Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования

«Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 14.03.01 Ядерная энергетика и теплофизика

Наименование образовательной программы: Атомные электростанции и установки

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Рабочая программа дисциплины ТЕРМОДИНАМИКА

Блок:	Блок 1 «Дисциплины (модули)»								
Часть образовательной программы:	Часть, формируемая участниками образовательных отношений								
№ дисциплины по учебному плану:	Б1.Ч.04								
Трудоемкость в зачетных единицах:	5 семестр - 5; 6 семестр - 5; всего - 10								
Часов (всего) по учебному плану:	360 часов								
Лекции	5 семестр - 32 часа; 6 семестр - 28 часа; всего - 60 часов								
Практические занятия	5 семестр - 48 часа; 6 семестр - 28 часа; всего - 76 часа								
Лабораторные работы	6 семестр - 14 часов;								
Консультации	5 семестр - 2 часа; 6 семестр - 2 часа; всего - 4 часа								
Самостоятельная работа	5 семестр - 97,5 часа; 6 семестр - 107,5 часов; всего - 205,0 часов								
в том числе на КП/КР	не предусмотрено учебным планом								
Иная контактная работа	проводится в рамках часов аудиторных занятий								
включая: Контрольная работа Домашнее задание Тестирование									
Промежуточная аттестация:									
Экзамен Экзамен	5 семестр - 0,5 часа; 6 семестр - 0,5 часа; всего - 1,0 час								

Москва 2023

ПРОГРАММУ СОСТАВИЛ:

Преподаватель

O NO SO	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»
	Сведен	ия о владельце ЦЭП МЭИ
-	Владелец	Джураева Е.В.
NOM &	Идентификатор	R930396c8-DzhuraevaEV-8c9904a

Е.В. Джураева

СОГЛАСОВАНО:

Руководитель образовательной программы

В.И. Мелихов

Заведующий выпускающей кафедрой

o occasionate page	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»
	Сведен	ия о владельце ЦЭП МЭИ
	Владелец	Хвостова М.С.
» Mom	Идентификатор	R5ead212f-KhvostovaMS-a4cf11ca

М.С. Хвостова

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель освоения дисциплины: является изучение законов термодинамики и термодинамических методов анализа, применительно к системам передачи и трансформации теплоты на атомных электростанциях, теплосиловых, холодильных и теплонасосных установках.

Задачи дисциплины

- освоение основных законов термодинамики и методов их применения для анализа и расчета процессов, используемых в холодильных, теплонасосных и других теплотехнических установках;
- приобретение знаний и навыков, позволяющих рассчитывать термодинамические процессы разнообразных теплоэнергетических и теплотехнических установок;
- обучение методам термодинамического анализа для оценки эффективности термодинамических процессов и циклов теплосиловых, холодильных и теплонасосных установок.

Формируемые у обучающегося компетенции и запланированные результаты обучения по дисциплине, соотнесенные с индикаторами достижения компетенций:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции	Запланированные результаты обучения
ПК-1 Демонстрирует понимание основных способов получения, преобразования, транспорта и использования теплоты в теплотехнических установках и системах	ИД-1 _{ПК-1} Демонстрирует понимание основ термодинамики, основных законов термодинамики и применяет их для расчетов термодинамических процессов, циклов и их показателей	знать: - методы расчета термодинамических свойств и процессов идеального газа; - методы расчета обратимых и необратимых процессов в потоке идеального и реального газа; - способы определения свойств и методы расчета термодинамических процессов реального газа; - основные законы термодинамики и условия их применения. уметь: - рассчитывать термодинамические циклы паротурбинных, газотурбинных, холодильных и теплонасосных установок; - рассчитывать произвольные термодинамические циклы идеального газа и оценивать их эффективность; - рассчитывать термодинамические циклы ПТУ; - экспериментально определять термодинамические характеристики процессов идеального газа, влажного воздуха, воды и водяного пара; - самостоятельно анализировать термодинамические процессы и циклы, методы их расчета и применять их для решения поставленной задачи.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ВО

Дисциплина относится к основной профессиональной образовательной программе Атомные электростанции и установки (далее – ОПОП), направления подготовки 14.03.01 Ядерная энергетика и теплофизика, уровень образования: высшее образование - бакалавриат.

Требования к входным знаниям и умениям:

- знать раздел Математики «Дифференциальное и интегральное исчисление»
- знать раздел Физики (общей) «Молекулярная физика»
- уметь дифференцировать и интегрировать функции, решать дифференциальные уравнения
- уметь использовать молекулярно-кинетическую теорию для расчета калорических свойств идеального газа

Результаты обучения, полученные при освоении дисциплины, необходимы при выполнении выпускной квалификационной работы.

3. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1 Структура дисциплины Общая трудоемкость дисциплины составляет 10 зачетных единиц, 360 часов.

