Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 14.03.01 Ядерная энергетика и теплофизика

Наименование образовательной программы: Термоядерные реакторы и плазменные установки

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Основы физики плазмы

> Москва 2025

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

 Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

 Сведения о владельце ЦЭП МЭИ

 Владелец
 Будаев В.П.

 Идентификатор
 Rd3677197-BudayevVP-5d24f851

Разработчик

СОГЛАСОВАНО:

Руководитель образовательной программы

NCM NCM	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»				
	Сведения о владельце ЦЭП МЭИ				
	Владелец	Дедов А.В.			
	Идентификатор	R72c90f41-DedovAV-d71cc7f4			

А.В. Дедов

В.П. Будаев

Заведующий
выпускающей кафедрой

New	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»				
	Сведения о владельце ЦЭП МЭИ				
	Владелец	Дедов А.В.			
	Идентификатор	R72c90f41-DedovAV-d71cc7f4			

А.В. Дедов

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

1. ПК-5 Способен принимать участие в расчетах характеристик процессов, протекающих в конкретных технических устройствах и аппаратах энергетического оборудования, ядерных и плазменных установок

ИД-4 Владеет методами теоретического описания плазмы и навыками расчета плазменных параметров применительно к различным природным и техническим системам

и включает:

для текущего контроля успеваемости:

Форма реализации: Письменная работа

- 1. Движение частиц в электрическом и магнитном полях (Контрольная работа)
- 2. Колебания и волны в плазме (Контрольная работа)
- 3. Столкновения. Гидродинамическое приближение (Контрольная работа)

Форма реализации: Проверка задания

- 1. Сдача второй части домашнего задания. Волны в плазме. Кинетическое описание плазмы (Домашнее задание)
- 2. Сдача первой части домашнего задания. Движение частиц во внешних полях. Гидродинамика плазмы (Домашнее задание)

БРС дисциплины

7 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Движение частиц в электрическом и магнитном полях (Контрольная работа)
- КМ-2 Столкновения. Гидродинамическое приближение (Контрольная работа)
- КМ-3 Сдача первой части домашнего задания. Движение частиц во внешних полях. Гидродинамика плазмы (Домашнее задание)
- КМ-4 Колебания и волны в плазме (Контрольная работа)
- КМ-5 Сдача второй части домашнего задания. Волны в плазме. Кинетическое описание плазмы (Домашнее задание)

Вид промежуточной аттестации – Экзамен.

	Веса контрольных мероприятий, %					
Раздел дисциплины	Индекс	КМ-	КМ-	КМ-	КМ-	КМ-
	KM:	1	2	3	4	5

Срок КМ:	4	8	10	12	16
Плазма: основные понятия и характеристики. Движение частиц во внешних полях. Упругие столкновения в плазме					
Плазма: основные понятия и характеристики	+		+		
Движение частиц во внешних полях	+		+		
Упругие столкновения в плазме	+		+		
Гидродинамические модели. Коэффициенты переноса в замагниченной плазме					
Однокомпонентные модели. Магнитная гидродинамика		+	+		
Двухкомпонентные модели. Коэффициенты переноса в плазме		+	+		
Волны в плазме. Методы волновой диагностики плазмы					
Колебания и волны в плазме. Основные понятия				+	+
Волны в холодной плазме				+	+
Волны в теплой плазме				+	+
Кинетическое описание плазмы					
Кинетическая теория бесстолкновительной плазмы					+
Уравнение Больцмана					+
Пристенные явления в плазме. Зондовые методы диагностики					
Объемный заряд в плазме и теория зонда Ленгмюра					+
Bec KM:	20	20	20	20	20

