Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 14.04.01 Ядерная энергетика и теплофизика Наименование образовательной программы: Физика и техника низких температур

Уровень образования: высшее образование - магистратура

Форма обучения: Очная

Оценочные материалы по дисциплине Процессы переноса в существенно неравновесных системах

Москва 2025

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

В.Ю. Левашов

СОГЛАСОВАНО:

Руководитель образовательной программы

MOM S	Подписано электро	нной подписью ФГБОУ ВО «НИУ «МЭИ»	
	Сведения о владельце ЦЭП МЭИ		
	Владелец	Ястребов А.К.	
	Идентификатор	R0e5b2163-YastrebovAK-2523fea	

А.К. Ястребов

Заведующий выпускающей кафедрой

NCW MIN	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»	
	Сведения о владельце ЦЭП МЭИ		
	Владелец	Пузина Ю.Ю.	
	Идентификатор	Re86e9a56-Puzina-4d2acad1	

Ю.Ю. Пузина

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-1 Способен анализировать и моделировать физические процессы в элементах энергетического оборудования
 - ИД-3 Умеет применять различные подходы к расчету процессов тепломассопереноса в зависимости от режимных параметров работы элементов энергетического оборудования

и включает:

для текущего контроля успеваемости:

Форма реализации: Письменная работа

- 1. Определение тепловых нагрузок и скоростей движения межфазных поверхностей при кипении сверхтекучего гелия (Контрольная работа)
- 2. Расчет термических сопротивлений при испарении и конденсации (Контрольная работа)

Форма реализации: Устная форма

- 1. Методы определения форм межфазных поверхностей (Коллоквиум)
- 2. Применение кинетического уравнения Больцмана для решения задач тепломассопереноса на границах раздела фаз (Коллоквиум)

БРС дисциплины

2 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости подисциплине:

- КМ-1 Применение кинетического уравнения Больцмана для решения задач тепло-массопереноса на границах раздела фаз (Коллоквиум)
- КМ-2 Расчет термических сопротивлений при испарении и конденсации (Контрольная работа)
- КМ-3 Определение тепловых нагрузок и скоростей движения межфазных поверхностей при кипении сверхтекучего гелия (Контрольная работа)
- КМ-4 Методы определения форм межфазных поверхностей (Коллоквиум)

Вид промежуточной аттестации – Экзамен.

	Веса контрольных мероприятий, %				
Роздол жизуулганууу	Индекс	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	1	2	3	4
	Срок КМ:	6	8	12	16

Tr.	I	I	1	
Постановка задач расчета испарения и конденсации				
однокомпонентной среды и парогазовых смесей				
Постановка задач расчета испарения и конденсации		+		
однокомпонентной среды и парогазовых смесей		'		
Методы расчета термических сопротивлений, определенных в				
п.1				
Методы расчета термических сопротивлений, определенных в				
п.1		+		
Обзор методов решения кинетического уравнения Больцмана				
применительно к задачам испарения-конденсации				
Обзор методов решения кинетического уравнения Больцмана				
применительно к задачам испарения-конденсации		+		
•				
Результаты исследования задач испарения-конденсации				
Результаты исследования задач испарения-конденсации			+	
Решение прикладных задач				
Кипение сверхтекучего гелия			+	
1 7				
Процессы криовакуумирования	+			
Конденсация паров металлов	+			
Определение форм межфазных поверхностей при переноса				
массы, импульса, энергии.				+
Соможномическомическом				,
Сонолюминесценция				+
Bec KM:	25	20	35	20

