# Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 09.03.01 Информатика и вычислительная техника

Наименование образовательной программы: Информационные системы и технологии в

проектировании и производстве

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Электроника

> Москва 2025

#### ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Разработчик

| NCW NCW | Подписано электронн          | ой подписью ФГБОУ ВО «НИУ «МЭИ» |  |  |  |
|---------|------------------------------|---------------------------------|--|--|--|
|         | Сведения о владельце ЦЭП МЭИ |                                 |  |  |  |
|         | Владелец                     | Жохова М.П.                     |  |  |  |
|         | Идентификатор                | Rc9368ed9-ZhokhovaMP-7cb905l    |  |  |  |

М.П. Жохова

#### СОГЛАСОВАНО:

Руководитель образовательной программы

| NOSO SE      | Подписано электронн          | ой подписью ФГБОУ ВО «НИУ «МЭИ» |  |  |  |
|--------------|------------------------------|---------------------------------|--|--|--|
| M <b>⊙</b> M | Сведения о владельце ЦЭП МЭИ |                                 |  |  |  |
|              | Владелец                     | Соколов В.П.                    |  |  |  |
|              | Идентификатор                | R928a03a7-SokolovVPet-4d1c67c1  |  |  |  |

В.П. Соколов

Заведующий выпускающей кафедрой

| O 1030  | Подписано электронн          | ой подписью ФГБОУ ВО «НИУ «МЭИ» |  |  |  |
|---------|------------------------------|---------------------------------|--|--|--|
| New New | Сведения о владельце ЦЭП МЭИ |                                 |  |  |  |
|         | Владелец                     | Рогалев А.Н.                    |  |  |  |
|         | Идентификатор                | Rb956ba44-RogalevAN-6233a28b    |  |  |  |

А.Н. Рогалев

#### ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности
  - ИД-5 Демонстрирует знание элементной базы, принципов действия и особенностей функционирования типовых электронных устройств и ЭВМ

#### и включает:

#### для текущего контроля успеваемости:

Форма реализации: Компьютерное задание

- 1. Защита лабораторной работы № 1 «Прохождение сигналов через линейные цепи, линейные усилители» (Тестирование)
- 2. Защита лабораторной работы № 2 «Линейный RC-усилитель» (Тестирование)
- 3. Защита лабораторной работы № 3 «Диод. ВАХ диода. Применение диода» (Тестирование)
- 4. Защита лабораторной работы № 5 «Полевой транзистор и усилительный каскад ОИ» (Тестирование)
- 5. Защита лабораторной работы № 6 «Ключевые элементы на транзисторах» (Тестирование)
- 6. Защита лабораторной работы № 7 «Схемы транзисторно-транзисторной логики» (Тестирование)
- 7. Защита лабораторной работы №4 «Биполярный транзистор и каскад ОЭ» (Тестирование)
- 8. Контрольная работа №1 «Линейные схемы» (Контрольная работа)
- 9. Контрольная работа №2 «Полупроводниковые приборы: диод, транзистор» (Контрольная работа)
- 10. Контрольная работа №3 «Операционные усилители» (Контрольная работа)
- 11. Контрольная работа №4 «Ключевые элементы на транзисторах и цифровые логические схемы» (Контрольная работа)

#### БРС дисциплины

#### 5 семестр

### Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Защита лабораторной работы № 1 «Прохождение сигналов через линейные цепи, линейные усилители» (Тестирование)
- КМ-2 Защита лабораторной работы № 2 «Линейный RC-усилитель» (Тестирование)
- КМ-3 Контрольная работа №1 «Линейные схемы» (Контрольная работа)

- КМ-4 Защита лабораторной работы № 3 «Диод. ВАХ диода. Применение диода» (Тестирование)
- КМ-5 Защита лабораторной работы №4 «Биполярный транзистор и каскад ОЭ» (Тестирование)
- КМ-6 Контрольная работа №2 «Полупроводниковые приборы: диод, транзистор» (Контрольная работа)
- КМ-7 Защита лабораторной работы № 5 «Полевой транзистор и усилительный каскад ОИ» (Тестирование)
- КМ-8 Защита лабораторной работы № 6 «Ключевые элементы на транзисторах» (Тестирование)
- КМ-9 Контрольная работа №3 «Операционные усилители» (Контрольная работа)
- КМ- Защита лабораторной работы № 7 «Схемы транзисторно-транзисторной логики»
- 10 (Тестирование)
- КМ- Контрольная работа №4 «Ключевые элементы на транзисторах и цифровые логические
- 11 схемы» (Контрольная работа)