	Doo yo yy //wo y y	В			Распр	еделе	ние труд	цоемкости						
No	Разделы/темы дисциплины/формы	асод	стр				Конта	ктная раб	ота				CP	Содержание самостоятельной работы/
п/п	промежуточной	сего часо) на раздел	Семестр				Консу.	льтация	ИК	P		Работа в	Подготовка к	методические указания
	аттестации	Всего часов на раздел	C	Лек	Лаб	Пр	КПР	ГК	ИККП	ТК	ПА	семестре	аттестации /контроль	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	Основные законы термодинамики и общие закономерности	52	5	12	-	18	-	-	-	-	-	22	-	Подготовка к текущему контролю: Повторение материала по разделу "Основные законы термодинамики и общие закономерности" для успешной сдачи
1.1	Основные определения и термины	13		3	-	4	-	-	-	-	-	6	-	экзамена <u>Подготовка к контрольной работе:</u> Повторение материала по разделу
1.2	Первый закон термодинамики	13		3	-	4	-	-	-	-	-	6	-	"Основные законы термодинамики и общие закономерности" необходимо для успешного
1.3	Второй закон термодинамики	14		3	-	6	-	-	-	-	-	5	-	написания контрольной работы. Подготовка расчетных заданий:
1.4	Дифференциальные уравнения термодинамики	12		3	-	4	-	-	-	-	-	5	-	Повторение материала по разделу "Основные законы термодинамики и общие закономерности" необходимо для выполнения расчетных заданий в 5-м и 6-м семестрах и успешной сдачи экзаменов. Изучение материалов литературных источников: [2], стр. 7-25, 78-104 [3], стр. 9-15, 28-69, 81-99, 111-121, 125-140
2	Процессы идеального газа	46		8	-	14	ı	-	-	1	1	24	-	Подготовка к контрольной работе: Повторение материала по разделу "Процессы
2.1	Законы и уравнения идеального газа	36		6	-	10	-	-	-	-	-	20	-	идеального газа" необходимо для успешного написания контрольной работы.
2.2	Смеси газов	10		2	-	4	-	-	-	-	-	4	-	Подготовка домашнего задания: Подготовка домашнего задания направлена на отработку умений решения профессиональных задач. Домашнее задание

														выдается студентам по изученному в разделе "Процессы идеального газа" материалу. Дополнительно студенту необходимо изучить литературу и разобрать примеры выполнения подобных заданий. Проверка домашнего задания проводится по представленным письменным работам. Подготовка к текущему контролю: Повторение материала по разделу "Процессы идеального газа" для успешной сдачи экзамена Изучение материалов литературных источников: [1], стр. 5-11 [2], стр. 26-34, 45-77 [3], стр. 15-27, 215-222, 225-236
3	Свойства и процессы реального газа	46		12	-	16	-	-	-	-	-	18	-	Подготовка к контрольной работе: Повторение материала по разделу "Свойства
3.1	Термодинамические свойства реального газа	16		4	-	6	-	-	-	-	-	6	-	и процессы реального газа" для успешного написания контрольной работы Подготовка к текущему контролю:
3.2	Таза Термодинамические процессы реального газа.	15	_	4	-	5	-	-	-	-	-	6	-	Повторение материала по разделу "Свойства и процессы реального газа" для успешной сдачи экзамена
3.3	Термические уравнения состояния реального газа.	15		4	-	5	-	-	-	-	-	6	-	<u>Изучение материалов литературных</u> <u>источников:</u> [2], стр. 133-152 [3], стр. 141-152, 168-169, 177-183, 187-189, 197-198, 207-211, 215-223
	Экзамен	36.0		-	-	-	-	2	-	-	0.5	-	33.5	
	Всего за семестр	180.0	1	32		48	-	2	-	-	0.5	64	33.5	
	Итого за семестр	180.0	1	32	-	48		2	-	•	0.5		97.5	
4	Процессы в потоке вещества	26	6	4	4	8	_	-	-	-	-	10	-	Подготовка к контрольной работе: Повторение материала по разделу "Процессы
4.1	Расчет сопл	18		2	4	8	-	-	-	_	-	4	-	в потоке вещества" для успешного
4.2	Процессы в диффузоре	4		1	-	_	-	-	-	-	-	3	-	написания контрольной работы Подготовка к текущему контролю:
4.3	Дросселирование	4		1	-	-	-	-	-	-	-	3	-	Повторение материала по разделу "Процессы в потоке вещества" для успешной сдачи