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	_	результаты обучения по	
		дисциплине	
ПК-1	ИД-3 _{ПК-1} Умеет применять	Знать:	КМ-1 Применение кинетического уравнения Больцмана для решения
	различные подходы к	расчетно-теоретические и	задач тепло-массопереноса на границах раздела фаз (Коллоквиум)
	расчету процессов	экспериментальные	КМ-2 Расчет термических сопротивлений при испарении и
	тепломассопереноса в	методы исследования	конденсации (Контрольная работа)
	зависимости от режимных	теплогидравлических	КМ-3 Определение тепловых нагрузок и скоростей движения
	параметров работы	процессов в условиях	межфазных поверхностей при кипении сверхтекучего гелия
	элементов	значительного отклонения	(Контрольная работа)
	энергетического	от состояния	КМ-4 Методы определения форм межфазных поверхностей
	оборудования	термодинамического	(Коллоквиум)
		равновесия и принципы их	
		моделирования в	
		конкретных технических	
		системах	
		способы расчета	
		существенно	
		неравновесных процессов	
		переноса с целью	
		применения их на	
		практике для разработки	
		энергонапряженного	
		оборудования, машин и	
		аппаратов высоких	
		технологий	
		Уметь:	
		анализировать	

информацию о	
технологиях	
осуществления	
существенно	
неравновесных процессов	
переноса	
применять современные	
методы исследования,	
проводить технические	
испытания и (или) научные	
эксперименты;	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Применение кинетического уравнения Больцмана для решения задач тепло-массопереноса на границах раздела фаз

Формы реализации: Устная форма

Тип контрольного мероприятия: Коллоквиум **Вес контрольного мероприятия в БРС:** 25

Процедура проведения контрольного мероприятия: Студенту выдается задание, дается

время на решение, затем производится опрос.

Краткое содержание задания:

Привести расчетно-теоретические и экспериментальные методы исследования теплогидравлических процессов в условиях значительного отклонения от состояния термодинамического равновесия и принципы их моделирования в конкретных технических системах. Описать наиболее часто используемые методы решения кинетического уравнения Больцмана.

Контрольные вопросы/задания:

топтрольные вопросы, задания.	
Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
Знать: способы расчета существенно	1.Термические сопротивления: внешнее
неравновесных процессов переноса с	(газодинамическое), межфазное, пленки
целью применения их на практике для	конденсата. Роль каждого в зависимости от
разработки энергонапряженного	интенсивности процесса.
оборудования, машин и аппаратов	2.Обзор методов решения кинетического
высоких технологий	уравнения Больцмана применительно к задачам
	испарения-конденсации. Линейная теория.
	Моментный метод решения одномерных задач.
	Прямое численное решение кинетического
	уравнения Больцмана (для разных чисел
	Кнудсена, многомерные задачи). Прямое
	статистическое моделирование. Модельные
	уравнения.

Описание шкалы оценивания:

Оиенка: «зачтено»

Описание характеристики выполнения знания: Задание выполнено, даны ответы на доп. впоросы.

Оценка: «не зачтено»

Описание характеристики выполнения знания: Задание не выполнено

КМ-2. Расчет термических сопротивлений при испарении и конденсации

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Слепой выбор билета с номером

варианта контрольной работы, время на решение.

Краткое содержание задания:

На вертикальной медной стенке толщиной δ =1мм и высотой H = 0,1м конденсируется газообразный кислород при атмосферном давлении. С другой стороны эта стенка охлаждается потоком жидкого азота, находящимся в состоянии насыщения при атмосферном давлении и движущемся вдоль поверхности стенки со скоростью 1м/с. Чему равна температура стенки?

Контрольные вопросы/задания:

Контрольные вопросы/задания:				
Запланированные результаты	Вопросы/задания для проверки			
обучения по дисциплине				
Уметь: применять современные	1.Решение уравнения сохранения энергии в			
методы исследования,	интегральной формулировке для задач интенсивного			
проводить технические	испарения и конденсации в рамках механики			
испытания и (или) научные	сплошных сред.			
эксперименты;	2.Применение законов сохранения в			
	дифференциальной форме для решения задачи о			
	конденсации чистого пара на поверхности.			
	3.Законы сохранения в виде выражений молекулярно-			
	кинетической теории. Расчет теплового потока для			
	свободномолекулярного предела.			
	4.Приближенный метод определения теплопереноса			
	через слой разреженного газа при произвольных			
	числах Кнудсена. Примеры применения для			
	наноразмерных систем			
	5.Определение плотности потока массы при			
	интенсивной конденсации с помощью приближенного			
	соотношения, полученного на базе молекулярно-			
	кинетической теории. Сравнение с результатами			
	применения традиционного подхода			
	6.Влияние коэффициентов испарения и конденсации.			
	Способ пересчета результатов решения задачи об			
	интенсивной конденсации			
	7.Предельные значения коэффициентов конденсации			
	и удельных потоков массы			
	8.Применение методов молекулярной динамики для			
	задач энерго-массопереноса в двухфазных системах			
	9.Испарение и конденсация при наличии			
	неконденсируемых компонентов			
	10.Определение предельной плотности газа при			
	запирании конденсации из парогазовой среды			

