Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 14.04.01 Ядерная энергетика и теплофизика Наименование образовательной программы: Теплофизика и молекулярная физика

Уровень образования: высшее образование - магистратура

Форма обучения: Очная

Оценочные материалы по дисциплине Расчет процессов массопереноса

> Москва 2023

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Подписано эли

Владелец

Идентифика

Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»				
Сведения о владельце ЦЭП МЭИ				
Владелец	Бобров В.Б.			
Идентификатор	R84cde94f-BobrovVB-6549f943			

В.Б. Бобров

Разработчик

СОГЛАСОВАНО:

Руководитель образовательной программы

NGO NGO	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»			
100 100 100 100 100 100 100 100 100 100	Сведения о владельце ЦЭП МЭИ			
	Владелец	Яньков Г.Г.		
» <u>МэИ</u> »	Идентификатор	Rbb1f0c84-YankovGG-11a2e4dc		

Г.Г. Яньков

Заведующий выпускающей кафедрой

NO NE	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»			
2 10 10 10 10 10 10 10 10 10 10 10 10 10	Сведения о владельце ЦЭП МЭИ				
	Владелец	Герасимов Д.Н.			
» <u>МЭИ</u> «	Идентификатор F	ka5495398-GerasimovDN-6b58615			

Д.Н. Герасимов

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-1 Способен анализировать и моделировать физические процессы, используемые в атомной энергетике
 - ИД-1 Имеет навыки математического описания и моделирования процессов в рабочих телах и элементах энергетических установок

и включает:

для текущего контроля успеваемости:

Форма реализации: Защита задания

1. Расчет элементов теплообменного оборудования с учетом процессов переноса массы (Перекрестный опрос)

Форма реализации: Письменная работа

- 1. Задачи конвективного тепло- и массообмена (Контрольная работа)
- 2. Одномерные задачи диффузии (Контрольная работа)
- 3. Основные понятия и закономерности процесса молекулярной диффузии в бинарных и многокомпонентных смесях (Контрольная работа)

БРС дисциплины

2 семестр

	Веса контрольных мероприятий, %				
Роздан диаминици	Индекс	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	1	2	3	4
	Срок КМ:	3	6	9	12
Основные понятия и закономерности процесса моле	екулярной				
диффузии в бинарных и многокомпонентных смеся	X				
Диффузия и причины ее возникновения		+	+		
Концентрация смеси		+	+		
Скорость диффузии		+	+		
Массовые и мольные потоки		+	+		
Закон Фика для бинарной смеси		+	+		
Эквимолярная и эквимассовая противодиффузия		+	+		
Свойства смеси		+	+		

Аналогия процессов молекулярного переноса массы, импульса и энергии	+	+		
Расчет диффузии в многокомпонентных газовых смесях	+	+		
Термо- и бародиффузия в бинарной смеси	+	+		
Одномерные задачи диффузии				
Диффузия через неподвижный слой газовой смеси	+	+		
Каталитический реактор	+	+		
Диффузия сопровождающаяся гомогенной химической реакцией	+	+		
Одновременный перенос тепла и массы через слой газовой смеси	+	+		
Способы измерения влажности	+	+		
Нестационарное испарение	+	+		
Задачи конвективного тепло- и массообмена				
Уравнение конвективной диффузии				+
Уравнение сохранения импульса				+
Уравнения сохранения энергии				+
Аналогия процессов теплообмена и массообмена				+
Постановка и автомодельное решение задачи о сопротивлении трения, ТО и МО при продольном обтекании плоской пластины (ламинарное течение)				+
Расчет сопротивления трения, ТО и МО с учетом влияния поперечного потока массы				+
Расчет элементов теплообменного оборудования с учетом процессов переноса массы				
Расчет конденсатора методом Кольборна и Хоугена			+	
Bec KM:	20	30	30	20