#### Вид промежуточной аттестации – Экзамен.

|              |                    |    |    | Веса к | онтро. | льных | меропј | риятий | i, % |    |     |     |
|--------------|--------------------|----|----|--------|--------|-------|--------|--------|------|----|-----|-----|
| Раздел       | Индек              | КМ | КМ | КM     | КМ     | КМ    | КM     | КМ     | KM   | КМ | KM  | КМ  |
| дисциплин    | c KM:              | -1 | -2 | -3     | -4     | -5    | -6     | -7     | -8   | -9 | -10 | -11 |
| Ы            | Срок               | 5  | 5  | 5      | 9      | 9     | 9      | 9      | 13   | 13 | 15  | 15  |
|              | KM:                |    |    |        |        |       |        |        |      |    |     |     |
| Физические о | основы             |    |    |        |        |       |        |        |      |    |     |     |
| полупроводн  | иковой             |    |    |        |        |       |        |        |      |    |     |     |
| микроэлектро |                    |    |    |        |        |       |        |        |      |    |     |     |
| Физические о | основы             |    |    |        |        |       |        |        |      |    |     |     |
| полупроводн  | иковой             | +  | +  | +      |        |       |        |        |      |    |     |     |
| микроэлектро | оники              |    |    |        |        |       |        |        |      |    |     |     |
| Элементы     |                    |    |    |        |        |       |        |        |      |    |     |     |
| полупроводн  | иковой             |    |    |        |        |       |        |        |      |    |     |     |
| электроники  |                    |    |    |        |        |       |        |        |      |    |     |     |
| Элементы     |                    |    |    |        |        |       |        |        |      |    |     |     |
| полупроводн  | иковой             |    |    | +      | +      | +     |        |        |      |    |     |     |
| электроники  |                    |    |    |        |        |       |        |        |      |    |     |     |
| Аналоговые   |                    |    |    |        |        |       |        |        |      |    |     |     |
| электронные  |                    |    |    |        |        |       |        |        |      |    |     |     |
| устройства   |                    |    |    |        |        |       |        |        |      |    |     |     |
| Аналоговые   |                    |    |    |        |        |       |        |        |      |    |     |     |
| электронные  |                    |    |    |        | +      | +     | +      | +      | +    | +  |     |     |
| устройства   |                    |    |    |        |        |       |        |        |      |    |     |     |
| Интегральны  | e                  |    |    |        |        |       |        |        |      |    |     |     |
| операционны  | ie .               |    |    |        |        |       |        |        |      |    |     |     |
| усилители    |                    |    |    |        |        |       |        |        |      |    |     |     |
| Интегральны  | e                  |    |    |        |        |       |        |        |      |    |     |     |
| операционны  | ie                 |    |    |        |        |       | +      | +      | +    | +  |     |     |
| усилители    |                    |    |    |        |        |       |        |        |      |    |     |     |
| Цифровая     |                    |    |    |        |        |       |        |        |      |    |     |     |
| электроника  |                    |    |    |        |        |       |        |        |      |    |     |     |
| Цифровая     | <u></u>            |    |    |        |        |       |        |        |      |    |     |     |
| электроника  |                    |    |    |        |        |       |        |        | +    | +  | +   | +   |
| Цифровые     |                    |    |    |        |        |       |        |        |      |    |     |     |
| интегральные | интегральные схемы |    |    |        |        |       |        |        |      |    |     |     |
| Цифровые     |                    |    |    |        |        |       |        |        |      |    |     |     |
| интегральные | е схемы            |    |    |        |        |       |        |        |      |    |     | +   |
|              | Bec KM:            | 5  | 10 | 10     | 10     | 10    | 10     | 10     | 10   | 10 | 10  | 5   |

#### СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

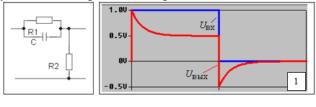
# I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

| Индекс      | Индикатор               | Запланированные          | Контрольная точка                                               |
|-------------|-------------------------|--------------------------|-----------------------------------------------------------------|
| компетенции | _                       | результаты обучения по   |                                                                 |
|             |                         | дисциплине               |                                                                 |
| ОПК-1       | ИД-50ПК-1 Демонстрирует | Знать:                   | КМ-1 Защита лабораторной работы № 1 «Прохождение сигналов через |
|             | знание элементной базы, | Принципы расчета и       | линейные цепи, линейные усилители» (Тестирование)               |
|             | принципов действия и    | экспериментального       | КМ-2 Защита лабораторной работы № 2 «Линейный RC-усилитель»     |
|             | особенностей            | исследования электронных | (Тестирование)                                                  |
|             | функционирования        | цепей при различных      | КМ-3 Контрольная работа №1 «Линейные схемы» (Контрольная        |
|             | типовых электронных     | режимах работы           | работа)                                                         |
|             | устройств и ЭВМ         | электронных приборов     | КМ-4 Защита лабораторной работы № 3 «Диод. ВАХ диода.           |
|             |                         | Основы физики твердого   | Применение диода» (Тестирование)                                |
|             |                         | тела и физики            | КМ-5 Защита лабораторной работы №4 «Биполярный транзистор и     |
|             |                         | полупроводников          | каскад ОЭ» (Тестирование)                                       |
|             |                         | Основные электронные     | КМ-6 Контрольная работа №2 «Полупроводниковые приборы: диод,    |
|             |                         | полупроводниковые        | транзистор» (Контрольная работа)                                |
|             |                         | приборы (диоды,          | КМ-7 Защита лабораторной работы № 5 «Полевой транзистор и       |
|             |                         | биполярные и полевые     | усилительный каскад ОИ» (Тестирование)                          |
|             |                         | транзисторы), режимы их  | КМ-8 Защита лабораторной работы № 6 «Ключевые элементы на       |
|             |                         | работы                   | транзисторах» (Тестирование)                                    |
|             |                         | Ограничения и предельные | КМ-9 Контрольная работа №3 «Операционные усилители»             |
|             |                         | режимы работы            | (Контрольная работа)                                            |
|             |                         | полупроводниковых        | КМ-10 Защита лабораторной работы № 7 «Схемы транзисторно-       |
|             |                         | приборов                 | транзисторной логики» (Тестирование)                            |
|             |                         | Виды интегральных схем,  | КМ-11 Контрольная работа №4 «Ключевые элементы на транзисторах  |
|             |                         | их основные              | и цифровые логические схемы» (Контрольная работа)               |
|             |                         | характеристики           |                                                                 |
|             |                         | Уметь:                   |                                                                 |
|             |                         | Проектировать типовые    |                                                                 |