Описание шкалы оценивания:

Оценка: «зачтено»

Описание характеристики выполнения знания: Все задачи решены.

Оценка: «не зачтено»

Описание характеристики выполнения знания: Задачи не решены

KM-3. Определение тепловых нагрузок и скоростей движения межфазных поверхностей при кипении сверхтекучего гелия

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 35

Процедура проведения контрольного мероприятия: Слепой выбор билета с номером варианта контрольной работы, время на решение.

Краткое содержание задания:

В капилляре находится объем сверхтекучего гелия, длина которого l составляет 10,4 см. Температура гелия равна 1,7 K. При подаче к одной из межфазных поверхностей тепловой нагрузки 60 Bm/м2 перемычка гелия II приходит в движение κ источнику теплоты. Определите наибольший диаметр, при котором это возможно. Укажите направление движения перемычки и найдите ее скорость при вдвое большем диаметре.

Контрольные вопросы/задания:

контрольные воп	росы/задания.	
Запланированные результаты		Вопросы/задания для проверки
обучения по дисциплине		
Уметь:	анализировать	1. Расчет восстановительных нагрузок при кипении
информацию о	технологиях	гелия-ІІ на нагревателях цилиндрической и
осуществления	существенно	шаровой формы
неравновесных	процессов	2. Эволюция паровых пленок при кипении гелия-II.
переноса		Приближенный подход и расчет на основе
		уравнения Рэлея
		3. Движение перемычек гелия-II в капиллярах при
		наличии осевого теплового потока
		4.Определение формы межфазной поверхности
		азота при плавании в нем капли воды. Отличия от
		традиционных «гидростатических» задач
		5.Особенности эволюции паровых образований на
		нагревателях цилиндрической и шаровой формы,
		погруженных в жидкости с низкой и высокой
		эффективностью теплопереноса
		6.Применение уравнения Рэлея для решения задачи
		о схлопывании парогазового пузыря при
		сонолюминесценции. Приближенное описание
		явления формирования ударной волны внутри
		пузыря

Описание шкалы оценивания:

Оиенка: «зачтено»

Описание характеристики выполнения знания: Задача решена

Оценка: «не зачтено»

Описание характеристики выполнения знания: Задача не решена

КМ-4. Методы определения форм межфазных поверхностей

Формы реализации: Устная форма

Тип контрольного мероприятия: Коллоквиум **Вес контрольного мероприятия в БРС:** 20

Процедура проведения контрольного мероприятия: Студенту выдается задание, дается

время на решение, затем производится опрос.

Краткое содержание задания:

Перечислить известные методы определения форм межфазных поверхностей, дать каждому подробное объяснение.