													экзамена Подготовка к лабораторной работе: Для выполнения заданий по лабораторной работе необходимо предварительно изучить тему и задачи выполнения лабораторной работы, а так же изучить вопросы вариантов обработки результатов по изученному в разделе "Процессы в потоке вещества" материалу. Изучение материалов литературных источников: [2], стр. 164-205 [3], стр. 236-245, 256- 266, 267-294
5	Термодинамические циклы паротурбинных установок	62.0	10	4.0	10	-	-	-	-	-	38	-	Подготовка к контрольной работе: Повторение материала по разделу "Термодинамические циклы паротурбинных
5.1	Паротурбинные установки	11	2	1	4	-	-	-	-	-	4	-	установок" для успешного написания контрольной работы
5.2	Промежуточный перегрев пара в циклах ПТУ на перегретом паре	8.5	2	0.5	2	-	-	-	-	-	4	-	Подготовка домашнего задания: Подготовка домашнего задания направлена на отработку умений решения профессиональных задач. Домашнее задание
5.3	Регенерация в циклах ПТУ	8.5	2	0.5	2	-	-	-	-	-	4	-	выдается студентам по изученному в разделе "Термодинамические циклы паротурбинных
5.4	Сепарация пара в циклах ПТУ на насыщенном паре	26	2	1	1	-	-	-	-	-	22	-	установок" материалу. Дополнительно студенту необходимо изучить литературу и разобрать примеры выполнения подобных
5.5	Теплофикационные циклы ПТУ (циклы ПТУ-ТЭЦ)	8	2	1	1	-	-	-	-	-	4	-	заданий. Проверка домашнего задания проводится по представленным письменным работам. Подготовка к текущему контролю: Повторение материала по разделу "Термодинамические циклы паротурбинных установок" для успешной сдачи экзамена Подготовка к лабораторной работе: Выполнения заданий по лабораторной работе необходимо предварительно изучить тему и задачи выполнения лабораторной работы, а так же изучить вопросы вариантов

		22.0		4.0									обработки результатов по изученному в разделе "Термодинамические циклы паротурбинных установок" материалу. Изучение материалов литературных источников: [1], стр. 11-33 [2], стр. 230-249 [3], стр. 347-358, 372- 379, 388-390
6	Термодинамические циклы газотурбинных и парогазовых установок	32.0	8	4.0	6	-	-	-	-	-	14	-	Подготовка к контрольной работе: Повторение материала по разделу "Термодинамические циклы паротурбинных установок" для успешного написание
6.1	Цикл простой газотурбинной установки	8	2	1	2	-	-	-	-	-	3	-	контрольной работы <u>Подготовка к текущему контролю:</u> Повторение материала по разделу
6.2	Цикл газотурбинной установки с регенерацией	5.5	1	0.5	1	-	-	-	-	-	3	-	"Термодинамические циклы газотурбинных и парогазовых установок" для успешной сдачи экзамена
6.3	Теплофикационный цикл газотурбинной установки	5.5	1	0.5	1	-	-	-	-	-	3	-	<u>Изучение материалов литературных</u> <u>источников:</u> [2], стр. 212-223, 251-253
6.4	Термодинамический цикл парогазовой установки с котлом- утилизатором	7	2	1	1	-	-	-	-	-	3	-	[3], стр. 319-327, 328-331, 383-386
6.5	Термодинамические циклы двигателей внутреннего сгорания	6	2	1	1	-	-	-	-	-	2	-	
7	Обратные термодинамические циклы холодильных и теплонасосных установок	24	6	2	4	-	-	-	-	-	12	-	Подготовка к контрольной работе: Повторение материала по разделу "Обратные термодинамические циклы холодильных и теплонасосных установок" для успешного написание контрольной работы
7.1	Обратные термодинамические циклы холодильных установок	12	3	1	2	-	-	-	-	-	6	-	Подготовка к текущему контролю: Повторение материала по разделу "Обратные термодинамические циклы холодильных и теплонасосных установок" для успешной
7.2	Термодинамические циклы теплонасосных	12	3	1	2	-	-	-	-	-	6	-	сдачи экзамена <u>Изучение материалов литературных</u>

установок													<u>источников:</u>
													[2], стр. 267-268, 273-274 [3], стр. 414-417, 422-427, 438-440; [2] стр.
													267-268, 273-274
Экзамен	36.0		-	-	-	-	2	-	-	0.5	-	33.5	
Всего за семестр	180.0		28	14.0	28	-	2	-	-	0.5	74	33.5	
Итого за семестр	180.0		28	14.0	28		2	-		0.5		107.5	
ИТОГО	360.0	-	60	14.0	76		4			1.0		205.0	

Примечание: Лек – лекции; Лаб – лабораторные работы; Пр – практические занятия; КПР – аудиторные консультации по курсовым проектам/работам; ИККП – индивидуальные консультации по курсовым проектам/работам; ГК- групповые консультации по разделам дисциплины; СР – самостоятельная работа студента; ИКР – иная контактная работа; ТК – текущий контроль; ПА – промежуточная аттестация

3.2 Краткое содержание разделов

1. Основные законы термодинамики и общие закономерности

1.1. Основные определения и термины

Основные термины и определения. Функции состояния и функции процесса.

1.2. Первый закон термодинамики

Принцип эквивалентности, формулировки и уравнения первого закона термодинамики. Работа расширения, внутренняя энергия, энтальпия, теплоемкость. Первый закон термодинамики для потока вещества, уравнение неразрывности, техническая работа, энтальпия.

1.3. Второй закон термодинамики

Формулировки второго закона термодинамики. Обратимые и необратимые процессы, причины необратимости. Цикл Карно, теоремы Карно. Энтропия, аналитическое выражение второго закона термодинамики для обратимых и необратимых процессов, расчет энтропии. Энтропия изолированной системы, энтропия и термодинамическая вероятность. Эксергетический анализ термодинамических систем, эксергия теплоты и потока вещества, уравнение Гюи – Стодолы, эксергетический КПД.