\$Общая часть/Для промежуточной аттестации\$

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции		результаты обучения по	
		дисциплине	
ПК-1	ИД-1 _{ПК-1} Имеет навыки	Знать:	Основные понятия и закономерности процесса молекулярной
	математического описания	физические механизмы	диффузии в бинарных и многокомпонентных смесях (Контрольная
	и моделирования	переноса тепла и массы и	работа)
	процессов в рабочих телах	методы расчета свойств	Одномерные задачи диффузии (Контрольная работа)
	и элементах	смеси;	Задачи конвективного тепло- и массообмена (Контрольная работа)
	энергетических установок	закономерности процессов	Расчет элементов теплообменного оборудования с учетом процессов
		и методы расчета тепло- и	переноса массы (Перекрестный опрос)
		массообмена при фазовых	
		превращениях.	
		Уметь:	
		составлять математическое	
		описание процессов тепло-	
		и массообмена	
		применительно к режимам	
		работы элементов	
		энергетических установок;	
		рассчитывать тепло- и	
		массообменное	
		оборудование	
		энергетических установок.	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Основные понятия и закономерности процесса молекулярной диффузии в бинарных и многокомпонентных смесях

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Продолжительность контроля составляет 1 час 30 минут. Работы выполняются

индивидуально по вариантам заданий

Краткое содержание задания:

Решение двух задач

Контрольные вопросы/задания:

топтропине вопросы, задании.	
Знать: закономерности	1.За какое время испарится лужа с заданными
процессов и методы расчета	параметрами
тепло- и массообмена при	
фазовых превращениях.	
Знать: физические механизмы	1.Определить молярную массу смеси заданного
переноса тепла и массы и	состава
методы расчета свойств смеси;	2.Определить состав (доли) воздуха с заданной
	относительной влажностью
	3. Рассчитать коэффициент диффузии газа A в газе B
	при заданных параметрах

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-2. Одномерные задачи диффузии

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 30

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Продолжительность контроля составляет 1 час 30 минут. Работы выполняются индивидуально по вариантам заданий

Краткое содержание задания:

Решение двух задач

Контрольные вопросы/задания:

топтроприе вопросы, задании.	
Знать: закономерности	1. Пробирка, нижняя часть которой заполнена водой,
процессов и методы расчета	омывается снаружи потоком сухого воздуха.
тепло- и массообмена при	Расстояние от поверхности воды до верхнего края
фазовых превращениях.	пробирки L. Найти:
	а) расход воды (в массовых единицах);
	б) относительную влажность внутри пробирки (у =
	L/2)
Знать: физические механизмы	1.Рассчитать число Шмидта для смеси с заданными
переноса тепла и массы и	параметрами
методы расчета свойств смеси;	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оиенка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-3. Расчет элементов теплообменного оборудования с учетом процессов переноса массы

Формы реализации: Защита задания

Тип контрольного мероприятия: Перекрестный опрос

Вес контрольного мероприятия в БРС: 30

Процедура проведения контрольного мероприятия: Защита расчетного задания "расчет конденсатора методом Кольборна и Хоугена" в виде обсуждения результата расчета с преподавателем.

Краткое содержание задания:

Обсуждение результата расчета

Контрольные вопросы/задания:

Уметь: рассчитывать тепло- и массообменное оборудование энергетических установок.

1.Пар конденсируется из насыщенной паровоздушной смеси, движущейся сверху вниз в вертикальной круглой трубе, наружная поверхность которой охлаждается водой.

Труба диаметром 12×1 мм изготовлена из стали с теплопроводностью $15 \, \mathrm{Br/(m \cdot K)}$.

На наружной поверхности трубы имеются отложения, что создает дополнительное термическое сопротивление величиной $8\cdot10^{-4}$ м²К/Вт.

Коэффициент теплоотдачи со стороны охлаждающей воды можно принять постоянным и равным 5 кВт/($м^2$ K).

Термическое сопротивление пленки конденсата принять постоянным по длине и равным 10^{-4} м²К/Вт. Давление смеси можно считать не изменяющимся по длине трубы.

Определить длину трубы, необходимую для того, чтобы температура смеси на выходе стала равной t out.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-4. Задачи конвективного тепло- и массообмена

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Продолжительность контроля составляет 1 час 30 минут. Работы выполняются индивидуально по вариантам заданий

Краткое содержание задания:

Решение задачи

Контрольные вопросы/задания:

Уметь: составлять	1.На вертикальной пластине длиной	1м и шириной
-------------------	-----------------------------------	--------------

математическое описание процессов тепло- и массообмена применительно к режимам работы элементов энергетических установок;

0,5м конденсируется водяной пар из насыщенной паровоздушной смеси, которая движется вдоль пластины со скоростью 1м/с. Пар не оказывает динамического воздействия на пленку конденсата. Найти расход пара, конденсирующегося на пластине, тепловой поток, проходящий через пластину и силу трения на ее поверхности.

