Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования

«Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 14.04.01 Ядерная энергетика и теплофизика

Наименование образовательной программы: Нанотехнологии и наноматериалы в энергетике

Уровень образования: высшее образование - магистратура

Форма обучения: Очная

Рабочая программа дисциплины КОМПЬЮТЕРНЫЕ ТЕХНОЛОГИИ В ЯДЕРНОЙ ЭНЕРГЕТИКЕ И ТЕПЛОФИЗИКЕ

Блок:	Блок 1 «Дисциплины (модули)»
Часть образовательной программы:	Обязательная
№ дисциплины по учебному плану:	Б1.О.05
Трудоемкость в зачетных единицах:	1 семестр - 4;
Часов (всего) по учебному плану:	144 часа
Лекции	1 семестр - 32 часа;
Практические занятия	1 семестр - 32 часа;
Лабораторные работы	не предусмотрено учебным планом
Консультации	проводится в рамках часов аудиторных занятий
Самостоятельная работа	1 семестр - 79,7 часа;
в том числе на КП/КР	не предусмотрено учебным планом
Иная контактная работа	проводится в рамках часов аудиторных занятий
включая: Решение задач	
Промежуточная аттестация:	
Зачет с оценкой	1 семестр - 0,3 часа;

Москва 2025

ПРОГРАММУ СОСТАВИЛ:

Преподаватель

Ю.А. Волков

СОГЛАСОВАНО:

Руководитель образовательной программы

П.Г. Макаров

Заведующий выпускающей кафедрой

NISO WE	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»
	Сведен	ия о владельце ЦЭП МЭИ
-	Владелец	Пузина Ю.Ю.
» <mark>МЭИ</mark> «	Идентификатор	Re86e9a56-Puzina-4d2acad1

Ю.Ю. Пузина

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель освоения дисциплины: изучение компьютерных моделей различных систем в микрои наномире применительно к энергетике.

Задачи дисциплины

- изучение базовых моделей компьютерного моделирования;
- изучение особенностей компьютерных моделей применительно к нанотехнологиям и наноматериалам;
- освоение основных физических процессов и компьютерных моделей, связанных с переносом заряда и тепла, в кристаллических полупроводниках и диэлектриках.

Формируемые у обучающегося компетенции и запланированные результаты обучения по дисциплине, соотнесенные с индикаторами достижения компетенций:

Код и наименование компетенции	с индикаторами достижения к Код и наименование индикатора достижения компетенции	Запланированные результаты обучения
ОПК-1 Способен формулировать цели и задачи исследования, выбирать критерии оценки, выявлять приоритеты решения задач	ИД-1 _{ОПК-1} Способен к анализу комплексных проблем в области ядерной энергетики и теплофизики	знать: - способы построения алгоритмов расчета процессов в ядерной энергетике, теплофизике и нанотехнологиях. уметь: - проводить компьютерное моделирвоание эффективности типовых нанотехнологических устройств.
ОПК-1 Способен формулировать цели и задачи исследования, выбирать критерии оценки, выявлять приоритеты решения задач	ИД-2 _{ОПК-1} Способен к составлению алгоритмов для решения конкретных задач в области ядерной энергетики и теплофизики	знать: - типовые решения систем, проводить комплексный анализ наноразмерных систем и устройств. уметь: - подбирать на основе компьютерного моделирования компоненты нанотехнологий.
ОПК-2 Способен применять современные методы исследования, оценивать и представлять результаты выполненной работы	ИД-1 _{ОПК-2} Применяет математический аппарат для решения теплофизических задач атомной энергетики	знать: - типовые решения наноразмерных систем и устройств на основе компьютерных технологий. уметь: - подбирать на основе компьютерного моделирования компоненты нанотехнологий.
ОПК-2 Способен применять современные методы исследования, оценивать и представлять результаты выполненной работы	ИД-2 _{ОПК-2} Применяет компьютерные технологии для решения теплофизических задач ядерной энергетики	знать: - выбирать модели теплофизического описания процессов в нанотехнологиях. уметь: - применять компьютерные технологии для решения теплофизических задач ядерной энергетики.