| электронные цепи и      |  |
|-------------------------|--|
| осуществлять расчет     |  |
|                         |  |
| режимов их работы       |  |
| Применять расчетные     |  |
| методы для анализа      |  |
| цифровых электронных    |  |
| цепей                   |  |
| Применять расчетные     |  |
| методы для анализа      |  |
| аналоговых электронных  |  |
| цепей                   |  |
| Осуществлять            |  |
| моделирование и         |  |
| экспериментальное       |  |
| исследование аналоговых |  |
| и цифровых электронных  |  |
| цепей                   |  |

#### II. Содержание оценочных средств. Шкала и критерии оценивания

# КМ-1. Защита лабораторной работы № 1 «Прохождение сигналов через линейные цепи, линейные усилители»


**Формы реализации**: Компьютерное задание **Тип контрольного мероприятия**: Тестирование **Вес контрольного мероприятия в БРС**: 5

**Процедура проведения контрольного мероприятия:** Проводится в виде тестовых вопросов и индивидуальных заданий в автоматизированной системе контроля знаний Айрен МЭИ. Время, устанавливаемое на выполнение задания не более 30 минут. Предусмотрена автоматическая обработка результатов.

#### Краткое содержание задания:

Задание содержит тестовые вопросы и решение индивидуальных заданий, ориентированных на проверку знаний по теме лабораторной работы.

Пример тестового вопроса: "Какова длительность входного импульсного сигнала должна быть при снятии переходной характеристики в данной лабораторной работе при исследовании схемы с дифференцирующим конденсатором? Ответ в миллисекундах." Пример тестового задания: Выбрать осциллограмму, соответствующую схеме. В ответе указать номер осциллограммы.



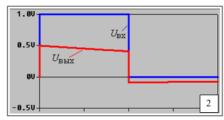



Figure 1 Рисунок к заданию

Контрольные вопросы/залания:

| контрольные вопросы/задания.       |                                                 |
|------------------------------------|-------------------------------------------------|
| Запланированные результаты         | Вопросы/задания для проверки                    |
| обучения по дисциплине             |                                                 |
| Знать: Основы физики твердого тела | 1.Переходная характеристика четырехполюсника    |
| и физики полупроводников           | - это:                                          |
|                                    | • 1.зависимость амплитуды сигнала на выходе     |
|                                    | четырехполюсника от частоты входного сигнала    |
|                                    | • 2.временная зависимость выходного сигнала при |
|                                    | подаче на вход скачка напряжения 1В             |
|                                    | • 3.временная зависимость тока на входе         |
|                                    | четырехполюсника при подаче на вход скачка      |
|                                    | напряжения 1В                                   |
|                                    | • 4.зависимость амплитуды выходного сигнала от  |
|                                    | амплитуды входного сигнала на разных частотах   |

| Запланированные результаты | Вопросы/задания для проверки                    |
|----------------------------|-------------------------------------------------|
| обучения по дисциплине     |                                                 |
|                            | • 5.временная зависимость выходного сигнала при |
|                            | подаче на вход синусоидального импульса         |
|                            | • 6.временная зависимость тока на выходе        |
|                            | четырехполюсника при подаче на вход скачка      |
|                            | напряжения 1В                                   |
|                            | • Ответ: 2                                      |
|                            |                                                 |

#### Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Отлично», если даны правильные ответы не менее чем на 80% вопросов теста

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Хорошо», если даны правильные ответы не менее чем на 60% вопросов теста

Оценка: 3 («удовлетворительно»)

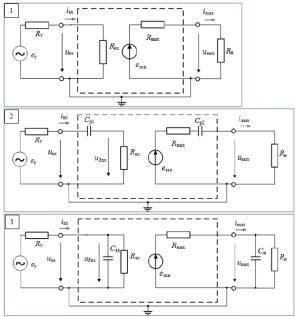
Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Удовлетворительно», если даны правильные ответы не менее чем на 40% вопросов теста

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Неудовлетворительно» если студентом не выполнены условия, предполагающие оценку «Удовлетворительно»

#### КМ-2. Защита лабораторной работы № 2 «Линейный RC-усилитель»


Формы реализации: Компьютерное задание Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 10

**Процедура проведения контрольного мероприятия:** Проводится в виде тестовых вопросов и индивидуальных заданий в автоматизированной системе контроля знаний Айрен МЭИ. Время, устанавливаемое на выполнение задания не более 30 минут. Предусмотрена автоматическая обработка результатов.