При расчете коэффициентов сопротивления трения, теплоотдачи и массоотдачи можно принять, что свойства смеси вдали от пластины равны свойствам чистого водяного пара в состоянии насыщения при заданном давлении. Расчет провести с учетом влияния поперечного потока массы на коэффициенты сопротивления трения, теплоотдачи и массоотдачи. Давление смеси P;

Мольная доля воздуха вдали от пластины составляет $x\infty$;

Температура поверхности пленки конденсата постоянна по высоте пластины и равна t_0 .

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

2 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

Билет № 1

- 1. Закон Фика для бинарной смеси, эквимолярная и эквимассовая противодиффузия
- 2. Расчет конденсатора парогазовой смеси по методу Кольборна и Хоугена
- 3. В психрометре, помещенном в комнате, сухой термометр показывает 20 °C, а «мокрый» 15 °C. Давление $0.101~\rm M\Pi a$.

Определить расчетным путем относительную влажность воздуха, сравнить ответ со значением, определенным по таблице

Процедура проведения

Студент получает билет, с тремя вопросами - два теоретических и одна задача. Дается 1 час 30 минут на подготовку - запись ответов на теоретические вопросы и решение задачи. Студент устно сдает билет, отвечая на вопросы экзаменатора

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисииплины

1. Компетенция/Индикатор: ИД-1_{ПК-1} Имеет навыки математического описания и моделирования процессов в рабочих телах и элементах энергетических установок

Вопросы, задания

- 1
- Понятие молекулярной диффузии, причины ее возникновения
 - 2
- Концентрация смеси, скорость диффузии, диффузионные потоки
 - 3.
- Закон Фика
 - 4.
- Эквимолярная и эквимассовая противодиффузия
 - 5.
- Свойства смеси, коэффициент диффузии, теплоемкость, вязкость и коэффициент теплопроводности
 - 6.
- Законы переноса тепла и импульса, аналогичные закону Фика
 - 7.
- Расчет диффузии в многокомпонентной газовой смеси, для идеальных газовых смесей, с помощью уравнения Стефана-Максвелла, с помощью эффективного коэффициента диффузии
 - 8.
- Термо- и бародиффузия в бинарной смеси

- 9.
- Диффузия через неподвижный слой газовой смеси
 - 10.
- Задача о каталитическом реакторе
 - 11.
- Задача о диффузии, сопровождающейся гомогенной химической реакцией
 - 12.
- Перенос тепла в смеси, пленочная модель
 - 13.
- Расчет теплового потока при конденсации пара из смеси
 - 14
- Расчет теплового потока при испарении в смесь
 - 15.
- Адиабатное испарение
 - 16.
- Способы измерения влажности, психрометр Августа
 - 17.
- Расчет конденсатора методом Кольборна и Хоугена
 - 18.
- Уравнения конвективной диффузии, сохранения импульса и энергии
 - 19.
- Аналогия процессов тепло- и массообмена при умеренной интенсивности массообмена
- Аналогия процессов тепло- и массообмена при высокой интенсивности массообмена
 - 21.
- Постановка и автомодельное решение задачи о сопротивлении трения, теплообмене и массообмене при продольном обтекании плоской пластины
 - 22.
- Расчет сопротивления трения, теплообмена и массообмена с учетом влияния поперечного потока массы
 - 23. Решение задачи о нестационарном испарении
 - 24.Задача (для вопроса 3)

В психрометре, помещенном в комнате, сухой термометр показывает t_0 °C, а «мокрый» $t \infty$ °C. Давление 0.101 МПа.