Код и наименование компетенции	Код и наименование индикатора достижения компетенции	Запланированные результаты обучения
ОПК-3 Способен оформлять результаты научно-исследовательской деятельности в виде статей, докладов, научных отчетов и презентаций с использованием систем компьютерной верстки и пакетов офисных программ	ИД-1 _{ОПК-3} Способен формулировать результаты научных исследований	знать: - набор средств информационных технологий для поиска, хранения, обработки, анализа и информации. уметь: - применять средства информационных технологий для поиска, хранения, обработки, анализа и информации.
ОПК-3 Способен оформлять результаты научно-исследовательской деятельности в виде статей, докладов, научных отчетов и презентаций с использованием систем компьютерной верстки и пакетов офисных программ	ИД-2 _{ОПК-3} Применяет компьютерные технологии для представления результатов научно-исследовательской деятельности	знать: - набор компьютерных средств для представления результатов научно-исследовательской деятельности в отрасли. уметь: - применять компьютерные средства для представления результатов научно-исследовательской деятельности в отрасли.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ВО

Дисциплина относится к основной профессиональной образовательной программе Нанотехнологии и наноматериалы в энергетике (далее – ОПОП), направления подготовки 14.04.01 Ядерная энергетика и теплофизика, уровень образования: высшее образование - магистратура.

Базируется на уровне высшего образования (бакалавриат, специалитет).

Результаты обучения, полученные при освоении дисциплины, необходимы при выполнении выпускной квалификационной работы.

3. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1 Структура дисциплины Общая трудоемкость дисциплины составляет 4 зачетных единицы, 144 часа.

	D/	В			Распр	еделе	ние труд	цоемкости	й работы					
Nº	Разделы/темы дисциплины/формы	асод	стр				Конта	ктная раб	ота				CP	Содержание самостоятельной работы/
п/п	промежуточной	сего часо: на раздел	Семестр				Консу	льтация	ИК	P		Работа в	Подготовка к	методические указания
	аттестации	Всего часов на раздел	C	Лек	Лаб	Пр	КПР	ГК	ИККП	ТК	ПА	семестре	аттестации /контроль	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	Вычислительная физика	18	1	4	ı	4	-	-	-	ı	ı	10	-	<u>Самостоятельное изучение</u> <u>теоретического материала:</u> Изучение
1.1	Вычислительная физика	18		4	-	4	-	-	-	-	-	10	-	дополнительного материала по разделу "Вычислительная физика" <i>Изучение материалов литературных источников:</i> [1], 92-134 [2], 17-41 [3], 36-48
2	Компьютерное моделирование в физике	18		4	-	4	-	-	-	-	-	10	-	Самостоятельное изучение теоретического материала: Изучение дополнительного материала по разделу
2.1	Компьютерное моделирование в физике	18		4	-	4	-	-	-	-	-	10	-	"Компьютерное моделирование в физике" <u>Изучение материалов литературных</u> <u>источников:</u> [1], 142-184 [2], 72-101 [3], 8-22
3	Уравнения в частных производных для сплошных сред	16		4	i	4	-	-	-	-	I	8	-	Самостоятельное изучение <u>теоретического материала:</u> Изучение дополнительного материала по разделу
3.1	Уравнения в частных производных для сплошных сред	16		4	-	4	-	_	-	-	-	8	-	"Уравнения в частных производных для сплошных сред" <u>Изучение материалов литературных источников:</u> [1], 142-164 [2], 104-122 [3], 52-74