#### Краткое содержание задания:

Задание содержит тестовые вопросы и решение индивидуальных заданий, ориентированных на проверку знаний по теме лабораторной работы.

Пример тестового вопроса: Выберите схему замещения линейного усилителя в области нижних частот. В ответе указать номер схемы.



Пример тестового задания: Определите по осциллограммам коэффициент усиления каскада Ku (входной сигнал – вверху, канал 1; выходной сигнал – внизу, канал 2).



Figure 2 Рисунок к заданию

Контрольные вопросы/залания:

| контрольные вопросы/задания   | •                                               |
|-------------------------------|-------------------------------------------------|
| Запланированные результаты    | Вопросы/задания для проверки                    |
| обучения по дисциплине        |                                                 |
| Знать: Основы физики твердого | 1. Расчет частотной характеристики проводится:  |
| тела и физики полупроводников | 1.комплексным методом, если на входе            |
|                               | синусоидальный источник неизменной амплитуды,   |
|                               | частота которого меняется в широком диапазоне   |
|                               | 2.комплексным методом, если на входе            |
|                               | синусоидальный источник неизменной частоты,     |
|                               | амплитуда которого меняется в широком диапазоне |
|                               | 3.комплексным методом, если на входе источник в |
|                               | виде прямоугольного импульса                    |
|                               | 4.используя уравнения для мгновенных значений   |
|                               | Ответ: 1                                        |

#### Описание шкалы оценивания:

Оценка: 5 («отлично»)

#### Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Отлично», если даны правильные ответы не менее чем на 80% вопросов теста

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Хорошо», если даны правильные ответы не менее чем на 60% вопросов теста

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Удовлетворительно», если даны правильные ответы не менее чем на 40% вопросов теста

Оценка: 2 («неудовлетворительно»)

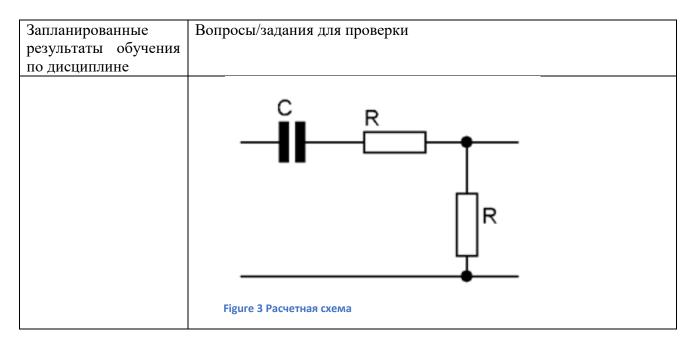
Описание характеристики выполнения знания: Тест считается выполненным на оценку «Неудовлетворительно» если студентом не выполнены условия, предполагающие оценку «Удовлетворительно»

#### КМ-3. Контрольная работа №1 «Линейные схемы»

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 10


**Процедура проведения контрольного мероприятия:** Проводится в виде решения индивидуальных задач в автоматизированной системе контроля знаний Айрен МЭИ. Время, устанавливаемое на выполнение задания не более 60 минут. Предусмотрена автоматическая обработка результатов.

#### Краткое содержание задания:

Контрольная точка направлена на оценку освоения компетенции по темам "Физические основы полупроводниковой микроэлектроники" и "Элементы полупроводниковой электроники".

Контрольные вопросы/задания:

| Rolliposibilbic bollpoch | л/эцдинил:                                                |
|--------------------------|-----------------------------------------------------------|
| Запланированные          | Вопросы/задания для проверки                              |
| результаты обучения      |                                                           |
| по дисциплине            |                                                           |
| Уметь: Применять         | 1.Для RC фильтра качественно построить амплитудно         |
| расчетные методы для     | частотную характеристику. Построения подтверждать         |
| анализа аналоговых       | эквивалентными схемами и расчетами. Для этой же цепи      |
| электронных цепей        | качественно построить диаграмму выходного напряжения при  |
|                          | воздействии на входе импульса конечной длительности.      |
|                          | Считать, что длительность входного сигнала tu существенно |
|                          | больше времени переходного процесса.                      |



#### Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «Отлично», если задание выполнено на 85%.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «Хорошо», если задание выполнено на 70%.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «Удовлетворительно», если задание выполнено на 50%.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «Неудовлетворительно», если задание выполнено на менее 50%.

#### КМ-4. Защита лабораторной работы № 3 «Диод. ВАХ диода. Применение диода»

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 10

**Процедура проведения контрольного мероприятия:** Проводится в виде тестовых вопросов и индивидуальных заданий в автоматизированной системе контроля знаний Айрен МЭИ. Время, устанавливаемое на выполнение задания не более 30 минут. Предусмотрена автоматическая обработка результатов.