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	_	результаты обучения по	
		дисциплине	
ПК-5	ИД-4пк-5 Владеет	Знать:	КМ-1 Движение частиц в электрическом и магнитном полях
	методами теоретического	механизмы	(Контрольная работа)
	описания плазмы и	распространения и	КМ-2 Столкновения. Гидродинамическое приближение (Контрольная
	навыками расчета	•	работа)
	плазменных параметров	колебаний в плазменных	КМ-3 Колебания и волны в плазме (Контрольная работа)
	применительно к	средах	КМ-4 Сдача первой части домашнего задания. Движение частиц во
	различным природным и	основные подходы к	внешних полях. Гидродинамика плазмы (Домашнее задание)
	техническим системам	описанию плазмы и	КМ-5 Сдача второй части домашнего задания. Волны в плазме.
		плазмодинамики	Кинетическое описание плазмы (Домашнее задание)
		Уметь:	
		выполнять оценку	
		параметров колебательных	
		процессов в плазме	
		оценивать параметры	
		дрейфовых движений	
		частиц в полевых	
		конфигурациях установок	
		для удержания плазмы, а	
		также параметры	
		релаксации частиц в	
		столкновениях	
		выполнять оценки	
		ключевых плазменных	
		параметров	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Движение частиц в электрическом и магнитном полях

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Письменный тест.

Краткое содержание задания:

Выбрать варианты ответов и решить задачи

Контрольные вопросы/задания:

контрольные вопросы/задания:	
Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
Уметь: оценивать параметры	1.Вычислить дебаевский радиус, плазменную
дрейфовых движений частиц в	частоту и плотность тепловой энергии плазмы в
полевых конфигурациях установок	термоядерной установке, если ее плотность 1014
для удержания плазмы, а также	см-3, а температура 2 эВ.
параметры релаксации частиц в	2.Вычислить ларморовский радиус и
столкновениях	циклотронную частоту электрона с энергией 3
	кэВ движущегося в однородном магнитном поле
	0.1 Т под углом 450 к силовым линиям;
	3.Вычислить скорость дрейфа ядра гелия в
	скрещенных электрическом ($E = 1000 \text{ B/M}$) и
	магнитном $H = 1 T$) полях.
	4. Вычислить среднюю скорость ионов дейтерия в
	максвелловской плазме с температурой 10 кэВ
	5.Плазма медленно сжимается магнитным полем с
	В1=1Тл до В2=5Тл. Столкновений нет. Во
	сколько раз вырастет полная кинетическая
	энергия частицы, если в начальный момент
	времени распределение по скоростям
	определяется соотношением vx=vy=vz. (помним,
	что нормально полю направлены две оси
	свободы).
	6. Нарисовать направление градиентного и
	центробежного дрейфа ионов в магнитном поле
	прямого тока (рис 1). Оценить скорость дрейфа
	ионов дейтерия при J=1 кA, R=0.5м, T=1кэВ

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85 Описание характеристики выполнения знания:

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70 Описание характеристики выполнения знания:

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания:

Оценка: 2 («неудовлетворительно») Описание характеристики выполнения знания:

КМ-2. Столкновения. Гидродинамическое приближение

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Письменная работа тест+ задачи.

Краткое содержание задания:

Выбрать правильный ответ и решить задачи

Контрольные вопросы/задания:

контрольные вопросы/задания.			
Запланированные результаты	Вопросы/задания для проверки		
обучения по дисциплине			
Знать: основные подходы к описанию плазмы и плазмодинамики	1.Проводимость полностью ионизованной плазмы зависит от плотности электронов пе и температуры как? а) не зависит от пе б)растет с температурой как Т3/2в) растет с ростом пе г) падает с ростом температуры		
	Времена установления равновесного распределения по температуре в электронной подсистеме и выравнивания температур ионов и электронов соотносятся как (tee:tei) а) 1:43 б)1:2000 в)1:1 г) 43:1 д) 2000:1		
	Классический коэффициент диффузии плазмы поперек силовых линий магнитного поля зависит от его напряженности как а) D~H-2 a) D~H-1 a) D~H a) не зависит		

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-3. Сдача первой части домашнего задания. Движение частиц во внешних полях. Гидродинамика плазмы

Формы реализации: Проверка задания

Тип контрольного мероприятия: Домашнее задание

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Сдача задания производится лично. Студент приносит выполненное задание. Преподаватель выборочно просит объяснить задачи и выполнить более простые упражнения на оценку основных величин.