		1 40 1						1	1	1	1	- 40	T	T ~
4	Математические	18		4	-	4	-	-	-	-	-	10	-	Самостоятельное изучение
	модели динамики													<u>теоретического материала:</u> Изучение
	наносистем	10	-									1.0		дополнительного материала по разделу
4.1	Математические	18		4	-	4	-	_	-	-	-	10	=	"Математические модели динамики
	модели динамики													наносистем"
	наносистем													Изучение материалов литературных
														<u>источников:</u> [3], 36-48
5	Модели кластерных	20	-	6		6			_		_	8		Самостоятельное изучение
3	наносистем	20		U	_	U	_	_	_	_	_	0	_	<i>теоретического материала:</i> Изучение
5.1	Модели кластерных	20	-	6	_	6	_	_	_	_	_	8	_	дополнительного материала по разделу
3.1	наносистем	20		U								O		"Модели кластерных наносистем"
	папоснетем													Изучение материалов литературных
														источников:
														[1], 212-236
														[2], 172-191
6	Математическое	20		6	-	6	-	-	-	-	-	8	-	Самостоятельное изучение
	моделирование													<i>теоретического материала:</i> Изучение
	переноса массы и													дополнительного материала по разделу
	заряда													"Математическое моделирование переноса
6.1	Математическое	20		6	-	6	-	-	-	-	-	8	-	массы и заряда"
	моделирование													Изучение материалов литературных
	переноса массы и													<u>источников:</u>
	заряда													[1], 244-259 [2], 235-268
														[3], 116-161
7	Математическое	16	-	4	_	4	_	_	_	_	_	8	_	Самостоятельное изучение
,	моделирование	10		7	_	7		_			_	0	_	<i>теоретического материала:</i> Изучение
	переноса импульса и													дополнительного материала по разделу
	энергии													"Математическое моделирование переноса
7.1	Математическое	16		4	-	4	-	-	-	_	-	8	-	импульса и энергии"
	моделирование													Изучение материалов литературных
	переноса импульса и													источников:
	энергии													[1], 192-234
														[2], 272-301
														[3], 316-362
	Зачет с оценкой	18.0		-	1	-	-	-	-	-	0.3	-	17.7	
	Всего за семестр	144.0		32	•	32	-	-	-	-	0.3	62	17.7	
	Итого за семестр	144.0		32	-	32		-	-		0.3		79.7	
1		1 1				i	1		1			1		II.

Примечание: Лек – лекции; Лаб – лабораторные работы; Пр – практические занятия; КПР – аудиторные консультации по курсовым проектам/работам; ИККП – индивидуальные консультации по курсовым проектам/работам; ГК- групповые консультации по разделам дисциплины; СР – самостоятельная работа студента; ИКР – иная контактная работа; ТК – текущий контроль; ПА – промежуточная аттестация

3.2 Краткое содержание разделов

1. Вычислительная физика

1.1. Вычислительная физика

Предмет вычислительной физики. Численные методы.. Вычисление определенных интегралов. Решение трансцендентных уравнений.. Задачи линейной алгебры. Численное интегрирование системы обыкновенных дифференциальных уравнений (схема Эйлера, Рунге-Кута).. Устойчивость численной схемы. Метод Монте-Карло. Клеточные автоматы..

2. Компьютерное моделирование в физике

2.1. Компьютерное моделирование в физике

Численный эксперимент в задачах механики, электричества и статистической физики (задача преследования, движение в центральном поле, негармонические колебания, фазовые портреты, визуализация полей системы электрических зарядов, кинематическая модель газа и др.).

3. Уравнения в частных производных для сплошных сред

3.1. Уравнения в частных производных для сплошных сред

Свойства уравнений математической физики. Устойчивость разностных схем для уравнений в частных производных.. Уравнение диффузии: явная схема интегрирования первого порядка.. Уравнение переноса: явная схема интегрирования первого порядка.. Дисперсия и диффузия на разностной сетке..

4. Математические модели динамики наносистем

4.1. Математические модели динамики наносистем

Методы математического описания динамики взаимодействующих наночастиц.. Квантовомеханические расчеты «из первых принципов».. Полуэмпирические методы. Методы молекулярной динамики.. Реализация методов молекулярной динамики в задачах переноса..

5. Модели кластерных наносистем

5.1. Модели кластерных наносистем

Модели атомной подвижности. Структурные модели кластера.. Вычисление функций распределения наночастиц в кластерах.. Фрактальные кластеры..

6. Математическое моделирование переноса массы и заряда

6.1. Математическое моделирование переноса массы и заряда

Модель переноса зарядов в материалах. Модель транспорта электронов.. Модели переноса электронно-дырочных пар в полупроводниках.. Модели диффузии..

7. Математическое моделирование переноса импульса и энергии

7.1. Математическое моделирование переноса импульса и энергии

Кинетическое уравнение Больцмана для носителей. Приближение времени релаксации.. Простейшие решения - статическая проводимость электронно-дырочной плазмы и ее теплопроводность.. Численные методы решения уравнения переноса.. Метод частиц в

ячейке. Приближение непрерывного торможения. Метод Монте-Карло для решения уравнения переноса..