Определить расчетным путем относительную влажность воздуха, сравнить ответ со значением, определенным по таблице

25.Задача (для вопроса 3)

Пробирка, нижняя часть которой заполнена водой, омывается снаружи потоком воздуха. Температура воздуха t °C, давление 0.101 МПа, относительная влажность \square , внутренний диаметр пробирки D, расстояние от поверхности воды до верхнего края пробирки L. Определить поток массы водяного пара

26.Задача (для вопроса 3)

Пористая влажная пластина имеет температуру t_0 °C и обдувается продольным потоком сухого воздуха, движущимся со скоростью W м/с и температурой $t\infty$ °C. Давление 0.101 МПа.

Определить коэффициент теплоотдачи на расстоянии L м от передней кромки пластины с учетом влияния поперечного потока массы.

Либо:

коэффициент массоотдачи коэффициент сопротивления плотность теплового потока

Материалы для проверки остаточных знаний

- 1. Безразмерное число, показывающее соотношение интенсивностей между молекулярным переносом импульса и молекулярным переносом вещества Ответы:
- a) Pr
- б) *Sc*
- в) *Sh*
- **г**) *Nu*

Верный ответ: б

2.Для двухкомпонентной смеси (где A - пар, B - газ, а Ps - давление насыщения) относительная влажность ϕ определяется через давления как

Ответы:

- a) P_A / P_S
- б) P_B / P_S
- B) $(P_A + P_B) / P_S$
- Γ) Ps / P_A

Верный ответ: а

3.Молярная масса смеси можно вычислить через мольные доли x_i и молярные массы компонентов M_i как

Ответы:

- a) $\sum x_i \cdot M_i$
- 6) $1 / (\Sigma x_i / M_i)$
- B) $(\Sigma M_i)/(\Sigma x_i)$
- Γ) Σ (M_i / x_i)

Верный ответ: а

- 4.Закон Фика в **массовых** единицах в **неподвижной** системе координат выглядит как Ответы:
- a) $-\rho \cdot D_{AB} \cdot \nabla \omega_A$
- 6) $-c \cdot D_{AB} \cdot \nabla \omega_A$
- B) $x_A \cdot (N_A + N_B) c \cdot D_{AB} \cdot \nabla x_A$
- Γ) $\omega_A \cdot (\mathbf{n}_A + \mathbf{n}_B) \rho \cdot D_{AB} \cdot \nabla \omega_A$

Верный ответ: г

5.С помощью коэффициента массоотдачи β плотность потока массы на поверхности испаряющейся жидкости (с парами A) в смесь определяется как

Ответы:

- a) $\rho \cdot \beta \cdot (x_{A0} x_{A\infty})$
- δ) $\rho \cdot \beta \cdot (\omega_{A0} \omega_{A\infty})$
- B) $\rho \cdot \beta \cdot (\omega_{A0} \omega_{A\infty}) / (1 \omega_{A0})$
- Γ) $\rho \cdot \beta \cdot (\omega_{A0} \omega_{A\infty}) / (1 x_{A0})$

Верный ответ: в

6.При испарении параметр проницаемости

Ответы:

- а) положительный
- б) отрицательный
- в) может быть как положительным, так и отрицательным

Верный ответ: а

7. При учете поперечного потока за счет конденсации коэффициент теплоотдачи α соотносится с коэффициентом без учета поперечного потока α_{θ} :

Ответы

- a) $\alpha > \alpha_0$
- δ) $\alpha < \alpha_0$
- B) $\alpha = \alpha_0$

Верный ответ: а

8. Свойство взаимности означает, что

Ответы:

- a) $D_{AB} = D_{BA}$
- $6) j_A + j_B = 0$
- B) $D_{AB} = -D_{BA}$
- Γ) $J*_A + J*_B = 0$

Верный ответ: а

9. Формула Стефана (для диффузии через неподвижный слой газовой смеси) получена при следующих допущениях:

Ответы:

- a) c = const
- δ) $D_{AB} = const$
- B) $x_A \rightarrow 0$
- г) а) и б)
- д) а), б) и в)

Верный ответ: г

10. При отрицательном параметре проницаемости поправка Аккермана Ответы:

- а) больше единицы
- б) меньше единицы
- в) может быть как больше, так и меньше единицы

Верный ответ: а

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

Оценка: 2

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

ІІІ. Правила выставления итоговой оценки по курсу

Оценка выставляется в соответствии с положением о балльно-рейтинговой системе для студентов $\Phi\Gamma$ БОУ ВО "НИУ "МЭИ"