#### Краткое содержание задания:

Задание содержит тестовые вопросы и решение индивидуальных заданий, ориентированных на проверку знаний по теме лабораторной работы.

Пример тестового вопроса: Отметьте типы пробоя р-п перехода:

1.лавинный

2.тепловой

3. световой

4.туннельный

5.прямой

Ответ: 1,2,4

Пример тестового задания: Для схемы с заданными параметрами определить ток и напряжение диода (Iд и Uд), вольтамперная характеристика которого приведена ниже.

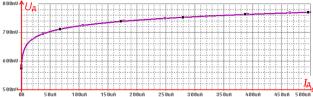



Figure 4 BAX диода

Контрольные вопросы/задания:

| контрольные вопросы/задания                                                           |                                              |
|---------------------------------------------------------------------------------------|----------------------------------------------|
| Запланированные результаты                                                            | Вопросы/задания для проверки                 |
| обучения по дисциплине                                                                |                                              |
| Знать: Ограничения и                                                                  | 1. Что такое прямое напряжение диода и как   |
| предельные режимы работы                                                              | изменяется величина потенциального барьера в |
| полупроводниковых приборов                                                            | результате его воздействия?                  |
| Знать: Основные электронные                                                           | 1.Определите тип диода по характеристике     |
| полупроводниковые приборы (диоды, биполярные и полевые транзисторы), режимы их работы | I, мА                                        |

#### Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Отлично», если даны правильные ответы не менее чем на 80% вопросов теста

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Хорошо», если даны правильные ответы не менее чем на 60% вопросов теста

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Удовлетворительно», если даны правильные ответы не менее чем на 40% вопросов теста

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Неудовлетворительно» если студентом не выполнены условия, предполагающие оценку «Удовлетворительно»

#### КМ-5. Защита лабораторной работы №4 «Биполярный транзистор и каскад ОЭ»

**Формы реализации**: Компьютерное задание **Тип контрольного мероприятия**: Тестирование **Вес контрольного мероприятия в БРС**: 10

**Процедура проведения контрольного мероприятия:** Проводится в виде тестовых вопросов и индивидуальных заданий в автоматизированной системе контроля знаний Айрен МЭИ. Время, устанавливаемое на выполнение задания не более 30 минут. Предусмотрена автоматическая обработка результатов.

#### Краткое содержание задания:

Задание содержит тестовые вопросы и решение индивидуальных заданий, ориентированных на проверку знаний по теме лабораторной работы. Пример тестового вопроса: Укажите тип биполярного транзистора

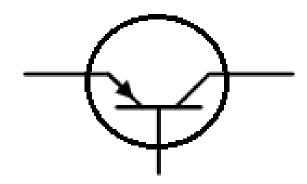



Figure 6 Биполярный транзистор

Пример тестового задания: Определить коэффициент усиления транзистора h21э, выходное сопротивление 1/h22э и входное сопротивление h11э по его выходной и входной характеристикам в рабочей точке (Uкэ=12 В, Iкэ=40 мА).

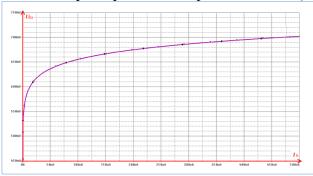



Figure 7 Входная характеристика

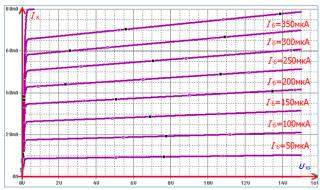



Figure 8 Выходные характеристики

Контрольные вопросы/задания:

| Запланированные результаты обучения | Вопросы/задания для проверки               |
|-------------------------------------|--------------------------------------------|
| по дисциплине                       |                                            |
| Знать: Ограничения и предельные     | 1.Определите тип включения биполярного     |
| режимы работы полупроводниковых     | транзистора:                               |
| приборов                            | 1 VT V V V V V V V V V V V V V V V V V V   |
| Знать: Основные электронные         | 1.По входной характеристике транзистора    |
| полупроводниковые приборы (диоды,   | определяют                                 |
| биполярные и полевые транзисторы),  | 1.коэффициент усиления базового тока       |
| режимы их работы                    | 2. дифференциальное входное сопротивление  |
| _                                   | 3. дифференциальное выходное сопротивление |
|                                     | 4.все характеристики транзистора           |
|                                     | Ответ: 2                                   |

#### Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Отлично», если даны правильные ответы не менее чем на 80% вопросов теста

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Хорошо», если даны правильные ответы не менее чем на 60% вопросов теста

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Удовлетворительно», если даны правильные ответы не менее чем на 40% вопросов теста

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Неудовлетворительно» если студентом не выполнены условия, предполагающие оценку «Удовлетворительно»

#### КМ-6. Контрольная работа №2 «Полупроводниковые приборы: диод, транзистор»

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Проводится в виде решения индивидуальных задач в автоматизированной системе контроля знаний Айрен МЭИ. Время, устанавливаемое на выполнение задания не более 60 минут. Предусмотрена автоматическая обработка результатов.