3.3. Темы практических занятий

- 1. Расчет полиномов;
- 2. Расчет интегралов;
- 3. Расчет гармонических колебаний;
- 4. Расчет негармонических колебаний;
- 5. Расчет методом конечных разностей;
- 6. Расчет методом конечных элементов;
- 7. Квантовомеханический расчет;
- 8. Квантовомеханический расчет «из первых принципов»;
- 9. Расчет полупроводников;
- 10. Расчет по модели переноса электронно-дырочных пар в полупроводниках.;
- 11. Расчет по методу Монте-Карло переноса заряда;
- 12. Решение по методу Монте-Карло уравнений переноса..

3.4. Темы лабораторных работ

не предусмотрено

3.5 Консультации

Групповые консультации по разделам дисциплины (ГК)

- 1. Обсуждение материалов по кейсам раздела "Вычислительная физика"
- 2. Обсуждение материалов по кейсам раздела "Компьютерное моделирование в физике"
- 3. Обсуждение материалов по кейсам раздела "Уравнения в частных производных для сплошных сред"
- 4. Обсуждение материалов по кейсам раздела "Математические модели динамики наносистем"
- 5. Обсуждение материалов по кейсам раздела "Модели кластерных наносистем"
- 6. Обсуждение материалов по кейсам раздела "Математическое моделирование переноса массы и заряда"
- 7. Обсуждение материалов по кейсам раздела "Математическое моделирование переноса импульса и энергии"

3.6 Тематика курсовых проектов/курсовых работ

Курсовой проект/ работа не предусмотрены

3.7. Соответствие разделов дисциплины и формируемых в них компетенций

Запланированные результаты						здел			Оценочное средство
обучения по дисциплине	Коды					ны (`		(тип и наименование)
(в соответствии с разделом 1)	индикаторов					исп			
(в соответствии с разделом т)		1	2	3	4	5	6	7	
Знать:		•							
способы построения алгоритмов									Решение задач/Расчет полиномов, Расчет интегралов
расчета процессов в ядерной	ИД-1 _{ОПК-1}	+	+						
энергетике, теплофизике и	1174-10lik-l	'	'						
нанотехнологиях									
типовые решения систем, проводить									Решение задач/Расчет полиномов, Расчет интегралов
комплексный анализ наноразмерных	ИД-20ПК-1	+	+						
систем и устройств									
типовые решения наноразмерных									Решение задач/Расчет гармонических колебаний, Расчет
систем и устройств на основе	ИД-1 _{ОПК-2}		+	+					негармонических колебаний
компьютерных технологий									
выбирать модели теплофизического									Решение задач/Расчет гармонических колебаний, Расчет
описания процессов в	ИД-2 _{ОПК-2}		+	+					негармонических колебаний
нанотехнологиях									
набор средств информационных									Решение задач/Расчет гармонических колебаний, Расчет
технологий для поиска, хранения,	ИД-1 _{ОПК-3}			+	+				негармонических колебаний
обработки, анализа и информации									
набор компьютерных средств для									Решение задач/Расчет гармонических колебаний, Расчет
представления результатов научно-	ИД-2 _{ОПК-3}			+	+				негармонических колебаний
исследовательской деятельности в	201K-3								
отрасли									
Уметь:	T	1		ı			1		
проводить компьютерное									Решение задач/Квантовомеханический расчет,
моделирвоание эффективности	ИД-1 _{ОПК-1}				+	+			Квантовомеханический расчет "из первых принципов",
типовых нанотехнологических	T-74 TOHK-I				'	'			Расчет полупроводников, Расчет по модели переноса
устройств									электронно-дырочных пар в полупроводниках
подбирать на основе компьютерного	ИД-20ПК-1				+	+			Решение задач/Квантовомеханический расчет,

моделирования компоненты нанотехнологий							Квантовомеханический расчет "из первых принципов", Расчет полупроводников, Расчет по модели переноса электронно-дырочных пар в полупроводниках
подбирать на основе компьютерного моделирования компоненты нанотехнологий	ИД-1 _{ОПК-2}			+	+		Решение задач/Квантовомеханический расчет, Квантовомеханический расчет "из первых принципов", Расчет полупроводников, Расчет по модели переноса электронно-дырочных пар в полупроводниках
применять компьютерные технологии для решения теплофизических задач ядерной энергетики	ИД-2 _{ОПК-2}			+	+		Решение задач/Квантовомеханический расчет, Квантовомеханический расчет "из первых принципов", Расчет полупроводников, Расчет по модели переноса электронно-дырочных пар в полупроводниках
применять средства информационных технологий для поиска, хранения, обработки, анализа и информации	ИД-10ПК-3				+	+	Решение задач/Расчет по методу Монте-Карло переноса заряда, Решение по методу Монте-Карло уравнений переноса
применять компьютерные средства для представления результатов научно-исследовательской деятельности в отрасли	ИД-2 _{ОПК-3}				+	+	Решение задач/Расчет по методу Монте-Карло переноса заряда, Решение по методу Монте-Карло уравнений переноса