1.4. Дифференциальные уравнения термодинамики

Характеристические функции, уравнения Максвелла. Дифференциальные соотношения между калорическими и термическими функциями состояния, особенности уравнений для систем с переменной массой.

2. Процессы идеального газа

2.1. Законы и уравнения идеального газа

Основные процессы идеального газа, соотношения параметров, теплота и работа процессов, расчет для газов с постоянной теплоёмкостью и для газов с теплоёмкостью, зависящей от температуры. Теплота и техническая работа в потоке газа. Изображение процессов в p,v- и T,s- диаграммах.

2.2. Смеси газов

Способы задания смеси, парциальные давления и объёмы. Законы Дальтона и Амага. Термодинамические свойства смеси идеального газа.

3. Свойства и процессы реального газа

3.1. Термодинамические свойства реального газа

Термодинамические свойства реального газа, свойства влажного пара, линии фазовых переходов в термодинамических диаграммах (p,v-, p,T-, T,s- и h,s-). Критическая точка, надкритическая область параметров состояния. Фазовые переходы, уравнение Клапейрона – Клаузиуса, правило фаз Гиббса.

3.2. Термодинамические процессы реального газа.

Теплота и работа процессов. Теплота и техническая работа в потоке реального газа. Изображение процессов в термодинамических диаграммах.

3.3. Термические уравнения состояния реального газа.

Уравнение Ван-дер-Ваальса. Вириальное уравнение состояния, вириальные коэффициенты. Подобие термодинамических свойств веществ, z, p- диаграмма..

4. Процессы в потоке вещества

4.1. Расчет сопл

Параметры торможения. Процессы в соплах, расчет скорости и расхода газа и пара, коэффициенты скорости и расхода, изображение процессов в h,s- и p,v- диаграммах, влияние трения. Кризис течения, критические параметры потока, скорость звука. Закон обращения воздействия, геометрическое и тепловое воздействие на поток. Три случая истечения из сужи-вающего сопла, сопло Лаваля.

4.2. Процессы в диффузоре

Процессы в диффузоре, влияние трения.

4.3. Дросселирование

Основное уравнение адиабатного дросселирования, эффект Джоуля-Томсона, кривая инверсии. Изображение процесса дросселирования в h,s- и T,s- диаграммах.

5. Термодинамические циклы паротурбинных установок

5.1. Паротурбинные установки

Принципиальная схема паротурбинной установки (ПТУ) и цикл Ренкина. Удельная работа, подведенная и отведенная теплота, термический и внутренний КПД цикла, мощность ПТУ, изображение циклов в Т,s- и h, s- диаграммах. Влияние начальных и конечных параметров пара на КПД цикла Ренкина.

5.2. Промежуточный перегрев пара в циклах ПТУ на перегретом паре

Принципиальная схема и цикл в T,s- диаграмме, процессы в h, s- диаграмме. КПД цикла. Цикл в T,s- диаграмме при p1 большем, чем pкp.

5.3. Регенерация в циклах ПТУ

Обобщенный цикл Карно и его КПД. Принципиальная схема и цикл ПТУ с одним регенеративным подогревателем смешивающего типа; схема и цикл в Т,s- диаграмме, удельная работа и КПД цикла. Оптимальная температура питательной воды. Зависимость КПД цикла от температуры питательной воды и числа подогревателей. Особенность схемы с подогревателями поверхностного типа.

5.4. Сепарация пара в циклах ПТУ на насыщенном паре

Принципиальная схема и цикл ПТУ с одним промежуточным сепаратором пара. Иллюстрации в Т,s- и в h, s- диаграммах, удельная работа и КПД цикла. Принципиальная схема и цикл АЭС с сепаратором— пароперегревателем (СПП). Принципиальная схема и цикл в Т,s- диаграмме, процессы в h, s- диаграмме, удельная работа и КПД цикла. Особенности схемы с двухступенчатым СПП.

5.5. Теплофикационные циклы ПТУ (циклы ПТУ-ТЭЦ)

Критерии эффективности ПТУ-ТЭЦ: коэффициент использования теплоты (топлива), отопительный коэффициент, эксергетический КПД. Принципиальные схемы и циклы в Т,ѕдиаграмме для ТЭЦ с турбиной типа Р (турбина с противодавлением). Принципиальные схемы и циклы в Т,ѕдиаграмме для ТЭЦ с турбиной типа Т (с отборами пара из турбины)..

6. Термодинамические циклы газотурбинных и парогазовых установок

6.1. Цикл простой газотурбинной установки

Цикл простой газотурбинной установки (ГТУ): удельная работа, подведенная и отведенная теплота, термический и внутренний КПД цикла, мощность ГТУ, изображение цикла в Т,s- диаграмме. Влияние параметров газа на КПД цикла.