Краткое содержание задания:

Решить все задачи задания

Вычислите плазменную частоту, дебаевский радиус, число частиц в сфере Дебая в следующих случаях:

- а) тлеющий разряд (ne = 10^16 м-3, Te = 1.5 эВ);
- б) ионосфера Земли (ne = 10^12 м-3, Te= 0.13 В);
- в) θ -пинч (ne = 10^23 м-3, Te = 800 эВ).

Характерный размер возмущения электрического поля вокруг внесённого в плазму ленгмюровского зонда равен 15 мкм. Найти концентрацию электронов плазмы, если их температура Te=5 кэВ.

В токамаке круглого сечения T-10 с большим радиусом R=1,5 м и радиусом плазмы a=30 см удерживается водородная плазма с концентрацией электронов $n=3\ 10^13$ см-3 и температурой T=1 кэВ. На сколько градусов можно нагреть ею стакан воды объемом 200 мл? Считать, что одна калория равна 4,186Дж.

Вычислить равновесную степень ионизации паров ртути при $T=4\kappa K$, $n=10^{15}cm-3$. Мультиплетность термов принять равной g=(2J+1). Таблица уровней доступна на (https://physics.nist.gov/PhysRefData/ASD/levels_form.html) . Потенциал ионизации ртути $10.4~\mathrm{3B}$.

Выразить концентрацию трижды ионизованного кислорода O IV в плазме, где кислород присутствует в виде малой примеси. (указание: уравнение Саха можно применить к последовательным реакциям ионизации).

В установке термоядерного синтеза плазма нагревается посредством инжекции нейтральных атомов дейтерия с энергией 200 кэВ, которые, войдя в магнитное поле, изза перезарядки превращаются в ионы дейтерия с атомным номером A=2 и с той же энергией. Такие ионы могут удерживаться в ловушке, только если их ларморовский радиус много меньше Ra, где Ra=0.6 м — меньший радиус плазменного тора. Проверьте, выполняется ли это условие, вычислив максимальный ларморовский радиус иона в магнитном поле B=5 Тл.

Пусть $ne=10^{10}cm-3$. При какой величине магнитного поля электронная циклотронная частота сравняется с плазменной?

Вычислить ларморовский радиус и циклотронную частоту для

- А) дейтона с энергией 15 КэВ, движущегося в однородном магнитном поле 0.85 Т под углом 600 к силовым линиям;
- Б) электрона с энергией 10 КэВ движущегося в однородном магнитном поле 0.6 Т под углом 450 к силовым линиям

Плазма, находящаяся в зеркальной ловушке с пробочным отношением Rm = 9, имеет изотропное распределение частиц по скоростям. Столкновения отсутствуют, так что частицы, попавшие в конус потерь, сразу уходят, а не попавшие — остаются. Определить долю захваченных частиц.

Заряженный пучок электронов плотностью ne=10^14 cm-3 и радиусом a=1cм движется вдоль магнитного поля 2Tл. Найти скорость ExB дрейфа в собственном поле пучка

Рассчитать проводимость водородной плазмы при T=1 keV, n=10¹0cм-3

Бесстолкновительная водородная плазма удерживается в торе, внешние обмотки которого создают магнитное поле. Плазма в начальный момент максвелловская, ее температура T=1 кэB. Начиная с t=0, магнитное поле B за 100 мкс увеличивается с 1 Tл до 3 Tл, в результате чего плазма сжимается.

- а) Покажите, что магнитный момент как у ионов, так и у электронов остается инвариантным.
- б) Вычислите температуры распределений по полю и нормально ему после сжатия.

Контрольные вопросы/задания:

Запланированные	результаты	Вопросы/задания для проверки
обучения по дисципли	не	
Уметь: выполнять оц плазменных параметро		1.Рассчитать проводимость полностью ионизованной водородной плазмы при T=1кэВ 2.Оценить дебаевский радиус и плазменную частоту для T=1кэВ и n=10^12 см^-3
		3.Оценить ларморовский радиус и ларморовскую частоту для ионов дейтерия с B=5Tл

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 55

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-4. Колебания и волны в плазме

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: тест+ решение задач.

