Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования

«Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 14.04.01 Ядерная энергетика и теплофизика

Наименование образовательной программы: Нанотехнологии и наноматериалы в энергетике

Уровень образования: высшее образование - магистратура

Форма обучения: Очная

Рабочая программа дисциплины ПРОЦЕССЫ ПЕРЕНОСА В СУЩЕСТВЕННО НЕРАВНОВЕСНЫХ СИСТЕМАХ

Блок:	Блок 1 «Дисциплины (модули)»
Часть образовательной программы:	Часть, формируемая участниками образовательных отношений
№ дисциплины по учебному плану:	Б1.Ч.07.04.02
Трудоемкость в зачетных единицах:	3 семестр - 4;
Часов (всего) по учебному плану:	144 часа
Лекции	3 семестр - 16 часов;
Практические занятия	3 семестр - 32 часа;
Лабораторные работы	не предусмотрено учебным планом
Консультации	проводится в рамках часов аудиторных занятий
Самостоятельная работа	3 семестр - 95,7 часа;
в том числе на КП/КР	не предусмотрено учебным планом
Иная контактная работа	проводится в рамках часов аудиторных занятий
включая: Контрольная работа Коллоквиум	
Промежуточная аттестация:	
Зачет с оценкой	3 семестр - 0,3 часа;

Москва 2025

ПРОГРАММУ СОСТАВИЛ:

Преподаватель

А.П. Крюков

СОГЛАСОВАНО:

Руководитель образовательной программы

П.Г. Макаров

Заведующий выпускающей кафедрой

NCC-RE-HORATE	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»								
	Сведения о владельце ЦЭП МЭИ									
	Владелец	Пузина Ю.Ю.								
» <u>МэИ</u> «	Идентификатор	Re86e9a56-Puzina-4d2acad1								

Ю.Ю. Пузина

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель освоения дисциплины: является изучение особенностей процессов переноса, характеризующихся значительной неравновесностью, при их реализации в соответствующих прикладных задачах и устройствах.

Задачи дисциплины

- ознакомление с методами описания систем, работающих в условиях сильной неравновесности процессов переноса;
- приобретение навыков принятия и обоснования конкретных технических решений при разработке низкотемпературных устройств и систем охлаждения теплонапряженного оборудования.

Формируемые у обучающегося компетенции и запланированные результаты обучения по дисциплине, соотнесенные с индикаторами достижения компетенций:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции	Запланированные результаты обучения
ПК-1 Способен анализировать и моделировать физические процессы в элементах энергетического оборудования	ИД-3 _{ПК-1} Умеет применять различные подходы к расчету процессов тепломассопереноса в зависимости от режимных параметров работы элементов энергетического оборудования	знать: - расчетно-теоретические и экспериментальные методы исследования теплогидравлических процессов в условиях значительного отклонения от состояния термодинамического равновесия и принципы их моделирования в конкретных технических системах; - способы расчета существенно неравновесных процессов переноса с целью применения их на практике для разработки энергонапряженного оборудования, машин и аппаратов высоких технологий. уметь: - применять современные методы исследования, проводить технические испытания и (или) научные эксперименты; - анализировать информацию о технологиях осуществления существенно неравновесных процессов переноса.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ВО

Дисциплина относится к основной профессиональной образовательной программе Нанотехнологии и наноматериалы в энергетике (далее – ОПОП), направления подготовки 14.04.01 Ядерная энергетика и теплофизика, уровень образования: высшее образование - магистратура.

Требования к входным знаниям и умениям:

- знать Исследование поверхности в условиях вакуума и низких температур
- знать Тепловые процессы в наноструктурах

Результаты обучения, полученные при освоении дисциплины, необходимы при выполнении выпускной квалификационной работы.

3. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1 Структура дисциплины Общая трудоемкость дисциплины составляет 4 зачетных единицы, 144 часа.