6.2. Цикл газотурбинной установки с регенерацией

Принципиальная схема и цикл ГТУ с регенерацией, изображение цикла в Т,s- диаграмме. Предельная регенерация, степень регенерации. Удельная работа, подведенная и отведенная теплота, внутренний КПД цикла.

6.3. Теплофикационный цикл газотурбинной установки

Теплофикационный цикл ГТУ (ГТУ-ТЭЦ), коэффициент использования теплоты (топлива) и эксергетический КПД..

6.4. Термодинамический цикл парогазовой установки с котлом-утилизатором

Термодинамический цикл парогазовой установки (ПГУ) с котлом-утилизатором, изображение цикла в T,s- диаграмме, мощность ПГУ, КПД цикла..

6.5. Термодинамические циклы двигателей внутреннего сгорания

Цикл двигателя с подводом теплоты при постоянном объеме (цикл Отто). Цикл двигателя с подводом теплоты при постоянном давлении (цикл Дизеля). Цикл двигателя с комбинированным подводом теплоты (цикл Тринклера). Сравнение экономичности двигателей внутреннего сгорания.

7. Обратные термодинамические циклы холодильных и теплонасосных установок

7.1. Обратные термодинамические циклы холодильных установок

Обратные термодинамические циклы холодильных установок и их характеристики: холодопроизводительность и мощность привода, холодильный коэффициент и эксергетический КПД. Обратный цикл Карно — цикл холодильной установки и его характеристики. Цикл воздушной холодильной установки, изображение цикла в Т,ѕ-диаграмме, характеристики цикла. Цикл паро-компрессионной холодильной установки, изображение цикла в Т,ѕ- диаграмме, характеристики цикла. Сравнение внутреннего охлаждения в детандерах и дросселях.

7.2. Термодинамические циклы теплонасосных установок

Термодинамические циклы теплонасосных установок и их характеристики: тепловая мощность и мощность привода, отопительный коэффициент и эксергетический КПД. Обратный цикл Карно — цикл теплонасосной установки. Принципиальная схема и цикл парокомпрессионных теплонасосных установок в Т,s- диаграмме, характеристики цикла.

3.3. Темы практических занятий

- 1. 13. Расчет обратных термодинамических циклов холодильных и теплонасосных установок;
- 2. 3. Процессы идеального газа. Расчет процессов с учетом зависимости теплоемкости газа от температуры;
- 3. 12. Расчет термодинамических циклов газотурбинных и парогазовых установок;
- 4. 11. Контрольная работа №5. Расчет термодинамических циклов паротурбинных

установок;

- 5. 6.Контрольная работа №3. Определение термодинамических свойств и расчет процессов воды и водяного пара;
- 6. 10. Расчет термодинамических циклов паротурбинных установок;
- 7. 4.Контрольная работа №2: Расчет термодинамических процессов идеального газа с учетом зависимости теплоёмкости газа от температуры;
- 8. 7.Влажный воздух;
- 9. 8. Процессы расширения газа и пара в суживающихся соплах и в соплах Лаваля;
- 10. 9.Контрольная работа №4. Расчет процессов в суживающихся соплах и соплах Лаваля;
- 11. 5. Термодинамические свойства и процессы реального газа водяного пара;
- 12. 2.Контрольная работа №1: Расчет термодинамических свойств бинарной смеси идеальных газов.;
- 13. 14. Контрольная работа №6. Расчет термодинамических циклов газотурбинных, парогазовых установок, холодильных и теплонасосных установок;
- 14. 1.Параметры состояния. Законы и уравнения идеального газа. Термодинамические свойства смеси идеальных газов.

3.4. Темы лабораторных работ

- 1. Исследование процесса адиабатного течения воздуха в суживающихся соплах;
- 2. Определение изобарной теплоемкости и термодинамических свойств воздуха;
- 3. Исследование процессов во влажном воздухе;
- 4. Изохорное нагревание воды и водяного пара.