#### Краткое содержание задания:

Контрольная точка направлена на оценку освоения компетенции по темам "Элементы полупроводниковой электроники" и "Аналоговые электронные устройства" и "Интегральные операционные усилители".

| Контрольные вопросы/задания: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Запланированные              | Вопросы/задания для проверки                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| результаты обучения по       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| дисциплине                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Уметь: Применять             | 1.Для схемы усилительного каскада ОЭ с параметрами:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| расчетные методы для         | Епит=10 B, R1=8,4 кОм, R2=1,6 кОм, Rк=100 Ом, Rэ=25 Ом                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| анализа цифровых             | определить аналитически рабочий режим транзистора ( $U$ кэ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| электронных цепей            | <i>I</i> к, <i>I</i> б).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                              | $R_1$ $I_{\rm K}$ $I_{\rm K}$ $I_{\rm K}$ $I_{\rm M}$ |  |  |

#### Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «Отлично», если задание выполнено на 85%.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «Хорошо», если задание выполнено на 70%.

Оценка: 3 («удовлетворительно»)

#### Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «Удовлетворительно», если задание выполнено на 50%.

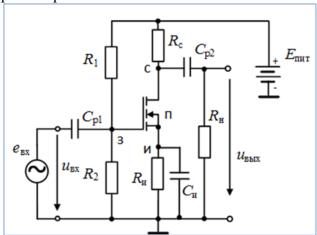
#### Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «Неудовлетворительно», если задание выполнено на менее 50%.

## КМ-7. Защита лабораторной работы № 5 «Полевой транзистор и усилительный каскад ОИ»

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 10

**Процедура проведения контрольного мероприятия:** Проводится в виде тестовых вопросов и индивидуальных заданий в автоматизированной системе контроля знаний Айрен МЭИ. Время, устанавливаемое на выполнение задания не более 30 минут. Предусмотрена автоматическая обработка результатов.


#### Краткое содержание задания:

Задание содержит тестовые вопросы и решение индивидуальных заданий, ориентированных на проверку знаний по теме лабораторной работы.

Пример тестового вопроса:

Какие схемы замещения полевого транзистора используется при анализе в режиме малого сигнала?

Пример тестового задания: Как изменится напряжение на транзисторе Ucи при обрыве резистора R2?



#### Контрольные вопросы/задания:

| Запланированные                | результаты | Вопросы/задания для проверки |
|--------------------------------|------------|------------------------------|
| обучения по дисциплине         |            |                              |
| Знать: Виды интегральных схем, |            | 1.Укажите тип транзистора    |
| их основные характеристики     |            |                              |

| Запланированные результаты обучения по дисциплине                                                                 | Вопросы/задания для проверки                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                   | <ol> <li>МДП-транзистор со встроенным каналом р-типа.</li> <li>МДП-транзистор со встроенным каналом п-типа.</li> <li>МДП-транзистор с индуцированным каналом р-типа.</li> <li>МДП-транзистор с индуцированным каналом п-типа.</li> <li>Транзистор с управляющим р-п-переходом и каналом р-типа.</li> <li>Транзистор с управляющим р-п-переходом и каналом п-типа.</li> <li>Транзистор с управляющим р-п-переходом и каналом п-типа.</li> <li>Ответ:3</li> </ol> |
| Знать: Основные электронные полупроводниковые приборы (диоды, биполярные и полевые транзисторы), режимы их работы | 1. Какие схемы замещения полевого транзистора используется при анализе в режиме малого сигнала? 1. Схема замещения в Y-параметрах 2. Схема замещения в H-параметрах 3. Модель Эберса-Молла 4. Зарядовая модель                                                                                                                                                                                                                                                  |

#### Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Отлично», если даны правильные ответы не менее чем на 80% вопросов теста

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Хорошо», если даны правильные ответы не менее чем на 60% вопросов теста

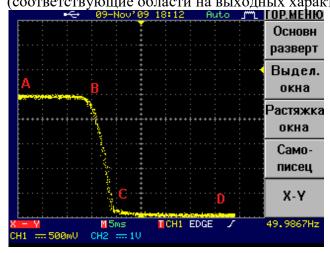
Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Удовлетворительно», если даны правильные ответы не менее чем на 40% вопросов теста

#### Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Неудовлетворительно» если студентом не выполнены условия, предполагающие оценку «Удовлетворительно»


#### КМ-8. Защита лабораторной работы № 6 «Ключевые элементы на транзисторах»

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 10

**Процедура проведения контрольного мероприятия:** Проводится в виде тестовых вопросов и индивидуальных заданий в автоматизированной системе контроля знаний Айрен МЭИ. Время, устанавливаемое на выполнение задания не более 30 минут. Предусмотрена автоматическая обработка результатов.

#### Краткое содержание задания:

Задание содержит тестовые вопросы и решение индивидуальных заданий, ориентированных на проверку знаний по теме лабораторной работы. Пример тестового вопроса: Как расшифровать аббревиатуру 'КМОП'? Пример тестового задания: На передаточной характеристике МОП-инвертора с резистивной нагрузкой отметьте режимы работы полевого транзистора (соответствующие области на выходных характеристиках транзистора).