Краткое содержание задания:

Выбрать правильный ответ и решить задачи

Контрольные вопросы/задания:

контрольные вопросы/задания.				
Запланированные результаты обучения	Вопросы/задания для проверки			
по дисциплине				
Знать: механизмы распространения и затухания волн и колебаний в плазменных средах	1.(1 очко) Электромагнитная волна может распространяться в плазме, если её частота а) выше плазменной б) ниже плазменной в) выше ионной циклотронной частоты			
	(1 очко) В холодной плазме в присутствии магнитного поля могут существовать следующие виды волн: а) альфвеновская б) ионный звук в) электромагнитная волна			
	(1 очко) При распространении низкочастотных волн вдоль магнитного поля частотами отсечки являются: а) нижнегибридная частота б) плазменная частота в) ионная и электронная циклотронные частоты			

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-5. Сдача второй части домашнего задания. Волны в плазме. Кинетическое описание плазмы

Формы реализации: Проверка задания

Тип контрольного мероприятия: Домашнее задание

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Сдача задания производится лично. Студент приносит выполненное задание. Преподаватель выборочно просит объяснить задачи и выполнить более простые упражнения на оценку основных величин.

Краткое содержание задания:

Оценить соотношение между холловским током и током проводимости в полностью ионизованной плазме водорода при $n=10^12$ cm $^-3$ при температуре электронов 10 эВ в поле 2 Тл. (указание: частоту столкновений вычислить из времени замедления электронов на ионах).

В цилиндрическом плазменном столбе в поле В концентрация распределена по закону $n(r)=n0\exp(-r2/r02)$, при этом электроны находятся в равновесии с полем: $ne=n0\exp(e\phi/Te)$

 $r0=1c_{M}$

- а) Найти скорости диамагнитного и электрического дрейфа
- б) Вычислить диамагнитный ток, считая t0=1016, t=Ti=0.25кэt=0.4Тл

На поверхности солнца возник протуберанец диаметром 1000км, скорость выброса плазмы в котором составляет 500 км/с. Температура выбрасываемой плазмы $T\sim2$ ЭВ. На какое расстояние будут вытягиваться вместе с плазмой силовые линии магнитного поля? Плазму считать полностью ионизованной.

Перед спускаемым аппаратом в верхних слоях атмосферы образуется мощная ударная волна, температура за которой достаточна для ионизации воздуха. Формирующаяся плазмы препятствует радиосвязи. Связь с кораблем осуществляется на длине волны 300 МГц. Оцените минимальную плотность плазмы.

Микроволны, которые в свободном пространстве имеют длину волны $\lambda 0 = 1$ см, проходят через слой плазмы плотностью $n0 = 2.8 \ 10^18 \ \text{м-3}$ и толщиной $10 \ \text{см}$, помещенный в постоянное магнитное поле $B0 = 1.07 \ \text{Тл}$. Вычислите число длин волн, укладывающихся внутри слоя, если:

- а) волновод ориентирован так, что вектор электрического поля волны Е параллелен магнитному полю;
- б) волновод ориентирован так, что вектор Е параллелен оси у.

СВЧ интерферометр используется для определения плотности плазмы в бесконечном плоском слое толщиной 10см. Интерферометр работает на длине волны 8мм. Рассчитайте плотность плазмы, если сдвиг составляет 1/10 интерференционной полосы Вычислите альфвеновскую скорость в области магнитосферы, где B=10-8 Тл, $n=10^8$ м-3, а M=1,67 10^4

Корабль движется в атмосфере Юпитера со скоростью 100 км/с параллельно магнитному полю напряженностью 10-5Тл. Если движение является сверхзвуковым, то перед кораблем образуется ионно-звуковая ударная волна. Если скорость корабля также выше Альфвеновской, то перед ним существует магнитозвуковая ударная волна. Известно, что наблюдаются ударные волны только первого типа. Найти пределы, в которых меняются плотность и температура плазмы. Считать, что верхние слои атмосферы Юпитера состоят из холодных, однократно ионизованных молекул и атомов со средней молекулярной массой 10.

В однородной плазме, помещенной в поле 0.1 Тл изучается фарадеево вращение СВЧ волн с длиной волны 8мм. Обнаружено, что при прохождении 1 м длины столба поляризация повернулась на 900. Какова плотность плазмы?