3.5 Консультации

3.6 Тематика курсовых проектов/курсовых работ

Курсовой проект/ работа не предусмотрены

3.7. Соответствие разделов дисциплины и формируемых в них компетенций

Запланированные результаты		·	Н	Іоме	p pa	здел	ıa		Оценочное средство
обучения по дисциплине	Коды			исці			`		(тип и наименование)
(в соответствии с разделом 1)	индикаторов	(1.3.1		
		1	2	3	4	5	6	7	
Знать:	ı		1	ı		ı			
основные законы термодинамики и									Контрольная работа/Контрольная работа №1 «Расчет
условия их применения	ИД-1 _{ПК-1}	+							термодинамических свойств бинарной смеси идеальных газов»
способы определения свойств и									Контрольная работа/Контрольная работа №3
методы расчета термодинамических	ИД-1 _{ПК-1}			+					«Определение термодинамических свойств и расчет
процессов реального газа									процессов воды и водяного пара»
методы расчета обратимых и									Контрольная работа/Контрольная работа №4 «Расчет
необратимых процессов в потоке	ИД-1 _{ПК-1}				+				процессов в суживающихся соплах и соплах Лаваля»
идеального и реального газа									
методы расчета термодинамических	ИД-1 _{ПК-1}		+						Контрольная работа/Контрольная работа №2 «Расчет
свойств и процессов идеального газа	11/4-11IK-1		'						термодинамических процессов идеального газа»
Уметь:									
самостоятельно анализировать									Домашнее задание/Расчетное задание №2 "Расчет
термодинамические процессы и									термодинамического цикла АЭС - цикла паротурбинной
циклы, методы их расчета и	ИД-1 _{ПК-1}					+			установки на насыщенном паре с сепаратором -
применять их для решения									пароперегревателем (СПП) и двумя регенеративными
поставленной задачи									подогревателями питательной воды"
экспериментально определять									Тестирование/Лабораторная работа №1-4
термодинамические характеристики									
процессов идеального газа,	ИД-1 _{ПК-1}				+	+			
влажного воздуха, воды и водяного									
пара									
рассчитывать термодинамические циклы ПТУ	ИД-1 _{ПК-1}					+			Контрольная работа/Контрольная работа №5 "Расчет термодинамических циклов паротурбинных установок"
рассчитывать произвольные									Домашнее задание/Расчетное задание №1 «Расчет
термодинамические циклы	ИД-1 _{ПК-1}		+						произвольного термодинамического цикла, состоящего из

идеального газа и оценивать их эффективность						пяти различных процессов, совершаемых идеальным газом »
рассчитывать термодинамические циклы паротурбинных, газотурбинных, холодильных и теплонасосных установок	ИД-1 _{ПК-1}			+	+	Контрольная работа/Контрольная работа №6 "Расчет термодинамических циклов газотурбинных, парогазовых установок, холодильных и теплонасосных установок"

4. КОМПЕТЕНТНОСТНО-ОРИЕНТИРОВАННЫЕ ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ КОНТРОЛЯ ОСВОЕНИЯ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (ТЕКУЩИЙ КОНТРОЛЬ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ ПО ДИСЦИПЛИНЕ)

4.1. Текущий контроль успеваемости

5 семестр

Форма реализации: Письменная работа

- 1. Контрольная работа №1 «Расчет термодинамических свойств бинарной смеси идеальных газов» (Контрольная работа)
- 2. Контрольная работа №2 «Расчет термодинамических процессов идеального газа» (Контрольная работа)
- 3. Контрольная работа №3 «Определение термодинамических свойств и расчет процессов воды и водяного пара» (Контрольная работа)
- 4. Расчетное задание №1 «Расчет произвольного термодинамического цикла, состоящего из пяти различных процессов, совершаемых идеальным газом » (Домашнее задание)

6 семестр

Форма реализации: Компьютерное задание

1. Лабораторная работа №1-4 (Тестирование)

Форма реализации: Письменная работа

- 1. Контрольная работа №4 «Расчет процессов в суживающихся соплах и соплах Лаваля» (Контрольная работа)
- 2. Контрольная работа №5 "Расчет термодинамических циклов паротурбинных установок" (Контрольная работа)
- 3. Контрольная работа №6 "Расчет термодинамических циклов газотурбинных, парогазовых установок, холодильных и теплонасосных установок" (Контрольная работа)
- 4. Расчетное задание №2 "Расчет термодинамического цикла АЭС цикла паротурбинной установки на насыщенном паре с сепаратором пароперегревателем (СПП) и двумя регенеративными подогревателями питательной воды" (Домашнее задание)

Балльно-рейтинговая структура дисциплины является приложением А.

4.2 Промежуточная аттестация по дисциплине

<u>Экзамен (Семестр №5)</u>

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.

Экзамен (Семестр №6)

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.

В диплом выставляется оценка за 6 семестр.

Примечание: Оценочные материалы по дисциплине приведены в фонде оценочных материалов ОПОП.

5. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

5.1 Печатные и электронные издания:

1. Джураева, Е. В. Расчетные задания для самостоятельных занятий по термодинамике и технической термодинамике: учебное пособие по направлениям "Теплоэнергетика и теплотехника", "Энергомашиностроение" и "Ядерная энергетика и теплофизика" / Е. В. Джураева, В. С. Охотин, В. Ф. Утенков, Нац. исслед. ун-т "МЭИ". – М.: Изд-во МЭИ, 2015. – 76 с. - ISBN 978-5-7046-1616-0.

http://elib.mpei.ru/elib/view.php?id=7263;

- 2. Сборник задач по технической термодинамике : учебное пособие для вузов по направлениям "Теплоэнергетика" и "Техническая физика" / Т. Н. Андрианова, Б. В. Дзампов, В. Н. Зубарев, и др. 5-е изд, стер . М. : Издательский дом МЭИ, 2006 . 356 с. ISBN 5-903072-29-1 .;
- 3. Кириллин В.А., Сычев В.В., Шейндлин А.Е. "Техническая термодинамика", Издательство: "Издательский дом МЭИ", Москва, 2016 (496 с.) http://e.lanbook.com/books/element.php?pl1_id=72305.