Контрольные вопросы/задания:

| Запланированные                | результаты | Вопросы/задания для проверки       |
|--------------------------------|------------|------------------------------------|
| обучения по дисциплине         |            |                                    |
| Знать: Виды интегральных схем, |            | 1.Как в схеме лабораторного макета |
| их основные характеристики     |            | обеспечивается режим ВКЛЮЧЕНО?     |

| Запланированные результаты обучения по дисциплине                                                                             | Вопросы/задания для проверки                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                               | $U_{ex}$ $R_1$ $V_{ebix}$ $V_{ebix}$ $R_2$ $E_n$                                                                                                                           |
|                                                                                                                               | 1.С помощью цепи R2-Есм 2.За счет уменьшения сопротивления резистора Rк 3.За счет величины увеличения сопротивления резистора R1 4.За счет величины напряжения Uвх Ответ:4 |
| Знать: Основные электронные полупроводниковые приборы (диоды, биполярные и полевые транзисторы), режимы их работы             | 1.Как схемотехнически в схеме лабораторного макета обеспечивается режим ВЫКЛЮЧЕНО? $E_{R}$ $U_{GM}$ $R_{2}$ $VT$                                                           |
|                                                                                                                               | 1.С помощью цепи R2-Есм 2.За счет уменьшения сопротивления резистора Rк 3.За счет величины увеличения сопротивления резистора R1 4.За счет величины напряжения Uвх Ответ:1 |
| Знать: Принципы расчета и экспериментального исследования электронных цепей при различных режимах работы электронных приборов | 1.В каком режиме должен работать транзистор VT, если транзистор как ключ ВКЛЮЧЕН?                                                                                          |

| Запланированные результаты | Вопросы/задания для проверки                                                                                                                                                                                |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| обучения по дисциплине     |                                                                                                                                                                                                             |
|                            | $U_{ex}$ $R_{I}$ $V_{ebix}$ $V_{ebix}$ $V_{ebix}$ $V_{ex}$                                                                                                                                                  |
|                            | <ol> <li>1.В режиме отсечки</li> <li>2. В режиме насыщения</li> <li>3. В активном инверсном режиме</li> <li>4. В активном режиме</li> <li>5. Зависит от соотношения параметров элементов Ответ:2</li> </ol> |

#### Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Отлично», если даны правильные ответы не менее чем на 80% вопросов теста

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Хорошо», если даны правильные ответы не менее чем на 60% вопросов теста

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Удовлетворительно», если даны правильные ответы не менее чем на 40% вопросов теста

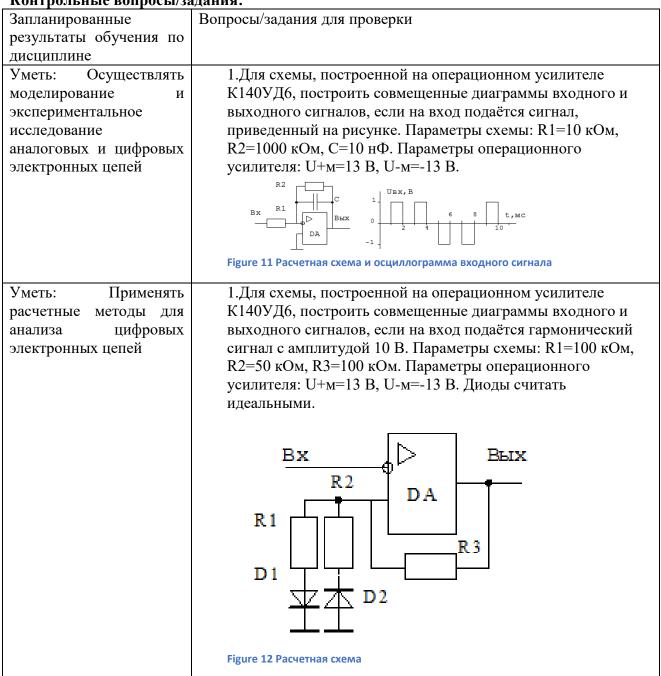
Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Неудовлетворительно» если студентом не выполнены условия, предполагающие оценку «Удовлетворительно»

#### КМ-9. Контрольная работа №3 «Операционные усилители»

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Контрольная работа


Вес контрольного мероприятия в БРС: 10

**Процедура проведения контрольного мероприятия:** Проводится в виде решения индивидуальных задач в автоматизированной системе контроля знаний Айрен МЭИ. Время, устанавливаемое на выполнение задания не более 60 минут. Предусмотрена автоматическая обработка результатов.

#### Краткое содержание задания:

Контрольная точка направлена на оценку освоения компетенции по темам "Аналоговые электронные устройства", "Интегральные операционные усилители" и "Цифровая электроника".

Контрольные вопросы/задания:



#### Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85 Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «Отлично», если задание выполнено на 85%.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «Хорошо», если задание выполнено на 70%.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «Удовлетворительно», если задание выполнено на 50%.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «Неудовлетворительно», если задание выполнено на менее 50%.