4. КОМПЕТЕНТНОСТНО-ОРИЕНТИРОВАННЫЕ ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ КОНТРОЛЯ ОСВОЕНИЯ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (ТЕКУЩИЙ КОНТРОЛЬ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ ПО ДИСЦИПЛИНЕ)

4.1. Текущий контроль успеваемости

1 семестр

Форма реализации: Защита задания

- 1. Квантовомеханический расчет, Квантовомеханический расчет "из первых принципов", Расчет полупроводников, Расчет по модели переноса электронно-дырочных пар в полупроводниках (Решение задач)
- 2. Расчет гармонических колебаний, Расчет негармонических колебаний (Решение задач)
- 3. Расчет по методу Монте-Карло переноса заряда, Решение по методу Монте-Карло уравнений переноса (Решение задач)
- 4. Расчет полиномов, Расчет интегралов (Решение задач)

Балльно-рейтинговая структура дисциплины является приложением А.

4.2 Промежуточная аттестация по дисциплине

Зачет с оценкой (Семестр №1)

В диплом выставляется оценка за 1 семестр.

Примечание: Оценочные материалы по дисциплине приведены в фонде оценочных материалов ОПОП.

5. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

5.1 Печатные и электронные издания:

- 1. Федоренко, Р. П. Введение в вычислительную физику : Учебное пособие для вузов по направлениям "Математика", "Физика", специальностям "Математика", "Прикладная математика", "Физика" / Р. П. Федоренко. М. : Изд-во МФТИ, 1994. 528 с. Kx-7, од-1, чзп-1, чз-1. ISBN 5-7417-0002-0 : 9100.00.;
- 2. Деревич И. В.- "Практикум по уравнениям математической физики", (2-е изд., стер.), Издательство: "Лань", Санкт-Петербург, 2018 (428 с.) https://e.lanbook.com/book/104942;
- 3. Поттер, Д. Вычислительные методы в физике : пер. с англ. / Д. Поттер. М. : Мир, 1975. 392 с..

5.2 Лицензионное и свободно распространяемое программное обеспечение:

- 1. Office / Российский пакет офисных программ;
- 2. Windows / Операционная система семейства Linux.

5.3 Интернет-ресурсы, включая профессиональные базы данных и информационносправочные системы:

- 1. ЭБС Лань https://e.lanbook.com/
- 2. ЭБС "Университетская библиотека онлайн" -

http://biblioclub.ru/index.php?page=main_ub_red

3. Научная электронная библиотека - https://elibrary.ru/

- 4. База данных Web of Science http://webofscience.com/
- 5. База данных Scopus http://www.scopus.com
- 6. Национальная электронная библиотека https://rusneb.ru/
- 7. Электронная библиотека МЭИ (ЭБ МЭИ) http://elib.mpei.ru/login.php
- 8. Портал открытых данных Российской Федерации https://data.gov.ru
- 9. База открытых данных Министерства труда и социальной защиты РФ https://rosmintrud.ru/opendata
- 10. База открытых данных профессиональных стандартов Министерства труда и социальной защиты РФ http://profstandart.rosmintrud.ru/obshchiy-informatsionnyy-blok/natsionalnyy-reestr-professionalnykh-standartov/
- 11. **База открытых данных Министерства экономического развития РФ** http://www.economy.gov.ru
- 12. База открытых данных Росфинмониторинга http://www.fedsfm.ru/opendata
- 13. Электронная открытая база данных "Polpred.com Обзор СМИ" https://www.polpred.com
- 14. Национальный портал онлайн обучения «Открытое образование» https://openedu.ru
- 15. Официальный сайт Федерального агентства по техническому регулированию и метрологии http://protect.gost.ru/
- 16. Открытая университетская информационная система «РОССИЯ» https://uisrussia.msu.ru