	D	В			Распр	еделе	ние труд	доемкости						
No	Разделы/темы дисциплины/формы	асод	стр				Конта	ктная раб	ота				CP	Содержание самостоятельной работы/
п/п	промежуточной	сего часов на раздел	Семестр				Консу	льтация	ИК	P		Работа в	Подготовка к	методические указания
	аттестации	Всего часов на раздел	ŭ	Лек	Лаб	Пр	КПР	ГК	иккп	ТК	ПА	семестре	аттестации /контроль	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	Постановка задач расчета испарения и конденсации	18	3	2	-	4	-	-	-	-	-	12	-	<u>Самостоятельное изучение</u> <u>теоретического материала:</u> Изучение дополнительного материала по разделу
1.1	Постановка задач расчета испарения и конденсации	18		2	-	4	-	-	-	-	-	12	-	"Постановка задач расчета испарения и конденсации" Изучение материалов литературных источников: [2], 32-41 [5], 56-64 [8], 56-64
2	Методы расчета термических сопротивлений	20.0		2.0	-	6	-	-	-	-	-	12	-	Самостоятельное изучение <u>теоретического материала:</u> Изучение дополнительного материала по разделу
2.1	Решение уравнения Больцмана во всей области, занятой газовой фазой	7		1	-	2	-	-	-	-	-	4	-	"Методы расчета термических сопротивлений" <u>Изучение материалов литературных</u> <u>источников:</u>
2.2	Уравнения Навье- Стокса в газодинамической подобласти и уравнения Больцмана в слое Кнудсена	6.5		0.5	-	2	-	-	-	-	-	4	-	[2], 5-21 [3], 40-51 [5], 176-181 [8], 176-181
2.3	Уравнения сохранения массы, импульса и энергии для конденсата	6.5		0.5	-	2	-	-	-	-	-	4	-	
3	Обзор методов	16		2	-	2	-	-	- u	-	-	12	-	Самостоятельное изучение

	решения													<i>теоретического материала:</i> Изучение
	кинетического													дополнительного материала по разделу
	уравнения													"Обзор методов решения кинетического
3.1	Обзор методов решения кинетического уравнения Больцмана применительно к задачам испарения-конденсации	16		2	-	2	-	-	-	-	-	12	-	уравнения" <u>Изучение материалов литературных</u> <u>источников:</u> [4], 11-16 [7], 13-28
4	конденсации Результаты исследования задач испарения- конденсации	26		4	-	6	1	-	-	-	-	16	-	<u>Самостоятельное изучение</u> <u>теоретического материала:</u> Изучение дополнительного материала по разделу "Результаты исследования задач испарения-
4.1	Результаты исследования задач испарения- конденсации	26		4	-	6	•	-	-	-		16	-	конденсации" <u>Изучение материалов литературных</u> <u>источников:</u> [2], 41-110 [5], 69-77 [7], 67-78 [8], 69-77
5	Решение прикладных задач: кипение сверхтекучего гелия, процессы криовакуумирования, конденсация паров металлов	46		6	-	14	-	-	-	-	-	26	-	Самостоятельное изучение теоретического материала: Изучение дополнительного материала по разделу "Решение прикладных задач: кипение сверхтекучего гелия, процессы криовакуумирования, конденсация паров металлов"
5.1	Кипение сверхтекучего гелия	18		2	-	6	-	-	-	-	-	10	-	<u>Изучение материалов литературных</u> источников:
5.2	Процессы криовакуумирования	14		2	1-1	4	-	-	-	-	-	8	-	[1], 706-730 [2], 74-82
5.3	Конденсация паров металлов	14		2	-	4	-	-	-	-	-	8	-	[3], 5-35; 57-74 [6], 59-77
	Зачет с оценкой	18.0		-	-	-	-	-	-	-	0.3	-	17.7	
	Всего за семестр	144.0		16.0	-	32	-	-	-	-	0.3	78	17.7	
	Итого за семестр	144.0		16.0	-	32		-	-	1	0.3		95.7	

Примечание: Лек – лекции; Лаб – лабораторные работы; Пр – практические занятия; КПР – аудиторные консультации по курсовым проектам/работам; ИККП – индивидуальные консультации по курсовым проектам/работам; ГК- групповые консультации по разделам дисциплины; СР – самостоятельная работа студента; ИКР – иная контактная работа; ТК – текущий контроль; ПА – промежуточная аттестация

3.2 Краткое содержание разделов

1. Постановка задач расчета испарения и конденсации

1.1. Постановка задач расчета испарения и конденсации

Термические сопротивления: внешнее (газодинамическое), межфазное, пленки конденсата. Роль каждого в зависимости от интенсивности процесса..