5.2 Лицензионное и свободно распространяемое программное обеспечение:

- 1. Office / Российский пакет офисных программ;
- 2. Видеоконференции (Майнд, Сберджаз, ВК и др);
- 3. TBT Shell;
- 4. Электронная энциклопедия энергетики.

5.3 Интернет-ресурсы, включая профессиональные базы данных и информационносправочные системы:

- 1. ЭБС Лань https://e.lanbook.com/
- 2. ЭБС "Университетская библиотека онлайн" -

http://biblioclub.ru/index.php?page=main_ub_red

- 3. **Научная** электронная библиотека https://elibrary.ru/
- 4. **База данных ВИНИТИ online** http://www.viniti.ru/
- 5. База данных журналов издательства Elsevier https://www.sciencedirect.com/
- 6. Электронные ресурсы издательства Springer https://link.springer.com/
- 7. База данных Web of Science http://webofscience.com/
- 8. База данных Scopus http://www.scopus.com
- 9. Национальная электронная библиотека https://rusneb.ru/
- 10. ЭБС "Консультант студента" http://www.studentlibrary.ru/
- 11. Журналы American Chemical Society https://www.acs.org/content/acs/en.html
- 12. Журналы American Institute of Physics https://www.scitation.org/
- 13. Журналы American Physical Society https://journals.aps.org/about
- 14. База данных издательства Annual Reviews Science Collection -

https://www.annualreviews.org/

- 15. База данный Association for Computing Machinery Digital Library https://dl.acm.org/about/content
- 16. Журналы издательства Cambridge University Press https://www.cambridge.org/core
- 17. База данных IEL издательства IEEE (Institute of Electrical and Electronics Engineers, Inc.) https://ieeexplore.ieee.org/Xplore/home.jsp?reload=true
- 18. База данных Computers & Applied Sciences Complete (CASC) -

http://search.ebscohost.com

- 19. База данных INSPEC на платформе компании EBSCO Publishing http://search.ebscohost.com
- 20. Журналы Institute of Physics (IOP), Великобритания https://iopscience.iop.org/
- 21. Журналы научного общества Optical Society of America (OSA) -

https://www.osapublishing.org/about.cfm

- 22. Патентная база Orbit Intelligence компании Questel https://www.orbit.com/
- 23. Журналы издательства Oxford University Press https://academic.oup.com/journals/
- 24. База данных диссертаций ProQuest Dissertations and Theses Global https://search.proquest.com/pqdtglobal/index
- 25. Журналы Журналы Royal Society of Chemistry https://pubs.rsc.org/
- 26. Журналы издательства SAGE Publication (Sage) https://journals.sagepub.com/
- 27. Журнал Science https://www.sciencemag.org/
- 28. Журналы научного общества Society of Photo-Optical Instrumentation Engineers (SPIE) Digital Library https://www.spiedigitallibrary.org/
- 29. Коллекция журналов Taylor & Francis Group https://www.tandfonline.com/
- 30. Журналы по химии Thieme Chemistry Package компании Georg Thieme Verlag KG https://www.thieme-connect.com/products/all/home.html
- 31. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 32. Электронная библиотека МЭИ (ЭБ МЭИ) http://elib.mpei.ru/login.php
- 33. Портал открытых данных Российской Федерации https://data.gov.ru
- 34. База открытых данных Министерства труда и социальной защиты РФ https://rosmintrud.ru/opendata
- 35. База открытых данных профессиональных стандартов Министерства труда и социальной защиты РФ http://profstandart.rosmintrud.ru/obshchiy-informatsionnyy-blok/natsionalnyy-reestr-professionalnykh-standartov/
- 36. База открытых данных Министерства экономического развития РФ http://www.economy.gov.ru
- 37. База открытых данных Росфинмониторинга http://www.fedsfm.ru/opendata
- 38. Электронная открытая база данных "Polpred.com Обзор СМИ" https://www.polpred.com
- 39. Информационно-справочная система «Кодекс/Техэксперт» Http://proinfosoft.ru; http://docs.cntd.ru/
- 40. Национальный портал онлайн обучения «Открытое образование» https://openedu.ru

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Тип помещения	Номер аудитории,	Оснащение
	наименование	
Учебные аудитории	А-300, Учебная	кресло рабочее, парта, стеллаж, стол
для проведения	аудитория "А"	преподавателя, стол учебный, стул,
лекционных занятий и		трибуна, микрофон, мультимедийный
текущего контроля		проектор, экран, доска маркерная, колонки,
		техническая аппаратура, кондиционер,
		телевизор
Учебные аудитории	А-306, Учебная	парта со скамьей, стол преподавателя, стул,
для проведения	аудитория "А"	доска меловая
практических занятий,		
КР и КП		
Учебные аудитории	В-205, Учебная	рабочее место сотрудника, стол
для проведения	лаборатория	преподавателя, стол, шкаф для документов,
лабораторных занятий	технической	шкаф для одежды, компьютерная сеть с
	термодинамики	выходом в Интернет, компьютер
		персональный, инвентарь
		специализированный, стенд лабораторный,
		учебно-наглядное пособие
Учебные аудитории	А-306, Учебная	парта со скамьей, стол преподавателя, стул,
для проведения	аудитория "А"	доска меловая
промежуточной		

