Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 14.03.01 Ядерная энергетика и теплофизика

Наименование образовательной программы: Нанотехнологии и наноматериалы в энергетике

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Бионаноструктуры

> Москва 2025

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

Сведения о владельце ЦЭП МЭИ

Владелец Михайлова И.А.

Идентификатор R6487a0ab-MikhailovalA-f37cba00

И.А. Михайлова

Разработчик

СОГЛАСОВАНО:

Руководитель образовательной программы

West 1030	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»			
110	Сведения о владельце ЦЭП МЭИ			
	Владелец	Макаров П.Г.		
» <u>МЭИ</u> »	Идентификатор	R9a51899a-MakarovPG-4f257daf		

П.Г. Макаров

Заведующий выпускающей кафедрой

NCM	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»				
	Сведения о владельце ЦЭП МЭИ				
	Владелец	Пузина Ю.Ю.			
	Идентификатор	Re86e9a56-Puzina-4d2acad1			

Ю.Ю. Пузина

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-3 Готов к расчетно-экспериментальному анализу особенностей процессов в наноразмерных системах
 - ИД-1 Владеет основными методами и подходами, применяемыми при анализе работы наноразмерных систем

и включает:

для текущего контроля успеваемости:

Форма реализации: Устная форма

- 1. Биомакромолекулы (биополимеры): нуклеиновые кислоты, белки и полисахариды (Коллоквиум)
- 2. Бионанотехнологии в диагностике вирусных инфекций, получении и применении искусственных антител (Коллоквиум)
- 3. Бионанотехнологии надмолекулярного (субклеточного) уровня организации живых систем. Структура клеток и тканей и жизнедеятельность органов (Коллоквиум)
- 4. Структура клетки и живых тканей. Прокариотические и неклеточные формы жизни в наноконструкциях и бионанотехнологиях (Коллоквиум)

БРС дисциплины

7 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Структура клетки и живых тканей. Прокариотические и неклеточные формы жизни в наноконструкциях и бионанотехнологиях (Коллоквиум)
- КМ-2 Бионанотехнологии надмолекулярного (субклеточного) уровня организации живых систем. Структура клеток и тканей и жизнедеятельность органов (Коллоквиум)
- КМ-3 Биомакромолекулы (биополимеры): нуклеиновые кислоты, белки и полисахариды (Коллоквиум)
- КМ-4 Бионанотехнологии в диагностике вирусных инфекций, получении и применении искусственных антител (Коллоквиум)

Вид промежуточной аттестации – Зачет с оценкой.

	Веса контрольных мероприятий, %					
Роздел нускумичим	Индекс	КМ-	КМ-	КМ-	КМ-	
Раздел дисциплины	KM:	1	2	3	4	
	Срок КМ:	4	8	12	16	

	1			,
Уровни организации живых систем и связь биологических наук с биохимией и нанотехнологий				
Биохимия и молекулярная биология. Примеры биологических				
наноструктур и наномашин. Наноматериалы биологического	+			
происхождения. Биомиметика. Бионанотехнология. Элементный				
состав живых организмов. Особая роль воды в живых системах.				
Биогенные макромолекулы – биологические наноструктуры,				
клетки и вирусы				
Аминокислоты и белки. Структурные особенности ковалентных				
связей в биомолекулах. Нековалентные взаимодействия и				
принцип комплементарности. Структура и стабильность				
биомолекул. Хиральность биологических молекул. Роль	+			
гидрофобного эффекта в формиро-вании структуры биомолекул.				
Комбинаторный характер молекулярного разнообразия.				
Эволюционная специфика строения природных бионаномашин.				
Клеточные и неклеточные формы жизни. Прокариоты и				
эукариоты. Структура клетки и живых тканей. Использование				
бактерий в нанотехнологиях. Наноконструкции и нанотехно-	+			
логии на основе вирусов. Эволюционная специфика строения				
природных бионаномашин.				
Белковые наноструктуры				
27 72				
Состав, первичная структура, биологические функции белков.				
Самоорганизация и модификация белков. Олигомеризация и				
агрегация белков. Образование белковых нанокомплексов.		+		
Транспортные белки. Функции белков-рецепторов.				
Нанобиосенсоры.				
Углеводные наноструктуры				
Строение, свойства, биологические функции моно- и				
полигосахаридов. Полисахариды Наноструктура клеточной		+		
стенки растений.		!		
Биологические мембраны и липиды. Наноструктура и функции				
нуклеиновых кислот				
Особенности строения липидных структур. Биологические				
функции липидов. Классификация липидов. Биологические			+	
функции мембран.				
Химический состав и строение нуклеиновых кислот.				
Генетический код. Организация генетического материала.				
Процессы передачи генетической информации. Репликация			+	
ДНК. Транскрипция (биосинтез РНК). Трансляция (биосинтез				
белка). Регуляция биосинтеза белка.				
Молекулярные механизмы восприятия, передачи и				
преобразования информации				
Передача сигнала и регуляция с помощью гормонов. Регуляция				
выработки гормонов. Гормоны периферических желез.			1	
Восприятие сигнала с помощью нервной системы и органов			+	
чувств. Работа органов чувств.				
Молекулярные механизмы превращения энергии и вещества в				
живых системах				<u> </u>
Обмен веществ и энергии в живых системах. Кофакторы,				
витамины, гормоны. Метаболизм углеводов. Особенности				+
катаболических процессов в тканях организма. Окислительное				

фосфолипирование. Ферменты (биологические катализаторы) в живых системах. Биореакторы в производстве биотоплива.				
Направления развития бионанотехнологии и наномедицины				
Генная инженерия. Применение наноструктурированных материалов для ранней диагностики опасных болезней, адресной доставки лекарств к пораженным тканям и органам. Разработка принципиально новых методов терапии и хирургии, создания молекулярных инструментов и нанохирургии, протезирования, трансплантации и регенерации тканей.				+
Новые наноструктуры в качестве молекулярных наномоторов: мульти-ДНК наномоторы, наномоторы на основе одной цепи ДНК. Биоконъюгаты мягких наноматериалов: сигналчувствительные полимеры, микрогели и наногели, материалы со структурой «ядро—оболочка». Доставка лекарств и генов. Активация и доставка под действием физико-химических сигналов. Полифункциональные системы на основе наночастиц. Конструирование наноструктур на основе биологических мембран.				+
Bec KM:	25	25	25	25

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	_	результаты обучения по	
		дисциплине	
ПК-3	ИД-1пк-3 Владеет	Знать:	КМ-1 Структура клетки и живых тканей. Прокариотические и
	основными методами и	принципы системной	неклеточные формы жизни в наноконструкциях и бионанотехнологиях
	подходами,	организации.	(Коллоквиум)
	применяемыми при	дифференциации и	КМ-2 Бионанотехнологии надмолекулярного (субклеточного) уровня
	анализе работы	интеграции функций	организации живых систем. Структура клеток и тканей и
	наноразмерных систем	организма, устройство и	жизнедеятельность органов (Коллоквиум)
		функциональность	КМ-3 Биомакромолекулы (биополимеры): нуклеиновые кислоты,
		биологических	белки и полисахариды (Коллоквиум)
		наноструктурированных	КМ-4 Бионанотехнологии в диагностике вирусных инфекций,
		систем	получении и применении искусственных антител (Коллоквиум)
		основные процессы,	
		происходящие в	
		органическом мире и	
		биологических системах на	
		наномасштабах	
		Уметь:	
		самостоятельно	
		разбираться в устройстве	
		клеточных структур и	
		тканей	
		осуществлять поиск и	
		анализировать научно-	
		техническую информацию	
		по современной	
		биоморфологии и	

_	
ОИОНАНОСТРУКТУРАМ	1
ononanocipykiypawi	1

II. Содержание оценочных средств. Шкала и критерии оценивания

KM-1. Структура клетки и живых тканей. Прокариотические и неклеточные формы жизни в наноконструкциях и бионанотехнологиях

Формы реализации: Устная форма

Тип контрольного мероприятия: Коллоквиум **Вес контрольного мероприятия в БРС:** 25

Процедура проведения контрольного мероприятия: Устный опрос студентов.

Краткое содержание задания:

Структура клетки и живых тканей. Прокариотические и неклеточные формы жизни в наноконструкциях и бионанотехнологиях

Контрольные вопросы/задания:

контрольные вопросы/задания:	
Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	
Знать: основные процессы, происходящие в	1.Структура и стабильность
органическом мире и биологических системах	биомолекул.
на наномасштабах	2.Роль гидрофобного эффекта в
	формиро-вании структуры биомолекул.
	3. Хиральность биологических молекул.
	4.Комбинаторный характер
	молекулярного разнообразия.
	5. Эволюционная специфика строения
	природных бионаномашин.
	6.Аминокислоты и белки.
	7.Понятие живых систем, общие
	признаки живых организмов и их
	многообразие.
	8.Принципы организации и
	функционирования биологических
	наноструктур.
	9.Белковые наномоторы в живых
	клетках.
	10.Понятие и строение рецептора.

Описание шкалы оценивания:

Оценка: «зачтено»

Описание характеристики выполнения знания: Оценка "зачтено" выставляется если задание выполнено правильно или с незначительными недочетами

Оценка: «не зачтено»

Описание характеристики выполнения знания: Оценка "не зачтено" выставляется если задание не выполнено в отведенный срок или результат не соответствует заданию

KM-2. Бионанотехнологии надмолекулярного (субклеточного) уровня организации живых систем. Структура клеток и тканей и жизнедеятельность органов

Формы реализации: Устная форма

Тип контрольного мероприятия: Коллоквиум **Вес контрольного мероприятия в БРС:** 25

Процедура проведения контрольного мероприятия: Устный опрос студентов.

Краткое содержание задания:

Бионанотехнологии надмолекулярного (субклеточного) уровня организации живых систем. Структура клеток и тканей и жизнедеятельность органов (Коллоквиум)

Контрольные вопросы/задания:

контрольные вопросы/задания.	
Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки
Знать: принципы системной организации.	1.Клеточные и неклеточные
дифференциации и интеграции функций организма,	формы жизни.
устройство и функциональность биологических	2.Прокариоты и эукариоты.
наноструктурированных систем	3.Структура клетки и живых
	тканей.
	4.Использование бактерий в
	нанотехнологиях.
	5. Эволюционная специфика
	строения природных
	бионаномашин.
	6.Строение и работа нервно-
	мышечного синапса.
	7. Фоторецепция,
	фоторецепторные белки,
	строение и работа зрительного
	рецептора.
	8.Строение и работа слухового
	рецептора.
	9.Молекулярный механизм
	восприятия вкуса.
	10.Строение и
	функционирование клеточной
	мембраны.

Описание шкалы оценивания:

Оценка: «зачтено»

Описание характеристики выполнения знания: Оценка "зачтено" выставляется если задание выполнено правильно или с незначительными недочетами

Оценка: «не зачтено»

Описание характеристики выполнения знания: Оценка "не зачтено" выставляется если задание не выполнено в отведенный срок или результат не соответствует заданию

КМ-3. Биомакромолекулы (биополимеры): нуклеиновые кислоты, белки и полисахариды

Формы реализации: Устная форма

Тип контрольного мероприятия: Коллоквиум **Вес контрольного мероприятия в БРС:** 25

Процедура проведения контрольного мероприятия: Устный опрос студентов.

Краткое содержание задания:

Биомакромолекулы (биополимеры): нуклеиновые кислоты, белки и полисахариды

Контрольные вопросы/задания:

Запланированные		обучения	ПО	Вопросы/задания для проверки
дисциплине		-		
Уметь: осуществл	ять поиск и анал	изировать нау	/ЧНО-	1.Строение, свойства,
_	информацию п	*	нной	биологические функции моно- и
биоморфологии и	бионаноструктур	ам		полисахаридов.
				2.Наноструктура и функции
				нуклеиновых кислот.
				3.Белковые нанообъекты.
				4.Передача сигнала и регуляция с
				помощью гормонов.
				5.Строение и функции
				ферментов.
				6.Обмен веществ и энергии в
				живых системах.
				7. Организация генетического
				материала.
				8.Свойства ДНК, используемые в
				нанотехнологиях.
				9.Регуляция биосинтеза белка.
				10.Биореакторы в производстве
				биотоплива.

Описание шкалы оценивания:

Оценка: «зачтено»

Описание характеристики выполнения знания: Оценка "зачтено" выставляется если задание выполнено правильно или с незначительными недочетами

Оценка: «не зачтено»

Описание характеристики выполнения знания: Оценка "не зачтено" выставляется если задание не выполнено в отведенный срок или результат не соответствует заданию

КМ-4. Бионанотехнологии в диагностике вирусных инфекций, получении и применении искусственных антител

Формы реализации: Устная форма

Тип контрольного мероприятия: Коллоквиум **Вес контрольного мероприятия в БРС:** 25

Процедура проведения контрольного мероприятия: Устный опрос студентов.

Краткое содержание задания:

Бионанотехнологии в диагностике вирусных инфекций, получении и применении искусственных антител

Контрольные вопросы/задания:

контрольные вопросы, задания.	
Запланированные результаты обучения	Вопросы/задания для проверки
по дисциплине	
Уметь: самостоятельно разбираться в	1.Химические нанотрансформации.
устройстве клеточных структур и тканей	2.Моделирование ферментативных
	нанотрансформаций
	3.Виды нанобиосенсоров и биочипов.
	4.Возможности лечения и диагностики

Запланированные результаты	обучения	Вопросы/задания для проверки
по дисциплине		
		заболеваний с помощью нанобиосенсоров.
		5. Биосенсоры на основе ферментов.
		6.Аффинные биосенсоры.
		7.Антитела как тест-объекты для
		биосенсоров.
		8. Нуклеиновые кислоты в биосенсорах.
		9.Доставка лекарств и генов.
		10.Возможности лечения и диагностики
		заболеваний с помощью биочипов.
		11.Виды антител.

Описание шкалы оценивания:

Оценка: «зачтено»

Описание характеристики выполнения знания: Оценка "зачтено" выставляется если задание выполнено правильно или с незначительными недочетами

Оценка: «не зачтено»

Описание характеристики выполнения знания: Оценка "не зачтено" выставляется если задание не выполнено в отведенный срок или результат не соответствует заданию

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

7 семестр

Форма промежуточной аттестации: Зачет с оценкой

Пример билета

Понятие живых систем, общие признаки живых организмов и их многообразие. Уровни организации структуры белков.

Процедура проведения

Зачет проводится в виде устных ответов на вопросы билета.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-1_{ПК-3} Владеет основными методами и подходами, применяемыми при анализе работы наноразмерных систем

Вопросы, задания

1.Понятие живых систем, общие признаки живых организмов и их многообразие.

Уровни организации структуры белков.

2. Принципы организации и функционирования биологических наноструктур.

Структура и функции гемоглобина.

3. Неорганические соединения, углеводы, липиды, аминокислоты, белки.

Строение и функционирование клеточной мембраны.

4. Нуклеиновые кислоты.

Понятие метаболизма, ключевые метаболиты, макроэргические молекулы.

5.Витамины и гормоны.

Строение и работа нервно-мышечного синапса.

6.Строение ферментов. Особенности биокатализа.

Двухспиральная структура молекулы ДНК.

7. Фоторецепция, фоторецепторные белки, строение и работа зрительного рецептора.

Функциональная роль топливных молекул в биосистемах.

8. Строение и работа слухового рецептора.

Свойства ДНК, используемые в нанотехнологиях.

9. Аэробное и анаэробное окисление углеводов.

Информационная функция нуклеиновых кислот.

10.Понятие метаболизма, ключевые метаболиты, макроэргические молекулы.

Нанобиосенсоры и биочипы для лечения и диагностики заболеваний.

Материалы для проверки остаточных знаний

1. Какие органеллы есть у эукариотических клеток, но отсутствуют у прокариотических? Ответы:

ядро

рибосомы

цитоплазма

вакуоли

Верный ответ: ядро

2. Какой химический элемент лежит в основе всех органических соединений? Ответы:

углерод

водород

кислород

Верный ответ: углерод

3. Какая система контролирует состояние внутренних органов, выделяя гормоны для его

регуляции? Ответы:

эндокринная

иммунная

нервная

Верный ответ: эндокринная

4. Что из этого является прокариотом?

Ответы:

вирусы

бактерии

грибы

Верный ответ: бактерии

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

III. Правила выставления итоговой оценки по курсу

Итоговая оценка по курсу выставляется на основе оценки за промежуточную аттестацию. Возможен случай, когда в силу значительно отличающейся текущей оценки может быть применен повышающий или понижающий коэффициент.