутренних штрафных функций минимизируйте z(x)=х при ограничении 4-x<0.

3. Дать математическую формулировку следующей задачи линейного программирования и решить ее графическим методом:

Какое количество контролеров 1-ого и 2-ого разряда потребуется для проверки качества изделий, чтобы затраты были минимальны? Характеристики работы контролеров: производительность работы 25 изделий/час для 1-ого разряда, 16 — для 2-ого; число ошибок на 100 проверок для 1 —ого разряда — 2, для 2-ого — 5; зарплата контролера 1-ого разряда 50 руб./час, 2-ого — 30 руб./час . Затраты на ошибку 20 руб./ош. Рабочий день 8 часов. Ежедневная проверка не менее 1600 изделий. Контролеров 1-ого разряда должно быть не более 6, 2-ого не более 10.

4.Для целевой функции z=(x-3)2 из точки x(0)=0 сделать 1 шаг в направлении точки минимума градиентным методом с выбором величины шага по неравенству, следующему из свойств выпуклости функции. Начальный шаг 0,4, коэффициенты для неравенства $\gamma=0.8$, $\alpha=0.5$

5.Используя классический метод оптимизации, найти зависимость координаты точки минимума от скалярного параметра r для целевой функции z(x)=2-x при учете ограничения $x\leq 4$ с помощью внешних и внутренних штрафных функций.

6. Дать определение понятий аппроксимация, устойчивость, сходимость. Каким образом они связаны с процессом численного решения дифференциальной задачи?

7.В задаче оптимизации заданы ограничения на размерные параметры:

2м/с \le w \le 8м/с, 10мм \le d \le 20мм. Перейти к безразмерным параметрам с условиями: 0<w1<10, 0<d1<10.

8.Составить разностные выражения для второй производной функции, используя ее разложение в ряд Тейлора по 3 и 5 точкам.

9.Градиентным методом найти минимум целевой функции:

z(x1, x2)=((x1)2-x2)2+(3x2-6)2

Учет ограничений: х1≥1; х2≥0 произвести с помощью внутренних штрафных функций.

Материалы для проверки остаточных знаний

1. Чем отличается метод внешних штрафных функций от метода внутренних штрафных функций? Назовите их основные особенности.

Верный ответ: Оба метода используются для учета ограничений при минимизации целевой функции и заключаются в добавлении некоторых функций, называемых штрафными, к целевой функции, и далее исследуется эта новая целевая функция. Штрафные функции строятся на основе функций, задающих ограничения. Особенности внутренних штрафных функций — должны слабо влиять на целевую функцию внутри области ограничений и резко возрастать при приближении к границе. Такими свойствами обладают обратные функции и отрицательный логарифм. Особенности внешних штрафных функций — равны нулю в области ограничений и возрастают при удалении от границы области. Для внешних штрафов используют степенные функции с показателями 1 или 2.

2.Методом деления интервала пополам ($0 \le x \le 8$) реализуйте процедуру (2-3 итерации) одномерного поиска точки оптимума функции Z(x) = x3 - 5x2 + 2x + 2

Верный ответ: Поскольку в задании требуется сделать 2-3 итерации, то выберем грубую точность решения ϵ =2. Обозначим заданный интервал L, границы a=0, b=8, L=b-а Критерий окончания $|L| \le \epsilon$ Середина интервала Xm = (a+b)/2 Середины отрезков, на которые точка Xm делит интервал L, X1 = a + L/4, X2 = b - L/4 Согласно алгоритму метода сравниваются поочередно значения Z(Xm) с Z(X1) и Z(X2) и выбирается новый интервал, вдвое меньше первого: Zm = 4, Z(Xm) = -6 Z(X1) = -6 Z(X2) = 50 $Z(X1) \le Z(Xm)$, значит новый интервал z = 0, z = 00, z = 01.

итерация: Xm=2, Z(Xm)=-6 X1=1, Z(X1)=0 X2=3, Z(X2)=-10 Так как Z(X1)>Z(Xm), а Z(X2 \leq Z(Xm), то новый интервал а=Xm=2, b=4 Следующая итерация: Xm=3, Z(Xm)=-6 X1=2,5, Z(X1)=-8,6 X2=3,5, Z(X2)=-0,9 Xm=X1=2,5- искомая точка минимума

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ».