Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования

«Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 14.03.01 Ядерная энергетика и теплофизика

Наименование образовательной программы: Нанотехнологии и наноматериалы в энергетике

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Рабочая программа дисциплины БИОНАНОСТРУКТУРЫ

Блок:	Блок 1 «Дисциплины (модули)»
Часть образовательной программы:	Часть, формируемая участниками образовательных отношений
№ дисциплины по учебному плану:	Б1.Ч.12
Трудоемкость в зачетных единицах:	7 семестр - 3;
Часов (всего) по учебному плану:	108 часов
Лекции	7 семестр - 16 часов;
Практические занятия	7 семестр - 32 часа;
Лабораторные работы	не предусмотрено учебным планом
Консультации	проводится в рамках часов аудиторных занятий
Самостоятельная работа	7 семестр - 59,7 часа;
в том числе на КП/КР	не предусмотрено учебным планом
Иная контактная работа	проводится в рамках часов аудиторных занятий
включая: Коллоквиум	
Промежуточная аттестация:	
Зачет с оценкой	7 семестр - 0,3 часа;

Москва 2025

ПРОГРАММУ СОСТАВИЛ:

Преподаватель

O HELLOWAY PARTY	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»
2 10 10 10 10 10 10 10 10 10 10 10 10 10	Сведен	ия о владельце ЦЭП МЭИ
	Владелец	Михайлова И.А.
» <u>М≎И</u> «	Идентификатор	R6487a0ab-MikhailovaIA-f37cba00

И.А. Михайлова

СОГЛАСОВАНО:

Руководитель образовательной программы

П.Г. Макаров

Заведующий выпускающей кафедрой

NGC 1030	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»
	Сведен	ия о владельце ЦЭП МЭИ
	Владелец	Пузина Ю.Ю.
» <u>МЭИ</u> «	Идентификатор	Re86e9a56-Puzina-4d2acad1

Ю.Ю. Пузина

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель освоения дисциплины: изучение процессов, происходящих в органах живых систем и биологических клеточных структурах.

Задачи дисциплины

- изучение основ биологических наноструктурированных систем;
- приобретение навыков работы с приборами оптической микроскопии;
- освоение элементов и навыков в определении типа живой системы.

Формируемые у обучающегося **компетенции** и запланированные **результаты обучения** по дисциплине, соотнесенные с **индикаторами достижения компетенций**:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции	Запланированные результаты обучения
ПК-2 Готов к расчетно- экспериментальному анализу особенностей процессов в наноразмерных системах	ИД-1 _{ПК-2} Владеет основными методами и подходами, применяемыми при анализе работы наноразмерных систем	знать: - основные процессы, происходящие в органическом мире и биологических системах на наномасштабах; - принципы системной организации. дифференциации и интеграции функций организма, устройство и функциональность биологических наноструктурированных систем. уметь: - осуществлять поиск и анализировать научно-техническую информацию по современной биоморфологии и бионаноструктурам; - самостоятельно разбираться в устройстве клеточных структур и тканей.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ВО

Дисциплина относится к основной профессиональной образовательной программе Нанотехнологии и наноматериалы в энергетике (далее – ОПОП), направления подготовки 14.03.01 Ядерная энергетика и теплофизика, уровень образования: высшее образование - бакалавриат.

Требования к входным знаниям и умениям:

- знать Химия
- знать Физика
- уметь пользоваться методами обработки экспериментальных данных

Результаты обучения, полученные при освоении дисциплины, необходимы при выполнении выпускной квалификационной работы.

3. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1 Структура дисциплины Общая трудоемкость дисциплины составляет 3 зачетных единицы, 108 часов.

	Разделы/темы	В	_		Распр	еделе	ние труд	доемкости						
No	дисциплины/формы	асо	стр				Конта	ктная раб	ота				CP	Содержание самостоятельной работы/
п/п	промежуточной	Всего часов на раздел	Семестр		п.с		Консу	льтация	ИК	P		Работа в	Подготовка к	методические указания
	аттестации		0	Лек	Лаб	Пр	КПР	ГК	ИККП	TK	ПА	семестре	аттестации /контроль	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	Уровни организации	14	7	2	-	4	-	-	-	-	-	8	-	Изучение материалов литературных
	живых систем и связь													источников:
	биологических наук с													[2], 198-301
	биохимией и													[3], 5-112
	нанотехнологий													[4], 3-58
1.1	Биохимия и	14		2	-	4	-	-	-	-	-	8	-	[5], 5-263
	молекулярная													
	биология. Примеры													
	биологических													
	наноструктур и													
	наномашин.													
	Наноматериалы													
	биологического													
	происхождения.													
	Биомиметика.													
	Бионанотехнология.													
	Элементный состав													
	живых организмов.													
	Особая роль воды в													
	живых системах.													
2	Биогенные	16		2	-	4	-	-	-	-	-	10	-	<u>Изучение материалов литературных</u>
	макромолекулы –													источников:
	биологические													[2], 237-399
	наноструктуры,													[3], 113-177
2.1	клетки и вирусы	0										_		[4], 59-133
2.1	Аминокислоты и	8		1	-	2	-	-	-	-	-	5	-	
	белки. Структурные													
	особенности													

_	T					1	1	1				T		
	ковалентных связей в													
	биомолекулах.													
	Нековалентные													
	взаимодействия и													
	принцип													
	комплементарности.													
	Структура и													
	стабильность													
	биомолекул.													
	Хиральность													
	биологических													
	молекул. Роль													
	гидрофобного													
	эффекта в формиро-													
	вании структуры													
	биомолекул.													
	Комбинаторный													
	характер													
	молекулярного													
	разнообразия.													
	Эволюционная													
	специфика строения													
	природных													
	бионаномашин.													
2.2	Клеточные и	8	1	_	2	_	_	_	_	_	5	_		
2.2	неклеточные формы	O	1	_	2	_	_	_	_	_	3	_		
	жизни. Прокариоты и													
	эукариоты. Структура													
	укариоты. Структура клетки и живых													
	клетки и живых тканей.													
	Использование													
	бактерий в													
	нанотехнологиях.													
	Наноконструкции и													
	нанотехно-логии на													
	основе вирусов.													
	Эволюционная													
	специфика строения													
	природных													

	бионаномашин.												
3	Белковые наноструктуры	8	2	-	4	-	-	-	-	-	2	-	<u>Изучение материалов литературных</u> <u>источников:</u>
3.1	Состав, первичная структура, биологические функции белков. Самоорганизация и модификация белков. Олигомеризация и агрегация белков. Образование белковых нанокомплексов. Транспортные белки. Функции белковы рецепторов. Нанобиосенсоры.	8	2	-	4			-	-		2	-	[3], 178-253 [4], 134-175
4	Углеводные наноструктуры	8	2	-	4	-	-	-	-	-	2	-	<u>Изучение материалов литературных</u> <u>источников:</u>
4.1	Строение, свойства, биологические функции моно- и полигосахаридов. Полисахариды Наноструктура клеточной стенки растений.	8	2	-	4	-	-	-	-	-	2	-	[3], 254-298 [4], 176-213
5	Биологические мембраны и липиды. Наноструктура и функции нуклеиновых кислот	10	2	-	4	-	-	-	-	1	4	-	<u>Изучение материалов литературных</u> <u>источников:</u> [3], 299-355 [4], 214-261
5.1	Особенности строения липидных структур. Биологические функции липидов. Классификация липидов.	5	1	-	2	-	-	-	-	-	2	-	

риалов литературных
[2], 302-346
[3], 356-380
[4], 261-288
риалов литературных
[3], 381-474
<u>q</u>

	и вещества в живых												[4], 289-344
	системах												
7.1	Обмен веществ и	8	2	-	4	-	-	-	-	-	2	-	
	энергии в живых												
	системах. Кофакторы,												
	витамины, гормоны.												
	Метаболизм												
	углеводов.												
	Особенности												
	катаболических												
	процессов в тканях												
	организма.												
	Окислительное												
	фосфолипирование.												
	Ферменты												
	(биологические												
	катализаторы) в												
	живых системах.												
	Биореакторы в												
	производстве												
	биотоплива.												
8	Направления развития	18	2	-	4	-	-	-	-	-	12	-	Изучение материалов литературных
	бионанотехнологии и												источников:
	наномедицины												[1], 5-197
8.1	Генная инженерия.	8	1	-	2	-	-	-	-	-	5	-	[2], 256-503
	Применение												[3], 475-590
	наноструктурированн												[4], 345-407
	ых материалов для												[5], 264-533
	ранней диагностики												
	опасных болезней,												
	адресной доставки												
	лекарств к												
	пораженным тканям и												
	органам. Разработка												
	принципиально новых												
	методов терапии и												
	хирургии, создания												
	молекулярных												
	инструментов и												

		<u> </u>			1		ı							
	нанохирургии,													
	протезирования,													
	трансплантации и													
	регенерации тканей.													
8.2	Новые наноструктуры	10	1	-	2	-	-	-	-	-	7	-		
	в качестве													
	молекулярных													
	наномоторов: мульти-													
	ДНК наномоторы,													
	наномоторы на основе													
	одной цепи ДНК.													
	Биоконъюгаты мягких													
	наноматериалов:													
	сигнал-													
	чувствительные													
	полимеры, микрогели													
	и наногели,													
	материалы со													
	структурой «ядро–													
	оболочка». Доставка													
	лекарств и генов.													
	Активация и доставка													
	под действием													
	физико-химических													
	сигналов.													
	Полифункциональные													
	системы на основе													
	наночастиц.													
	Конструирование													
	наноструктур на													
	основе биологических													
	мембран.													
	Зачет с оценкой	18.0	-	-	-	-	-	-	-	0.3	-	17.7		
	Всего за семестр	108.0	16	-	32	-	-	-	-	0.3	42	17.7		
	Итого за семестр	108.0	16	-	32		-	-		0.3		59.7		

Примечание: Лек – лекции; Лаб – лабораторные работы; Пр – практические занятия; КПР – аудиторные консультации по курсовым проектам/работам; ИККП – индивидуальные консультации по курсовым проектам/работам; ГК- групповые консультации по разделам

дисциплины; СР – самостоятельная работа студента; ИКР – иная контактная работа; ТК – текущий контроль; ПА – промежуточная аттестация

3.2 Краткое содержание разделов

1. Уровни организации живых систем и связь биологических наук с биохимией и нанотехнологий

1.1. Биохимия и молекулярная биология. Примеры биологических наноструктур и наномашин. Наноматериалы биологического происхождения. Биомиметика. Бионанотехнология. Элементный состав живых организмов. Особая роль воды в живых системах.

2. Биогенные макромолекулы – биологические наноструктуры, клетки и вирусы

- 2.1. Аминокислоты и белки. Структурные особенности ковалентных связей в биомолекулах. Нековалентные взаимодействия и принцип комплементарности. Структура и стабильность биомолекул. Хиральность биологических молекул. Роль гидрофобного эффекта в формиро-вании структуры биомолекул. Комбинаторный характер молекулярного разнообразия. Эволюционная специфика строения природных бионаномашин.
- 2.2. Клеточные и неклеточные формы жизни. Прокариоты и эукариоты. Структура клетки и живых тканей. Использование бактерий в нанотехнологиях. Наноконструкции и нанотехно-логии на основе вирусов. Эволюционная специфика строения природных бионаномашин.

3. Белковые наноструктуры

3.1. Состав, первичная структура, биологические функции белков. Самоорганизация и модификация белков. Олигомеризация и агрегация белков. Образование белковых нанокомплексов. Транспортные белки. Функции белков-рецепторов. Нанобиосенсоры.

4. Углеводные наноструктуры

- 4.1. Строение, свойства, биологические функции моно- и полигосахаридов. Полисахариды.. Наноструктура клеточной стенки растений.
 - 5. Биологические мембраны и липиды. Наноструктура и функции нуклеиновых кислот
- 5.1. Особенности строения липидных структур. Биологические функции липидов. Классификация липидов. Биологические функции мембран.
- 5.2. Химический состав и строение нуклеиновых кислот. Генетический код. Организация генетического материала. Процессы передачи генетической информации. Репликация ДНК. Транскрипция (биосинтез РНК). Трансляция (биосинтез белка). Регуляция биосинтеза белка.
 - 6. Молекулярные механизмы восприятия, передачи и преобразования информации

6.1. Передача сигнала и регуляция с помощью гормонов. Регуляция выработки гормонов. Гормоны периферических желез. Восприятие сигнала с помощью нервной системы и органов чувств. Работа органов чувств.

7. Молекулярные механизмы превращения энергии и вещества в живых системах

7.1. Обмен веществ и энергии в живых системах. Кофакторы, витамины, гормоны. Метаболизм углеводов. Особенности катаболических процессов в тканях организма. Окислительное фосфолипирование. Ферменты (биологические катализаторы) в живых системах. Биореакторы в производстве биотоплива.

8. Направления развития бионанотехнологии и наномедицины

- 8.1. Генная инженерия. Применение наноструктурированных материалов для ранней диагностики опасных болезней, адресной доставки лекарств к пораженным тканям и органам. Разработка принципиально новых методов терапии и хирургии, создания молекулярных инструментов и нанохирургии, протезирования, трансплантации и регенерации тканей.
- 8.2. Новые наноструктуры в качестве молекулярных наномоторов: мульти-ДНК наномоторы, наномоторы на основе одной цепи ДНК. Биоконъюгаты мягких наноматериалов: сигнал-чувствительные полимеры, микрогели и наногели, материалы со структурой «ядро—оболочка». Доставка лекарств и генов. Активация и доставка под действием физико-химических сигналов. Полифункциональные системы на основе наночастиц. Конструирование наноструктур на основе биологических мембран.

3.3. Темы практических занятий

- 1. Понятие и строение рецептора. Строение и работа нервно-мышечного синапса, нейромедиаторы. Фоторецепция, фоторецепторные белки, строение и работа зрительного рецептора. Строение и работа слухового рецептора. Молекулярный механизм восприятия вкуса.;
- 2. Белковые нанообъекты. Уровни организации структуры белков первичная, вторичная, третичная, четвертичная. Наноструктура коллагеновых волокон. Структура и функции гемоглобина. Строение ферментов. Особенности биокатализа. Строение активного центра ферментов и опознавание молекул. Теория индуцированного соответствия. Роль коферментов.;
- 3. Строение и функционирование клеточной мембраны, механизмы транспорта веществ через клеточную мембрану, строение углеводного каркаса клеточной стенки растений.;
- 4. Наноструктура и функции нуклеиновых кислот. Химический состав нуклеиновых кислот. Двухспиральная структура молекулы ДНК, принцип комплементарности. Упаковка ДНК эукариот на нано-уровне. Репликация ДНК, строение репликативной вилки. Транскрипция, работа РНК-полимеразы. Строение транспортной РНК. Основные стадии процесса трансляции. Свойства ДНК, используемые в нанотехнологиях;
- 5. Бионаноэнергетика. Энергопитание бионаномашин. Функциональная роль топливных молекул в биосистемах. Поглощение света специализированными малыми молекулами в биосистемах.;

- 6. Информационно-управляемое ассемблирование бионаномашин. Информационная функция нуклеиновых кислот. Рибосома информационно-управляемый наноассемблер. Компактность хранения информации в ДНК.;
- 7. Бионанотрансформации и регулирование. Химические нанотрансформации. Моделирование форментативных нанотрансформаций.;
- 8. Нанобиосенсоры и биочипы для лечения и диагностики заболеваний. Биосенсоры на основе ферментов. Аффинные биосенсоры. Антитела как тест-объекты для биосенсоров. Нуклеиновые кислоты в биосенсорах.;
- 9. Основы биохимии. Неорганические соединения, углеводы, липиды, аминокислоты, белки. Нуклеиновые кислоты. Витамины, гормоны. Белковые наномоторы в живых клетках.;
- 10. Молекулярные механизмы превращения энергии и вещества в живых системах. Понятие метаболизма, ключевые метаболиты, макроэргические молекулы. Аэробное и анаэробное окисление углеводов. Гликолиз. Цикл Кребса. Механизм окислительного фосфорилирования. Фотосинтез, световая и темновая стадии. Механизм световой стадии фотосинтеза.;
- 11. Понятие живых систем, общие признаки живых организмов и их многообразие. Принципы организации и функционирования биологических наноструктур..

3.4. Темы лабораторных работ

не предусмотрено

3.5 Консультации

3.6 Тематика курсовых проектов/курсовых работ

Курсовой проект/ работа не предусмотрены

3.7. Соответствие разделов дисциплины и формируемых в них компетенций

5.7. Соответствие разделов дисциплины и	і формирусмы.	ADI	IHA	KUM	пст	СПЦ	111			
Запланированные результаты обучения по	Коды	H	омер	-						Оценочное средство
дисциплине	1 ' '		(B C	оотв	етс	гвии	сп	.3.1)	(тип и наименование)
(в соответствии с разделом 1)	индикаторов	1	2	3	4	5	6	7	8	
Знать:	•									
принципы системной организации.										Коллоквиум/Бионанотехнологии
дифференциации и интеграции функций										надмолекулярного (субклеточного) уровня
организма, устройство и	ИД-1 _{ПК-2}			+	+					организации живых систем. Структура клеток и
функциональность биологических										тканей и жизнедеятельность органов
наноструктурированных систем										-
основные процессы, происходящие в										Коллоквиум/Структура клетки и живых тканей.
органическом мире и биологических	ИД-1 _{ПК-2}	+	+							Прокариотические и неклеточные формы жизни
системах на наномасштабах										в наноконструкциях и бионанотехнологиях
Уметь:	•									•
самостоятельно разбираться в устройстве										Коллоквиум/Бионанотехнологии в диагностике
клеточных структур и тканей	ИД-1 _{ПК-2}							+	+	вирусных инфекций, получении и применении
										искусственных антител
осуществлять поиск и анализировать										Коллоквиум/Биомакромолекулы (биополимеры):
научно-техническую информацию по	ип 1					١.				нуклеиновые кислоты, белки и полисахариды
современной биоморфологии и	ИД-1 _{ПК-2}					+	+			
бионаноструктурам										

4. КОМПЕТЕНТНОСТНО-ОРИЕНТИРОВАННЫЕ ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ КОНТРОЛЯ ОСВОЕНИЯ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (ТЕКУЩИЙ КОНТРОЛЬ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ ПО ДИСЦИПЛИНЕ)

4.1. Текущий контроль успеваемости

7 семестр

Форма реализации: Устная форма

- 1. Биомакромолекулы (биополимеры): нуклеиновые кислоты, белки и полисахариды (Коллоквиум)
- 2. Бионанотехнологии в диагностике вирусных инфекций, получении и применении искусственных антител (Коллоквиум)
- 3. Бионанотехнологии надмолекулярного (субклеточного) уровня организации живых систем. Структура клеток и тканей и жизнедеятельность органов (Коллоквиум)
- 4. Структура клетки и живых тканей. Прокариотические и неклеточные формы жизни в наноконструкциях и бионанотехнологиях (Коллоквиум)

Балльно-рейтинговая структура дисциплины является приложением А.

4.2 Промежуточная аттестация по дисциплине

Зачет с оценкой (Семестр №7)

Итоговая оценка по курсу выставляется на основе оценки за промежуточную аттестацию. Возможен случай, когда в силу значительно отличающейся текущей оценки может быть применен повышающий или понижающий коэффициент.

В диплом выставляется оценка за 7 семестр.

Примечание: Оценочные материалы по дисциплине приведены в фонде оценочных материалов ОПОП.

5. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

5.1 Печатные и электронные издания:

1. Науменко, В. Ю. Нанотехнологии в медицине : учебное пособие по курсам "Биомедицинские нанотехнологии", "Методы и приборы для изучения, анализа и диагностики наночастиц и наноматериалов" и др. / В. Ю. Науменко, Т. А. Алексеев, А. С. Дмитриев, Нац. исслед. ун-т "МЭИ". – М. : Издательский дом МЭИ, 2012. – 200 с. – ISBN 978-5-383-00731-0.

http://elib.mpei.ru/elib/view.php?id=4264;