Рассчитайте частоты верхне - и нижне - гибридного резонанса для плазмы плотность 10^{12} см-3 в поле напряженность 2 Тл.

В плазме с $n=10^15$ м-3 и T=109В возбуждается электронная плазменная волна с длиной волны 1см. Затем источник возбуждения отключается. Оцените время бесстолковительного затухания волны в e раз.

Плотность ионного тока насыщения, приходящего на плоский зонд 10 мА\см2. Вычислить плотность плазмы, если температура электронов равна 5 эВ.

Контрольные вопросы/задания:

Rolliposibilibre	вопросы, задания.	
Запланированн	ые результаты	Вопросы/задания для проверки
обучения по ди	сциплине	
Уметь: вы	полнять оценку	1. Рассчитайте частоту отсечки СВЧ излучения в
параметров	колебательных	плазме с концентрацией электронов 10^12 см^-3
процессов в пла	азме	2. Рассчитайте набег фазы обыкновенной волны в
		плазме длиной 2м с концентрацией 10^12 см^-3,
		при длине волны в вакууме 5мм.
		3. Рассчитайте ионный ток насыщения на зонд при
		10^12 см^-3, Te=1эB

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 100 Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 85 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

7 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

- 1. Основные понятия физики плазмы. Квазинейтральность, временной и пространственный масштабы разделения зарядов
- 2. Сечение кулоновских соударений
- 3. Вычислить ларморовский радиус и циклотронную частоту дейтона с энергией 1 КэВ, движущегося в однородном магнитном поле 0.3 Т под углом 450 к силовым линиям

Процедура проведения

Экзамен проводится в письменно-устной форме. На подготовку ответа дается 60 минут. Кроме ответа на вопросы билета, студент должен ответить на дополнительные вопросы.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД- $4_{\Pi K-5}$ Владеет методами теоретического описания плазмы и навыками расчета плазменных параметров применительно к различным природным и техническим системам

Вопросы, задания

- 1.1.Поле точечного заряда в плазме.
- 2. Проводимость плазмы в кинетическом подходе.
- 3. Вычислить скорость дрейфа электрона в неоднородном магнитном поле напряженностью 3 Тл, напряженность которого меняется в поперечном направлении со скоростью dB/dy=0.01Tл/см. Температуру электронов принять равной 1кэВ.
- 2.1 Движение заряженной частицы в однородном магнитном поле.
- 2 Магнитный звук.
- 3 Вычислить дебаевский радиус и плазменную частоту в термоядерной установке, если плотность плазмы 10^13см-3, а её температура 10кэВ.
- 3.1. Движение заряженной частицы в скрещенных электрическом и магнитном полях.
- 2. Времена релаксации при кулоновском взаимодействии.
- 3. Оценить проводимость водородной плазмы при T=1кэB. Кулоновский логарифм принять равным 10

4

- 1. 1 Градиентный и центробежный дрейфы
- 2. 2 Кинетический подход в теории плазмы. Кинетическое уравнение без столкновений.
 - 3. Вычислить ларморовский радиус и циклотронную частоту электрона с энергией 15 кэВ движущегося в однородном магнитном поле 0.1 Т под углом 300 к силовым линиям;
 - 5.1 Одножидкостная модель плазмы, основные уравнения.
 - 2 Интеграл столкновений. Условия нормировки.
 - 3 Оценить плотность тепловой энергии плазмы в термоядерной установке, если ее плотность 10¹5cm-3, а температура 1 кэВ

Материалы для проверки остаточных знаний

1. Дать определение плазмы

Ответы:

Плазма - квазинейтральная смесь нейтральных и заряженных частиц, проявляющая коллективные взаимодействия

Ионизованный газ

Энергонасыщенная среда

Плазма - квазинейтральная смесь нейтральных и заряженных частиц

Верный ответ: Плазма - квазинейтральная смесь нейтральных и заряженных частиц, проявляющая коллективные взаимодействия

2. Дать определение и критерий существования идеальной плазмы Ответы:

- 1. Идеальная плазма среда для которой применимо уравнение состояния идеального газа. Критерий идеальности- большое количество частиц в сфере Дебая
- 2. Идеальная плазма среда для которой применимо уравнение состояния идеального газа. Критерий идеальности- малое количество частиц в сфере Дебая
- 3. Любая плазма идеальна
- 4. Идеальная плазма среда для которой применимо уравнение состояния идеального газа. Критерий идеальности- малость ларморовского радиуса по сравнению с дебаевским

Верный ответ: Идеальная плазма - среда для которой применимо уравнение состояния идеального газа. Критерий идеальности- большое количество частиц в сфере Дебая

3. Каковы критерии замагниченности плазмы?

Ответы:

Ларморовский радиус больше кулоновского, частота столкновений выше плазменной частоты

Ларморовский радиус меньше характерных размеров задачи, частота столкновений меньше ларморовской частоты

Частота столкновений меньше ларморовской частоты, ларморовский радиус- любой Частота ион-электронных столкновений выше ларморовской частоты

Верный ответ: Ларморовский радиус меньше характерных размеров задачи, частота столкновений меньше ларморовской частоты

4. Квазиней тральность в плазме соблюдается:

Ответы:

На масштабах больше дебаевского радиуса и временах больше обратной плазменной частоты

На масштабах больше ларморовского радиуса и временах больше обратной циклотронной частоты

На масштабах больше длины свободного пробега и временах больше обратной частоты соударений

На масштабах больше радиуса электронной оболочки атомов и временах больше периода обращения электрона по орбите

Верный ответ: На масштабах больше дебаевского радиуса и временах больше обратной плазменной частоты

5. Какие виды дрейфа в магнитном поле не зависят от параметров (массы и заряда) частины

Ответы:

Дрейф в однородных скрещенных магнитном и электрическом полях Градиентный дрейф Центробежный дрейф

Инерционный дрейф

Верный ответ: Дрейф в однородных скрещенных магнитном и электрическом полях 6.Кулоновский логарифм это

Ответы:

Логарифм отношения кулоновского радиуса к дебаевскому

Логарифм отношения дебаевского радиуса к кулоновскому

Логарифм отношения ларморовского радиуса к кулоновскому

Логарифм отношения кулоновского радиуса к комптоновскому

Верный ответ: Логарифм отношения дебаевского радиуса к кулоновскому 7. Проводимость полностью ионизованной плазмы следующим образом зависит от параметров плазмы

Ответы:

Растет пропорционально концентрации электронов, не зависит от температуры Растет с температурой как $T^3/2$, не зависит от концентрации электронов

Падает с температурой как T^-3/2, растет пропорционально концентрации электронов Растет пропорционально температуре и плотности электронов

Верный ответ: Растет с температурой как $T^3/2$, не зависит от концентрации электронов

8. Классический коэффициент диффузии в плазме следующим образом зависит от магнитного поля:

Ответы:

Коэффициент диффузии больше вдоль силовых линий магнитного поля, поперек силовых линий падает как $D\sim B^-2$

Коэффициент диффузии меньше вдоль силовых линий магнитного поля, поперек силовых линий падает как $D \sim B^{-1}$

Коэффициент диффузии меньше вдоль силовых линий магнитного поля, поперек силовых линий растет как $D{\sim}B^{\wedge}2$

Коэффициент диффузии больше вдоль силовых линий магнитного поля, поперек силовых линий растет как $D\sim B^2$

Верный ответ: Коэффициент диффузии больше вдоль силовых линий магнитного поля, поперек силовых линий падает как $D\sim B^{-2}$

9. Холловский ток в плазме возникает из-за

Ответы:

ЕхВ дрейфа электронов

Столкновительного дрейфа электронов

Кулоновского взаимодействия частиц плазмы

Ларморовскогго вращения ионов

Верный ответ: ЕхВ дрейфа электронов

10. При рассмотрении движений плазмы в магнитном поле можно пренебречь её упругостью по сравнению с электромагнитными силами, если

Ответы:

Магнитное давление намного выше газового

Магнитное давление намного ниже газового

Плазма является идеальной

Сжимаемость плазмы изотропна

Верный ответ: Магнитное давление намного выше газового

11. Магнитное поле искажается движением плазмы, если

Ответы:

Магнитное число Рейнольдса велико

Магнитное число Рейнольдса мало

Длина магнитного скин-слоя много меньше размеров системы Длина магнитного скин-слоя много больше размеров системы

Верный ответ: Магнитное число Рейнольдса велико Длина магнитного скин-слоя много меньше размеров системы

12.Выберите верные утверждения для электромагнитной волны в плазме в отсутствие магнитного поля

Ответы:

Волна может распространяться только при частотах выше плазменной частоты При большой частоте скорость волны стремится к скорости света в вакууме Фазовая скорость волны больше скорости света

Групповая скорость волны больше скорости света

Верный ответ: Волна может распространяться только при частотах выше плазменной частоты При большой частоте скорость волны стремится к скорости света в вакууме Фазовая скорость волны больше скорости света

13. Альфвеновскую и магнитозвуковую волны в плазме можно коротко описать как: Ответы:

Колебания электронов относительно неподвижных ионов

Изгибные и продольные колебания плазмы с вмороженным магнитным полем Звуковую волну с разделением зарядов электронов и ионов

Электромагнитную волну в высокочастотном пределе

Верный ответ: Изгибные и продольные колебания плазмы с вмороженным магнитным полем

14. Ионно- звуковая волна может распространяться в плазме с холодными ионами благодаря

Ответы:

Амбиполярному электрическому полю, возникающему в волне

Экранированию низкочастотных колебаний в плазме

Вмороженности магнитного поля в среду

Не может распространяться

Верный ответ: Амбиполярному электрическому полю, возникающему в волне 15. Уравнение Власова описывает

Ответы:

Эволюцию функции распределения в самосогласованном поле в отсутствие столкновений

Эволюцию функции распределения под действием столкновений

Проводимость полностью ионизованной плазмы

Верный ответ: Эволюцию функции распределения в самосогласованном поле в отсутствие столкновений

16.Приведите пример коллективного процесса в плазме

Ответы:

Альфвеновская волна

Ларморовское вращение

Столкновительный дрейф

Электронный звук

Верный ответ: Альфвеновская волна Электронный звук

17. Отражение и поглощение падающей на границу плазмы волны происходит при: Ответы:

Отражение- при фазовой скорости стремящейся к бесконечности, поглощение- к нулю

Отражение- при фазовой скорости стремящейся к скорости света в вакууме, поглощение- к нулю

Отражение- при фазовой скорости стремящейся к нулю, поглощение- к скорости света Отражение- при фазовой скорости стремящейся к нулю, отражение- к скорости света в вакууме

Верный ответ: Отражение- при фазовой скорости стремящейся к бесконечности, поглощение- к нулю

18.Плазменная частота это-

Ответы:

Частота колебаний свободных электронов относительно неподвижных ионов

Частота вращения электронов по ларморовским окружностям

Частота низкочастотных волн в замагниченной плазме

Частота колебаний плазмы как целого

Верный ответ: Частота колебаний свободных электронов относительно неподвижных ионов

19.Верхнегибридная частота для электронов в плазме в присутствии магнитного поля Ответы:

Всегла выше плазменной частоты

Всегда ниже плазменной частоты

Всегда равна плазменной частоте

Всегда равна ларморовской частоте

Верный ответ: Всегда выше плазменной частоты

20.На глубину проникновения электромагнитной волны в плазму влияют:

Ответы:

Колебания электронов

Конечная температура электронов

Столкновения электронов с тяжелыми частицами, если это столкновение происходит с частотой сопоставимой с частотой волны

Все вышеперечисленное

Верный ответ: Все вышеперечисленное

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений. На вопросы программы-минимум отвечает уверенно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки. На вопросы программы-минимум отвечает уверенно

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня студент ответить не в состоянии. На вопросы программы-минимум отвечает удовлетворительно

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

ІІІ. Правила выставления итоговой оценки по курсу

Оценка выставляется на основании экзамена и результатов промежуточных контрольных мероприятий.