2. Методы расчета термических сопротивлений

- 2.1. Решение уравнения Больцмана во всей области, занятой газовой фазой Решение уравнения Больцмана во всей области, занятой газовой фазой.
- 2.2. Уравнения Навье-Стокса в газодинамической подобласти и уравнения Больцмана в слое Кнудсена

Уравнения Навье-Стокса в газодинамической подобласти и уравнения Больцмана в слое Кнудсена.

2.3. Уравнения сохранения массы, импульса и энергии для конденсата Уравнения сохранения массы, импульса и энергии для конденсата.

3. Обзор методов решения кинетического уравнения

3.1. Обзор методов решения кинетического уравнения Больцмана применительно к задачам испарения-конденсации

Линейная теория. Моментный метод решения одномерных задач. Прямое численное решение кинетического уравнения Больцмана (для разных чисел Кнудсена, многомерные задачи). Прямое статистическое моделирование. Модельные уравнения..

4. Результаты исследования задач испарения-конденсации

4.1. Результаты исследования задач испарения-конденсации

Параметричность испарения, дозвуковой и сверхзвуковой конденсации. Предельные потоки испарения-конденсации. Инженерные соотношения для расчета испарения и конденсации в дозвуковом режиме. Диаграмма предельных потоков в сверхзвуковой области.. Конденсация в присутствии неконденсируемых газов. Кривые $q=f(\Delta T)$ для конденсации-испарения во всем диапазоне изменения интенсивностей. Рекомендации по уменьшению ΔT .. Определение итогового перепада температур от газа через межфазную поверхность, пленку конденсата, стенку теплообменника (конденсатора) охлаждающему теплоносителю.. Влияние неполной конденсации на границе раздела фаз на характеристики процесса.. Модели описания: коэффициенты испарения-конденсации, система кинетических уравнений для молекул газа и фононов конденсата; расчет взаимодействий молекул газа и конденсата методами молекулярной динамики; предельные скорости и предельные потоки массы..

5. Решение прикладных задач: кипение сверхтекучего гелия, процессы криовакуумирования, конденсация паров металлов

5.1. Кипение сверхтекучего гелия

Кривая кипения сверхтекучего гелия. Пиковая и "восстановительная" тепловая нагрузка.. Расчет "восстановительной" тепловой нагрузки по линейной теории и в общем случае.. Перенос тепла через паровую пленку для нелинейных задач в одномерной и двумерной

постановке.. Перенос массы и энергии в ограниченной паровой области при наличии градиента температур на межфазной поверхности.. Расчет эволюции паровой пленки при больших тепловых нагрузках для плоского, цилиндрического и сферического нагревателей..

5.2. Процессы криовакуумирования

Роль направленности потоков при криоконденсации (десублимации).. Расчет теплопереноса в области неприменимости законов градиентного типа.. Примеры расчета течений, характеризуемых малыми числами Кнудсена, с учетом сильной неравновесности на межфазной границе..

5.3. Конденсация паров металлов

Роль процессов переноса на межфазной поверхности при определении общего термического сопротивления в системе: пар – пленка конденсата – стенка конденсатора – охлаждающий теплоноситель.. Сопоставление результатов расчета с экспериментальными данными..

3.3. Темы практических занятий

- 1. Законы сохранения в виде выражений молекулярно-кинетической теории. Расчет теплового потока для свободномолекулярного предела;
- 2. Приближенный метод определения теплопереноса через слой разреженного газа при произвольных числах Кнудсена. Примеры применения для наноразмерных систем;
- 3. Определение плотности потока массы при интенсивной конденсации с помощью приближенного соотношения, полученного на базе молекулярно-кинетической теории. Сравнение с результатами применения традиционного подхода;
- 4. Влияние коэффициентов испарения и конденсации. Способ пересчета результатов решения задачи об интенсивной конденсации;
- 5. Предельные значения коэффициентов конденсации и удельных потоков массы;
- 6. Эволюция паровых пленок при кипении гелия-II. Приближенный подход и расчет на основе уравнения Рэлея;
- 7. Особенности эволюции паровых образований на нагревателях цилиндрической и шаровой формы, погруженных в жидкости с низкой и высокой эффективностью теплопереноса;
- 8. Определение предельной плотности газа при запирании конденсации из парогазовой среды;
- 9. Расчет восстановительных нагрузок при кипении гелия-ІІ на нагревателях цилиндрической и шаровой формы;
- 10. Движение перемычек гелия-ІІ в капиллярах при наличии осевого теплового потока;
- 11. Применение уравнения Рэлея для решения задачи о схлопывании парогазового пузыря при сонолюминесценции. Приближенное описание явления формирования ударной волны внутри пузыря;
- 12. Применение методов молекулярной динамики для задач энерго-массопереноса в двухфазных системах;
- 13. Решение уравнения сохранения энергии в интегральной формулировке для задач интенсивного испарения и конденсации в рамках механики сплошных сред;
- 14. Испарение и конденсация при наличии неконденсируемых компонентов;
- 15. Применение законов сохранения в дифференциальной форме для решения задачи о конденсации чистого пара на поверхности.