Контрольные вопросы/задания:

Контрольные вопросы/задания:				
Запланированные результаты обучения	Вопросы/задания для проверки			
по дисциплине				
Запланированные результаты обучения	Вопросы/задания для проверки 1. Кривая кипения сверхтекучего гелия. Пиковая и "восстановительная" тепловая нагрузка. Расчет "восстановительной" тепловой нагрузки по линейной теории и в общем случае. Перенос тепла через паровую пленку для нелинейных задач в одномерной и двумерной постановке. Перенос массы и энергии в ограниченной паровой области при наличии градиента температур на межфазной поверхности. Расчет эволюции паровой пленки при больших тепловых нагрузках для плоского, цилиндрического и сферического нагревателей. Особенности теплообмена в Hell при пониженной гравитации. Задачи теплопереноса в капиллярно-пористом теле, заполненном Hell. Расчет процессов переноса в единичном капилляре при наличии продольного теплового потока. 2. Роль направленности потоков при криоконденсации (десублимации). Расчет теплопереноса в области неприменимости законов градиентного типа. Примеры расчета течений, характеризуемых малыми числами Кнудсена, с учетом сильной неравновесности на межфазной границе. 3. Роль процессов переноса на межфазной поверхности при определении общего термического сопротивления в системе: пар – пленка конденсата – стенка конденсатора – охлаждающий теплоноситель. Влияние неконденсируемых газов. Сопоставление результатов расчета с экспериментальными данными. 4. Зависимость формы межфазной поверхности от способа подвода теплоты к границе раздела фаз пар-жидкость. Соответствующая классификация задач тепломассопереноса. Плавание горячих капель в холодных жидкостях. Пленочное			
	границе раздела фаз пар-жидкость.			
	тепломассопереноса. Плавание горячих			
	капель в холодных жидкостях. Пленочное			
	кипение недогретой воды на нагревателях			
	различной формы. Эволюция паровых			
	пленок. Необходимость применения при			
	описании неравновесных граничных			
	условий.			
	5. Сущность явления. Математическое			

Запланированные результаты	обучения	я Вопросы/задания для проверки		
по дисциплине				
		описание: уравнения сохранения для		
		жидкости и парогазовой смеси;		
		универсальные и специальные условия		
		совместности. Влияние испарения-		
		конденсации на межфазной поверхности на		
		характеристики процесса.		

Описание шкалы оценивания:

Оценка: «зачтено»

Описание характеристики выполнения знания: Задание выполнено

Оценка: «не зачтено»

Описание характеристики выполнения знания: Задание не выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

2 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

- 1. Результаты исследования процессов интенсивного испарения и конденсации методами молекулярно-кинетической теории.
- 2. Получите решения уравнений сохранения импульса для задачи пленочной конденсации неподвижного в продольном направлении водяного пара на вертикальной поверхности высотой H=0.1 m. Найдите скорости движения пара и жидкости вблизи границы раздела фаз, если известно, что давление конденсирующегося пара $105\ \Pi a$, а температура поверхности, на которой осуществляется конденсация, поддерживается постоянной и равной $Tw=363 {\rm K}$.

Процедура проведения

Слепой выбор билета, время дял ответа, ответ преподавателю

- I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины
- **1. Компетенция/Индикатор:** ИД-3_{ПК-1} Умеет применять различные подходы к расчету процессов тепломассопереноса в зависимости от режимных параметров работы элементов энергетического оборудования

Вопросы, задания

1.1. Исследование задач испарения и конденсации на основе интегральной формулировки законов сохранения массы, импульса, энергии для сплошных сред 2. В капилляре находится объем сверхтекучего гелия, длина которого l составляет 10,4 cm. Температура гелия равна 1,7 K. При подаче к одной из межфазных поверхностей тепловой нагрузки 60 Bm/m2 перемычка гелия II приходит в движение κ источнику теплоты. Определите наибольший диаметр, при котором это возможно. Укажите направление движения перемычки и найдите ее скорость при вдвое большем диаметре. Гелий II при T=1,70 K

Плотность	η	S	Плотность	r
(кг/м3)	(∏a·c)	$(Дж/кг\cdot K)$	(кг/м3)	(Дж/кг)
145,3	1,3·10-6	398,0	0,4	22000,0