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Тип помещения	Номер аудитории,	Оснащение
	наименование	
Учебные аудитории для	М-409/2, Аудитория	стол преподавателя, стол, доска
проведения лекционных	каф. "НТ"	меловая, мультимедийный проектор
занятий и текущего контроля	М-422/4, Учебная	стол, стул, мультимедийный
	лаборатория	проектор
	криофизики	
	М-412, Учебная	стеллаж для хранения книг, стол,
	аудитория	стул, мультимедийный проектор,
		доска маркерная
	Ж-120, Машинный	сервер, кондиционер
	зал ИВЦ	
Учебные аудитории для	М-409/2, Аудитория	стол преподавателя, стол, доска
проведения практических	каф. "НТ"	меловая, мультимедийный проектор
занятий, КР и КП	M-411/1,	стол, стул, доска меловая,
	Компьютерный класс	мультимедийный проектор,
		компьютер персональный
	М-422/4, Учебная	стол, стул, мультимедийный
	лаборатория	проектор
	криофизики	
	М-412, Учебная	стеллаж для хранения книг, стол,
	аудитория	стул, мультимедийный проектор,
		доска маркерная
	Ж-120, Машинный	сервер, кондиционер
	зал ИВЦ	
Учебные аудитории для	М-409/2, Аудитория	стол преподавателя, стол, доска
проведения промежуточной	каф. "НТ"	меловая, мультимедийный проектор
аттестации	M-411/1,	стол, стул, доска меловая,
	Компьютерный класс	мультимедийный проектор,
1		компьютер персональный

	М-422/4, Учебная	стол, стул, мультимедийный
	лаборатория	проектор
	криофизики	
	М-412, Учебная	стеллаж для хранения книг, стол,
	аудитория	стул, мультимедийный проектор,
		доска маркерная
	Ж-120, Машинный	сервер, кондиционер
	зал ИВЦ	
Помещения для	M-411/1,	стол, стул, доска меловая,
самостоятельной работы	Компьютерный класс	мультимедийный проектор,
		компьютер персональный
Помещения для	М-423/1, Аудитория	стул, стол письменный
консультирования	каф. "НТ"	
Помещения для хранения	М-407/1, Кладовая	стеллаж для хранения инвентаря,
оборудования и учебного		стеллаж для хранения книг,
инвентаря		инвентарь специализированный

БАЛЛЬНО-РЕЙТИНГОВАЯ СТРУКТУРА ДИСЦИПЛИНЫ

Компьютерные технологии в ядерной энергетике и теплофизике

(название дисциплины)

1 семестр

Перечень контрольных мероприятий текущего контроля успеваемости по дисциплине:

- КМ-1 Расчет полиномов, Расчет интегралов (Решение задач)
- КМ-2 Расчет гармонических колебаний, Расчет негармонических колебаний (Решение задач)
- КМ-3 Квантовомеханический расчет, Квантовомеханический расчет "из первых принципов", Расчет полупроводников, Расчет по модели переноса электронно-дырочных пар в полупроводниках (Решение задач)
- КМ-4 Расчет по методу Монте-Карло переноса заряда, Решение по методу Монте-Карло уравнений переноса (Решение задач)

Вид промежуточной аттестации – Зачет с оценкой.

Номер	D	Индекс КМ:	KM-1	KM-2	KM-3	KM-4
раздела	Раздел дисциплины	Неделя КМ:	4	8	11	15
1	Вычислительная физика					
1.1	Вычислительная физика		+			
2	Компьютерное моделирование в физике					
2.1	Компьютерное моделирование в физике		+	+		
3	Уравнения в частных производных для с сред	плошных				
3.1	Уравнения в частных производных для с сред	плошных		+		
4	Математические модели динамики нанос	систем				
4.1	Математические модели динамики нанос	систем		+	+	
5	Модели кластерных наносистем					
5.1	Модели кластерных наносистем				+	
6	Математическое моделирование перенос заряда	а массы и				
6.1	Математическое моделирование перенос заряда	а массы и			+	+
7	Математическое моделирование перенос и энергии	а импульса				

7.1	Математическое моделирование переноса импульса и энергии				+
	Bec KM, %:	15	30	30	25