аттестации					
Помещения для	НТБ-201,	стол компьютерный, стул, стол			
самостоятельной	Компьютерный	письменный, вешалка для одежды,			
работы	читальный зал	компьютерная сеть с выходом в Интернет,			
		компьютер персональный, принтер,			
		кондиционер			
Помещения для	А-306, Учебная	парта со скамьей, стол преподавателя, стул,			
консультирования	аудитория "А"	доска меловая			
Помещения для	В-417, Помещение	кресло рабочее, рабочее место сотрудника,			
хранения	учебно-	стол, стул, шкаф для документов, шкаф для			
оборудования и	вспомогательного	хранения инвентаря, компьютерная сеть с			
учебного инвентаря	персонала каф. "ТОТ"	выходом в Интернет, доска маркерная,			
		многофункциональный центр, компьютер			
		персональный, принтер, кондиционер			

БАЛЛЬНО-РЕЙТИНГОВАЯ СТРУКТУРА ДИСЦИПЛИНЫ

Термодинамика

(название дисциплины)

5 семестр

Перечень контрольных мероприятий текущего контроля успеваемости по дисциплине:

- КМ-1 Контрольная работа №1 «Расчет термодинамических свойств бинарной смеси идеальных газов» (Контрольная работа)
- КМ-2 Контрольная работа №2 «Расчет термодинамических процессов идеального газа» (Контрольная работа)
- КМ-3 Расчетное задание №1 «Расчет произвольного термодинамического цикла, состоящего из пяти различных процессов, совершаемых идеальным газом » (Домашнее задание)
- КМ-4 Контрольная работа №3 «Определение термодинамических свойств и расчет процессов воды и водяного пара» (Контрольная работа)

Вид промежуточной аттестации – Экзамен.

Номер раздела	Раздел дисциплины	Индекс КМ:	KM-1	KM-2	KM-3	KM-4
		Неделя КМ:	4	8	10	12
1	Основные законы термодинамики и общие закономерности					
1.1	Основные определения и термины		+			
1.2	Первый закон термодинамики		+			
1.3	Второй закон термодинамики		+			
1.4	Дифференциальные уравнения термодинамики		+			
2	Процессы идеального газа					
2.1	Законы и уравнения идеального газа			+	+	
2.2	Смеси газов			+		
3	Свойства и процессы реального газа					
3.1	Термодинамические свойства реального газа					+
3.2	Термодинамические процессы реального газа.					+
3.3	Термические уравнения состояния реального газа.					+
		Bec KM, %:	15	20	35	30

6 семестр

Перечень контрольных мероприятий текущего контроля успеваемости по дисциплине:

- КМ-5 Контрольная работа №4 «Расчет процессов в суживающихся соплах и соплах Лаваля» (Контрольная работа)
- КМ-6 Контрольная работа №5 "Расчет термодинамических циклов паротурбинных установок" (Контрольная работа)
- КМ-7 Расчетное задание №2 "Расчет термодинамического цикла АЭС цикла паротурбинной установки на насыщенном паре с сепаратором пароперегревателем (СПП) и двумя регенеративными подогревателями питательной воды" (Домашнее задание)
- КМ-8 Контрольная работа №6 "Расчет термодинамических циклов газотурбинных, парогазовых установок, холодильных и теплонасосных установок" (Контрольная работа)
- КМ-9 Лабораторная работа №1-4 (Тестирование)

Вид промежуточной аттестации – Экзамен.

Номер раздела	Раздел дисциплины	Индекс КМ:	КМ- 5	КМ- 6	KM-	KM- 8	КМ- 9
		Неделя КМ:	4	8	10	12	13
1	Процессы в потоке вещества						
1.1	Расчет сопл		+				+
1.2	Процессы в диффузоре		+				
1.3	Дросселирование		+				
2	Термодинамические циклы паротурбинных установок						
2.1	Паротурбинные установки			+			+
2.2	Промежуточный перегрев пара в циклах ПТУ на перегретом паре			+			
2.3	Регенерация в циклах ПТУ			+			
2.4	Сепарация пара в циклах ПТУ на насыщенном паре			+	+		
2.5	Теплофикационные циклы ПТУ (циклы ПТУ- ТЭЦ)			+			
3	Термодинамические циклы газотурбинных и парогазовых установок						
3.1	Цикл простой газотурбинной установки					+	
3.2	Цикл газотурбинной установки с регенерацией					+	
3.3	Теплофикационный цикл газотурбинной установки					+	
3.4	Термодинамический цикл парогазовой установки с котлом-утилизатором					+	

3.5	Термодинамические циклы двигателей					
3.3	внутреннего сгорания				1	
Обратные термодинамические циклы						
4	холодильных и теплонасосных установок					
4.1 Обратные термодинамические циклы					_	
4.1	холодильных установок				+	
4.2 Термодинамические циклы тег	Термодинамические циклы теплонасосных					
4.2	установок				+	
	Bec KM, %:	20	20	20	20	20