- 2. 1. Применение законов сохранения в дифференциальном виде для решения задачи о конденсации чистого пара
- 2. В плоской пластине из нержавеющей стали толщиной 2 m, находящейся в окружающей среде при нормальном давлении, проделали 100 параллельных продольных сквозных зазоров, каждый из которых имеет толщину 10нм (1нм = 10-9 m). Температура левой поверхности пластины равна 298 K , а правой 293 K. Чему равна плотность теплового потока, передаваемого через пластину? Теплопроводность нержавеющей стали 14 $Bm/m\cdot K$.
- 3.1. Представление законов сохранения методами молекулярно-кинетической теории. Расчет теплового потока для свободномолекулярного предела и переходной области

- 2. На вертикальной медной стенке толщиной $\delta = I_{MM}$ и высотой $H = 0, I_{M}$ конденсируется газообразный аргон при атмосферном давлении. С другой стороны эта стенка охлаждается потоком жидкого азота, находящимся в состоянии насыщения при атмосферном давлении и движущемся вдоль поверхности стенки с определенной скоростью. Чему должна быть равна величина этой скорости для того, чтобы на стенке формировался твердый аргон?
- 4.1. Описание испарения и конденсации методами физической кинетики. Линейная теория Д.А.Лабунцова.
- 2. Полусферический нагреватель радиусом Rw=5 мм опускается в насыщенный азот при атмосферном давлении. Температура нагревателя $Tw=40^{\circ}$ С такова, что на поверхности образуется паровая пленка, как показано на рисунке. Определить расстояние от перегиба межфазной поверхности до зеркала жидкости, если толщина паровой пленки в этом месте d=0,3 мм.
- 5.1. Результаты исследования процессов интенсивного испарения и конденсации методами молекулярно-кинетической теории.
- 2. Получите решения уравнений сохранения импульса для задачи пленочной конденсации неподвижного в продольном направлении водяного пара на вертикальной поверхности высотой H=0.1 m. Найдите скорости движения пара и жидкости вблизи границы раздела фаз, если известно, что давление конденсирующегося пара $105\ \Pi a$, а температура поверхности, на которой осуществляется конденсация, поддерживается постоянной и равной Tw=363 K.
- 6.1. Коэффициенты испарения и конденсации. Определения этих понятий. Методика расчета интенсивностей соответствующих процессов переноса для диффузной схемы испарения и отражения молекул при произвольных значениях коэффициентов испарения и конденсации. Их предельные значения.
- 2. На межфазную поверхность, поддерживаемую при постоянной температуре Ts, натекает поток газообразного азота со скоростью, соответствующей числу $Maxa\ M\infty = 0.65$, в режиме одномерной стационарной десублимации. При коэффициенте конденсации $\beta = I$ отношение $P\infty/Ps = 8.0$, где Ps давление насыщения, соответствующее температуре межфазной поверхности Ts, а $P\infty$ давление натекающего аргона. Чему равно отношение температуры пара вдали от границы раздела фаз $T\infty$ к Ts? Для какого отношения давлений $P\infty/Ps$ возможно поддержание заданного числа $Maxa\ M\infty = 0.65$ при $\beta = 0.9$ и $\beta = 0.8$?
- 7.1. Применение законов сохранения в дифференциальном виде для решения задачи о конденсации чистого пара.
- 2. На межфазную поверхность, поддерживаемую при постоянной температуре Ts, натекает поток газообразного аргона со скоростью, соответствующей числу Маха $M\infty=0.7$, в режиме одномерной стационарной десублимации. При коэффициенте конденсации $\beta=1$ отношение $P\infty/Ps=5.0$, где Ps давление насыщения, соответствующее температуре межфазной поверхности Ts, а $P\infty$ давление натекающего аргона. Чему равно отношение температуры пара вдали от границы раздела фаз $T\infty$ к Ts? Для какого отношения давлений $P\infty/Ps$ возможно поддержание заданного числа Маха $M\infty=0.7$ при $\beta=0.93$ и $\beta=0.85$?
- 8.1 Исследование задач испарения и конденсации на основе интегральной формулировки законов сохранения массы, импульса, энергии для сплошных сред.
- 2.Определите при какой глубине погружения в гелий II плоского нагревателя на нем осуществляется стационарное бесшумовое кипение для величины удельного теплового потока, выделяемого нагревателем $qW = 0.95 \times 104~\mathrm{Br}/m2$. При этом значении qW

обеспечивается постоянство толщины паровой пленки для искомой глубины погружения нагревателя. Температура свободной межфазной поверхности гелий Π - пар Ti равняется $2 \ K$.