- 2. Наноструктуры в биомедицине : пер. с англ. / А. Агравал, [и др.] ; ред. К. Гонсалвес, и др. М. : БИНОМ. Лаборатория знаний, 2012. 519 с. (Нанотехнологии). ISBN 978-5-9963-0525-4.;
- 3. Волькенштейн, М. В. Биофизика: учебное пособие / М. В. Волькенштейн. 4-е изд., стер. Санкт-Петербург: Лань, 2021. 608 с. (Учебники для вузов. Специальная литература)(Классическая учебная литература по физике). Параллельн. тит. л. на англ. яз. ISBN 978-5-8114-0851-1.:
- 4. А. И. Гусев- "Наноматериалы, наноструктуры, нанотехнологии", (2-е изд., испр.), Издательство: "Физматлит", Москва, 2009 (416 с.) https://biblioclub.ru/index.php?page=book&id=68859;

5. "Наноструктуры в биомедицине", (4-е изд.), Издательство: "Лаборатория знаний", Москва, 2020 - (538 с.)

https://e.lanbook.com/book/135509.

5.2 Лицензионное и свободно распространяемое программное обеспечение:

- 1. Office / Российский пакет офисных программ;
- 2. Windows / Операционная система семейства Linux.

5.3 Интернет-ресурсы, включая профессиональные базы данных и информационносправочные системы:

- 1. ЭБС Лань https://e.lanbook.com/
- 2. Научная электронная библиотека https://elibrary.ru/
- 3. База данных Web of Science http://webofscience.com/
- 4. **База данных Scopus** http://www.scopus.com
- 5. Национальная электронная библиотека https://rusneb.ru/
- 6. Электронная библиотека МЭИ (ЭБ МЭИ) http://elib.mpei.ru/login.php
- 7. База открытых данных Министерства труда и социальной защиты РФ https://rosmintrud.ru/opendata
- 8. База открытых данных профессиональных стандартов Министерства труда и социальной защиты РФ http://profstandart.rosmintrud.ru/obshchiy-informatsionnyy-blok/natsionalnyy-reestr-professionalnykh-standartov/
- 9. База открытых данных Росфинмониторинга http://www.fedsfm.ru/opendata
- 10. Электронная открытая база данных "Polpred.com Обзор СМИ" https://www.polpred.com
- 11. Национальный портал онлайн обучения «Открытое образование» https://openedu.ru
- 12. Официальный сайт Министерства науки и высшего образования Российской Федерации https://minobrnauki.gov.ru
- 13. ЭБС Юрайт https://urait.ru/

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Тип помещения	Номер	Оснащение
	аудитории,	
	наименование	
Учебные аудитории для	М-412, Учебная	стеллаж для хранения книг, стол, стул,
проведения лекционных	аудитория	мультимедийный проектор, доска маркерная
занятий и текущего		
контроля		
Учебные аудитории для	М-412, Учебная	стеллаж для хранения книг, стол, стул,
проведения практических	аудитория	мультимедийный проектор, доска маркерная
занятий, КР и КП		
Учебные аудитории для	М-412, Учебная	стеллаж для хранения книг, стол, стул,
проведения	аудитория	мультимедийный проектор, доска маркерная
промежуточной		
аттестации		
Помещения для	НТБ-303,	стол компьютерный, стул, стол письменный,
самостоятельной работы	Лекционная	вешалка для одежды, компьютерная сеть с
	аудитория	выходом в Интернет, компьютер
		персональный, принтер, кондиционер
Помещения для	М-412, Учебная	стеллаж для хранения книг, стол, стул,
консультирования	аудитория	мультимедийный проектор, доска маркерная
Помещения для хранения	M-407/1,	стеллаж для хранения инвентаря, стеллаж

оборудования и учебного	Кладовая	для хранения книг, инвентарь
инвентаря		специализированный

БАЛЛЬНО-РЕЙТИНГОВАЯ СТРУКТУРА ДИСЦИПЛИНЫ

Бионаноструктуры

(название дисциплины)

7 семестр

Перечень контрольных мероприятий текущего контроля успеваемости по дисциплине:

- КМ-1 Структура клетки и живых тканей. Прокариотические и неклеточные формы жизни в наноконструкциях и бионанотехнологиях (Коллоквиум)
- КМ-2 Бионанотехнологии надмолекулярного (субклеточного) уровня организации живых систем. Структура клеток и тканей и жизнедеятельность органов (Коллоквиум)
- КМ-3 Биомакромолекулы (биополимеры): нуклеиновые кислоты, белки и полисахариды (Коллоквиум)
- КМ-4 Бионанотехнологии в диагностике вирусных инфекций, получении и применении искусственных антител (Коллоквиум)

Вид промежуточной аттестации – Зачет с оценкой.

Номер раздела	Раздел дисциплины	Индекс КМ:	КМ- 1	KM- 2	KM- 3	KM- 4
		Неделя КМ:	4	8	12	16
1	Уровни организации живых систем и связь					
1	биологических наук с биохимией и нанотехнологий					
	Биохимия и молекулярная биология. Примеры					
1.1	биологических наноструктур и наномашин.					
	Наноматериалы биологического происхождения.					
	Биомиметика. Бионанотехнология. Элементный состав					
	живых организмов. Особая роль воды в живых	системах.				
2	Биогенные макромолекулы – биологические					
	наноструктуры, клетки и вирусы					
2.1	Аминокислоты и белки. Структурные особенно					
	ковалентных связей в биомолекулах. Нековале					
	взаимодействия и принцип комплементарности					
	Структура и стабильность биомолекул. Хираль		+			
	иологических молекул. Роль гидрофобного эффекта в					
	формиро-вании структуры биомолекул. Комби					
	характер молекулярного разнообразия. Эволюг					
	специфика строения природных бионаномашив					
2.2	Клеточные и неклеточные формы жизни. Прок	ариоты и				
	эукариоты. Структура клетки и живых тканей.					
	Использование бактерий в нанотехнологиях.		+			
	Наноконструкции и нанотехно-логии на основе					
	Эволюционная специфика строения природных	K				
	бионаномашин.					
3	Белковые наноструктуры					
3.1	Состав, первичная структура, биологические ф	ункции		ı		
3.1	белков. Самоорганизация и модификация белко	OB.	+			

	Олигомеризация и агрегация белков. Образование белковых нанокомплексов. Транспортные белки. Функции белков-рецепторов. Нанобиосенсоры.			
4	Углеводные наноструктуры			
4.1	Строение, свойства, биологические функции моно- и полигосахаридов. Полисахариды Наноструктура клеточной стенки растений.	+		
5	Биологические мембраны и липиды. Наноструктура и функции нуклеиновых кислот			
5.1	Особенности строения липидных структур. Биологические функции липидов. Классификация липидов. Биологические функции мембран.		+	
5.2	Химический состав и строение нуклеиновых кислот. Генетический код. Организация генетического материала. Процессы передачи генетической информации. Репликация ДНК. Транскрипция (биосинтез РНК). Трансляция (биосинтез белка). Регуляция биосинтеза белка.		+	
6	Молекулярные механизмы восприятия, передачи и преобразования информации			
6.1	Передача сигнала и регуляция с помощью гормонов. Регуляция выработки гормонов. Гормоны периферических желез. Восприятие сигнала с помощью нервной системы и органов чувств. Работа органов чувств.		+	
7	Молекулярные механизмы превращения энергии и вещества в живых системах			
7.1	Обмен веществ и энергии в живых системах. Кофакторы, витамины, гормоны. Метаболизм углеводов. Особенности катаболических процессов в тканях организма. Окислительное фосфолипирование. Ферменты (биологические катализаторы) в живых системах. Биореакторы в производстве биотоплива.			+
8	Направления развития бионанотехнологии и наномедицины			
8.1	Генная инженерия. Применение наноструктурированных материалов для ранней диагностики опасных болезней, адресной доставки лекарств к пораженным тканям и органам. Разработка принципиально новых методов терапии и хирургии, создания молекулярных инструментов и нанохирургии, протезирования, трансплантации и регенерации тканей.			+
8.2	Новые наноструктуры в качестве молекулярных наномоторов: мульти-ДНК наномоторы, наномоторы на основе одной цепи ДНК. Биоконьюгаты мягких наноматериалов: сигнал-чувствительные полимеры, микрогели и наногели, материалы со структурой «ядрооболочка». Доставка лекарств и генов. Активация и доставка под действием физико-химических сигналов. Полифункциональные системы на основе наночастиц.			+

Конструирование наноструктур на основе биологических мембран.				
Bec KM, %:	25	25	25	25