3.4. Темы лабораторных работ

не предусмотрено

3.5 Консультации

Групповые консультации по разделам дисциплины (ГК)

- 1. Обсуждение материалов по кейсам раздела "Постановка задач расчета испарения и конденсации"
- 2. Обсуждение материалов по кейсам раздела "Методы расчета термических сопротивлений"
- 3. Обсуждение материалов по кейсам раздела "Обзор методов решения кинетического уравнения"
- 4. Обсуждение материалов по кейсам раздела "Результаты исследования задач испарения-конденсации"
- 5. Обсуждение материалов по кейсам раздела "Решение прикладных задач: кипение сверхтекучего гелия, процессы криовакуумирования, конденсация паров металлов"

3.6 Тематика курсовых проектов/курсовых работ

Курсовой проект/ работа не предусмотрены

3.7. Соответствие разделов дисциплины и формируемых в них компетенций

Запланированные результаты обучения по дисциплине (в соответствии с разделом 1)	Коды индикаторов	Номер раздела дисциплины (в соответствии с п.3.1)					Оценочное средство (тип и наименование)
		1	1 2 3				
Знать:							
способы расчета существенно неравновесных процессов							Контрольная работа/Расчет термических
переноса с целью применения их на практике для	ИД-3 _{ПК-1}						сопротивлений при испарении и
разработки энергонапряженного оборудования, машин и	г 1Д - ЗПК-1		+			+	конденсации
аппаратов высоких технологий							
расчетно-теоретические и экспериментальные методы							Коллоквиум/Применение кинетического
исследования теплогидравлических процессов в условиях							уравнения Больцмана для решения задач
значительного отклонения от состояния	ИД-3 _{ПК-1}	+		+			тепло-массопереноса на границах раздела
термодинамического равновесия и принципы их							фаз
моделирования в конкретных технических системах							
Уметь:							
анализировать информацию о технологиях осуществления							Коллоквиум/Методы и результаты
существенно неравновесных процессов переноса	ИД-3 _{ПК-1}				+	+	исследования задач тепло- массопереноса
							на межфазных поверхностях
применять современные методы исследования, проводить							Контрольная работа/Определение
технические испытания и (или) научные эксперименты	ИЛ З-						тепловых нагрузок и скоростей движения
	ИД-3 _{ПК-1}				+	+	межфазных поверхностей при кипении
							сверхтекучего гелия

4. КОМПЕТЕНТНОСТНО-ОРИЕНТИРОВАННЫЕ ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ КОНТРОЛЯ ОСВОЕНИЯ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (ТЕКУЩИЙ КОНТРОЛЬ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ ПО ДИСЦИПЛИНЕ)

4.1. Текущий контроль успеваемости

3 семестр

Форма реализации: Письменная работа

- 1. Определение тепловых нагрузок и скоростей движения межфазных поверхностей при кипении сверхтекучего гелия (Контрольная работа)
- 2. Расчет термических сопротивлений при испарении и конденсации (Контрольная работа)

Форма реализации: Устная форма

- 1. Методы и результаты исследования задач тепло- массопереноса на межфазных поверхностях (Коллоквиум)
- 2. Применение кинетического уравнения Больцмана для решения задач тепломассопереноса на границах раздела фаз (Коллоквиум)

Балльно-рейтинговая структура дисциплины является приложением А.

4.2 Промежуточная аттестация по дисциплине

Зачет с оценкой (Семестр №3)

В диплом выставляется оценка за 3 семестр.

Примечание: Оценочные материалы по дисциплине приведены в фонде оценочных материалов ОПОП.

5. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

5.1 Печатные и электронные издания:

- 1. Ландау, Л. Д. Теоретическая физика. В 10 т. Т.6. Гидродинамика : учебное пособие для физических специальностей университетов / Л. Д. Ландау, Е. М. Лифшиц. 4-е изд., стер. М. : Наука, 1988. 736 с. ISBN 5-02-013850-9.;
- 2. Крюков, А. П. Процессы переноса в существенно неравновесных системах : учебное пособие по курсу "Процессы переноса в существенно неравновесных системах" по направлению "Ядерная энергетика и теплофизика" / А. П. Крюков, Нац. исслед. ун-т "МЭИ". М. : Изд-во МЭИ, 2013. 124 с. ISBN 978-5-9902974-9-4. http://elib.mpei.ru/elib/view.php?id=5690;
- 3. Крюков, А. П. Формы межфазных поверхностей при переносе массы, импульса, энергии: учебное пособие по курсу "Процессы переноса в существенно неравновесных системах" по направлению "Ядерная энергетика и теплофизика" и слушателей ФПКПС / А. П. Крюков, Ю. Ю. Пузина, Нац. исслед. ун-т "МЭИ". М.: Изд-во МЭИ, 2015. 88 с. ISBN 978-5-7046-1638-2.

http://elib.mpei.ru/elib/view.php?id=7261;

4. Королев, П. В. Методы описания конденсированных систем : учебное пособие по курсу "Физика конденсированных систем" по направлению "Нанотехнологии", и слушателей ФПКПиС МЭИ (ТУ) / П. В. Королев, А. П. Крюков, Моск. энерг. ин-т (МЭИ ТУ). – М. :

Издательский дом МЭИ, 2010. – 64 с. – ISBN 978-5-383-00428-9. http://elib.mpei.ru/elib/view.php?id=1454;

- 5. Лабунцов, Д. А. Механика двухфазных систем : учебное пособие для вузов по направлению "Техническая физика" / Д. А. Лабунцов, В. В. Ягов. 2-е изд., перераб. и доп. М. : Издательский дом МЭИ, 2007. 384 с. ISBN 978-5-383-00036-6. http://elib.mpei.ru/elib/view.php?id=5286;
- 6. Крюков, А. П. Элементы гидродинамики и теплопереноса в гелии II: Учебное пособие по курсу "Криофизика" по направлению "Техническая физика" / А. П. Крюков, Моск. энерг. инт (МЭИ ТУ). М.: Изд-во МЭИ, 2004. 80 с. ISBN 5-7046-1137-0.;
- 7. Численное решение кинетического уравнения Больцмана в инженерной практике : учебное пособие по курсам "Криофизика" и "Процессы переноса в существенно неравновесных условиях" по направлению "Техническая физика" / А. П. Крюков, В. Ю. Левашов, И. Н. Шишкова, и др., Моск. энерг. ин-т (МЭИ ТУ). М. : Изд-во МЭИ, 2005. 80 с. ISBN 5-7046-1316-0.;
- 8. Лабунцов Д.А., Ягов В.В. "Механика двухфазных систем", Издательство: "Издательский дом МЭИ", Москва, 2016 (384 с.)

http://e.lanbook.com/books/element.php?pl1_id=72240.

5.2 Лицензионное и свободно распространяемое программное обеспечение:

- 1. Office / Российский пакет офисных программ;
- 2. Windows / Операционная система семейства Linux.

5.3 Интернет-ресурсы, включая профессиональные базы данных и информационносправочные системы:

- 1. ЭБС Лань https://e.lanbook.com/
- 2. ЭБС "Университетская библиотека онлайн" -

http://biblioclub.ru/index.php?page=main_ub_red

- 3. Научная электронная библиотека https://elibrary.ru/
- 4. База данных Web of Science http://webofscience.com/
- 5. База данных Scopus http://www.scopus.com
- 6. Национальная электронная библиотека https://rusneb.ru/
- 7. Электронная библиотека МЭИ (ЭБ МЭИ) http://elib.mpei.ru/login.php
- 8. Портал открытых данных Российской Федерации https://data.gov.ru
- 9. База открытых данных Министерства труда и социальной защиты РФ https://rosmintrud.ru/opendata
- 10. **База открытых данных профессиональных стандартов Министерства труда и социальной защиты РФ** http://profstandart.rosmintrud.ru/obshchiy-informatsionnyy-blok/natsionalnyy-reestr-professionalnykh-standartov/
- 11. База открытых данных Министерства экономического развития $P\Phi$ http://www.economy.gov.ru
- 12. База открытых данных Росфинмониторинга http://www.fedsfm.ru/opendata
- 13. Электронная открытая база данных "Polpred.com Обзор СМИ" https://www.polpred.com
- 14. Национальный портал онлайн обучения «Открытое образование» https://openedu.ru
- 15. Официальный сайт Федерального агентства по техническому регулированию и метрологии http://protect.gost.ru/
- 16. Открытая университетская информационная система «РОССИЯ» https://uisrussia.msu.ru