- 9.1. Основные принципы молекулярно-динамического моделирования (МД). Характерные пространственные и временные масштабы. Возможности МД. Расчет коэффициентов конденсации методами МД.
- 2. При стационарном бесшумовом кипении на плоском нагревателе, погруженном в гелий II на определенную глубину h, образовалась паровая пленка. Толщина этой пленки d с течением времени остается постоянной. Чему равно значение d, если известно, что давление пара P^2 в пленке равняется $3884\ \Pi a$, , температура свободной межфазной поверхности гелий II пар Ti равняется $2\ K$, температура поверхности нагревателя TW, при которой обеспечивается поддержание заданного значения d равняется $64\ K$. Принять в первом приближении, что теплопроводность газообразного гелия при $33\ K$ равна $0.048 m/m \cdot K$.
- 10.1. Классификация задач тепломассопереноса при определении форм межфазных поверхностей жидкость пар. Применение различных методов для соответствующих описаний.
- 2. Определите при какой глубине погружения в гелий II плоского нагревателя на нем осуществляется стационарное бесшумовое кипение для величины удельного теплового потока, выделяемого нагревателем $qW=104~{\rm Bt/}m2$. При этом значении qW обеспечивается постоянство толщины паровой пленки для искомой глубины погружения нагревателя. Температура свободной межфазной поверхности гелий II пар Ti равняется 2~K.

Материалы для проверки остаточных знаний

1. Что такое конденсация

Ответы:

Дать устный ответ и/или написать формулу

Верный ответ: Процесс фазового перехода из газообразного в жидкое состояние

2. Что такое Число Кнудсена

Ответы:

Дать устный ответ и/или написать формулу

Верный ответ: Один из критериев подобия движения разрежённых газов

3. Что такое средняя длина свободного пробега

Ответы:

Дать устный ответ и/или написать формулу

Верный ответ: это среднее расстояние, которое пролетает частица за время между двумя последовательными столкновениями

4. Какие вам известны методы решения кинетического уравнения Больцмана Ответы:

Дать устный ответ и/или написать формулу

Верный ответ: Линейная теория. Моментный метод решения одномерных задач. Прямое численное решение кинетического уравнения Больцмана (для разных чисел Кнудсена, многомерные задачи). Прямое статистическое моделирование. Модельные уравнения.

5. Что такое сонолюминесценция

Ответы:

Дать устный ответ и/или написать формулу

Верный ответ: Явление возникновения вспышки света при схлопывании кавитационных пузырьков, рождённых в жидкости мощной ультразвуковой волной.

6. Что такое кавитация?

Ответы:

Дать устный ответ и/или написать формулу

Верный ответ: физический процесс образования пузырьков (каверн, или пустот) в жидких средах, с последующим их схлопыванием и высвобождением большого количества энергии

7. При какой температуре гелий переходит в сверхтекучее состояние

Ответы

Дать устный ответ и/или написать формулу

Верный ответ: около 2,17 К

8. При какой температуре азот становится жидким

Ответы:

Дать устный ответ и/или написать формулу

Верный ответ: 77 К 9.Что такое испарение

Ответы:

Дать устный ответ и/или написать формулу

Верный ответ: Процесс фазового перехода из жидкого в газообразное состояние

10. Что стоит в правой части кинетического уравнения Больцмана

Ответы:

Дать устный ответ и/или написать формулу

Верный ответ: Интеграл столкновений

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Дан полный ответ на вопрос, решена задача

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Дан ответ на вопрос, задача решена с неточностями

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Дан ответ на вопрос, задача решена частично - ход решения указан

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Не дан ответ на вопрос и/или полнсотью не решена задача

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и экзаменационной составляющих.