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

	IBCHOB OBBCHB IB	7110 7111111111111111111111111111111111
Тип помещения	Номер аудитории,	Оснащение

наименование	
М-409/2, Аудитория	стол преподавателя, стол, доска
каф. "НТ"	меловая, мультимедийный проектор
М-422/4, Учебная	стол, стул, мультимедийный
	проектор
М-412, Учебная	стеллаж для хранения книг, стол,
· ·	стул, мультимедийный проектор,
• • •	доска маркерная
Ж-120, Машинный зал ИВЦ	сервер, кондиционер
,	стол преподавателя, стол, доска
	меловая, мультимедийный проектор
	стол, стул, мультимедийный
	проектор
	inposition p
•	стеллаж для хранения книг, стол,
· ·	стул, мультимедийный проектор,
аудигория	доска маркерная
Ж-120. Машинный	сервер, кондиционер
*	osposp, nenginansp
	стол преподавателя, стол, доска
• •	меловая, мультимедийный проектор
-	стол, стул, мультимедийный
	проектор
	inposition p
	стеллаж для хранения книг, стол,
*	стул, мультимедийный проектор,
7AF	доска маркерная
Ж-120, Машинный	сервер, кондиционер
-	
,	стол, стул, доска меловая,
′	мультимедийный проектор,
	компьютер персональный
M-423/1, Аулитория	стул, стол письменный
	,
•	стеллаж для хранения инвентаря,
,	-
	стеллаж для хранения книг,
	М-409/2, Аудитория каф. "НТ" М-422/4, Учебная лаборатория криофизики М-412, Учебная аудитория

БАЛЛЬНО-РЕЙТИНГОВАЯ СТРУКТУРА ДИСЦИПЛИНЫ

Процессы переноса в существенно неравновесных системах

(название дисциплины)

3 семестр

Перечень контрольных мероприятий текущего контроля успеваемости по дисциплине:

- КМ-1 Расчет термических сопротивлений при испарении и конденсации (Контрольная работа)
- КМ-2 Применение кинетического уравнения Больцмана для решения задач тепло-массопереноса на границах раздела фаз (Коллоквиум)
- КМ-3 Методы и результаты исследования задач тепло- массопереноса на межфазных поверхностях (Коллоквиум)
- КМ-4 Определение тепловых нагрузок и скоростей движения межфазных поверхностей при кипении сверхтекучего гелия (Контрольная работа)

Вид промежуточной аттестации – Зачет с оценкой.

Номер		Индекс КМ:	КМ- 1	КМ- 2	КМ- 3	КМ- 4
раздела		Неделя КМ:	4	8	12	15
1	Постановка задач расчета испарения и конденс	ации				
1.1	Постановка задач расчета испарения и конденс	ации		+		
2	Методы расчета термических сопротивлений					
2.1	Решение уравнения Больцмана во всей области газовой фазой	, занятой	+			
2.2	Уравнения Навье-Стокса в газодинамической п и уравнения Больцмана в слое Кнудсена	подобласти	+			
2.3	Уравнения сохранения массы, импульса и энер конденсата	гии для	+			
3	Обзор методов решения кинетического уравнен	ния				
3.1	Обзор методов решения кинетического уравнен Больцмана применительно к задачам испарения конденсации			+		
4	Результаты исследования задач испарения-конд	денсации				
4.1	Результаты исследования задач испарения-конд	денсации			+	+
5	Решение прикладных задач: кипение сверхтеку гелия, процессы криовакуумирования, конденс металлов					
5.1	Кипение сверхтекучего гелия		+		+	+

5.2	Процессы криовакуумирования	+		+	+
5.3	Конденсация паров металлов	+		+	+
	Bec KM, %:	25	20	35	20