## КМ-10. Защита лабораторной работы № 7 «Схемы транзисторно-транзисторной логики»

**Формы реализации**: Компьютерное задание **Тип контрольного мероприятия**: Тестирование **Вес контрольного мероприятия в БРС**: 10

**Процедура проведения контрольного мероприятия:** Проводится в виде тестовых вопросов и индивидуальных заданий в автоматизированной системе контроля знаний Айрен МЭИ. Время, устанавливаемое на выполнение задания не более 30 минут. Предусмотрена автоматическая обработка результатов.

#### Краткое содержание задания:

Задание содержит тестовые вопросы и решение индивидуальных заданий, ориентированных на проверку знаний по теме лабораторной работы. Пример тестового вопроса: Укажите тип подложки для ИМС семейства n-МОП Пример тестового задания: Какое напряжение будет на выходе схемы, если Епит=5 В и Ux1=0 B, Ux2=5 B, Ux3=5 B?

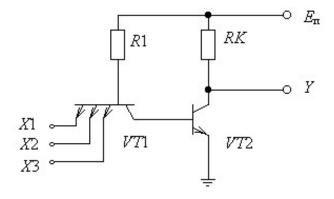



Figure 13 Схема ИЛЭ

Контрольные вопросы/задания:

| toni ponbibie bonpoebi sugumin. |             |                                      |
|---------------------------------|-------------|--------------------------------------|
| Запланированные                 | результаты  | Вопросы/задания для проверки         |
| обучения по дисциплине          |             |                                      |
| Знать: Принципы ра              | асчета и    | 1.По какой технологии сделана данная |
| экспериментального ис           | сследования | логическая схема?                    |
| электронных цепей при           | различных   |                                      |
| режимах работы э.               | лектронных  |                                      |
| приборов                        |             |                                      |

| Запланированные обучения по дисциплине | результаты | Вопросы/задания для проверки                                                                                                   |
|----------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------|
|                                        |            | R1 $RK$ $RK$ $RK$ $RK$ $VT1$ $VT2$ $X3$                                                                                        |
|                                        |            | Гипо Биполярной технологии  2.По ТТЛ технологии  3.По МОП технологии  4.По п-МОП технологии  5. По КМОП технологии  Ответ: 1,2 |

#### Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Отлично», если даны правильные ответы не менее чем на 80% вопросов теста

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Хорошо», если даны правильные ответы не менее чем на 60% вопросов теста

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Удовлетворительно», если даны правильные ответы не менее чем на 40% вопросов теста

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Тест считается выполненным на оценку «Неудовлетворительно» если студентом не выполнены условия, предполагающие оценку «Удовлетворительно»

# КМ-11. Контрольная работа №4 «Ключевые элементы на транзисторах и цифровые логические схемы»

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 5

**Процедура проведения контрольного мероприятия:** Проводится в виде решения индивидуальных задач в автоматизированной системе контроля знаний Айрен МЭИ. Время, устанавливаемое на выполнение задания не более 60 минут. Предусмотрена автоматическая обработка результатов.

#### Краткое содержание задания:

Контрольная точка направлена на оценку освоения компетенции по темам "Интегральные операционные усилители" и "Цифровая электроника".

Контрольные вопросы/задания:

| Контрольные вопросы/за, | дания:                                                      |  |  |
|-------------------------|-------------------------------------------------------------|--|--|
| Запланированные         | Вопросы/задания для проверки                                |  |  |
| результаты обучения по  |                                                             |  |  |
| дисциплине              |                                                             |  |  |
| Уметь: Осуществлять     | 1.Определить форму и параметры выходного сигнала, если      |  |  |
| моделирование и         | на вход устройства подан короткий одиночный                 |  |  |
| экспериментальное       | отрицательный импульс с параметрами: $t$ и вх $<<$ $RC$ ,   |  |  |
| исследование аналоговых | U1=10В, $U0=0$ В. Построить совмещенные диаграммы           |  |  |
| и цифровых электронных  | напряжений в точках $U$ вх, $U$ вых, $1$ и $2$ .            |  |  |
| цепей                   | Устройство собрано на интегральных микросхемах,             |  |  |
|                         | изготовленных по КМОП технологии. $E$ п=10 В, $R$ =100 кОм, |  |  |
|                         | С=50 нФ.                                                    |  |  |
|                         | En En                                                       |  |  |
|                         | Н_                                                          |  |  |
|                         | c    <sup>R</sup>                                           |  |  |
|                         |                                                             |  |  |
|                         |                                                             |  |  |
|                         |                                                             |  |  |
|                         | UBX —                                                       |  |  |
|                         |                                                             |  |  |
|                         |                                                             |  |  |
| Уметь: Проектировать    | 1.Определить нагрузочную способность схемы ТТЛ в            |  |  |
| типовые электронные     | состоянии «включено» (Uвых=0), если Епит = 5 B, R1 = 4      |  |  |
| цепи и осуществлять     | кОм, R2 = 300 Ом, Uбн=0.7 B, Uкн=0.1 B, Uбк1=0.8 B, b2=     |  |  |
| расчет режимов их       | 30.                                                         |  |  |
| работы                  | •                                                           |  |  |
|                         | +Епит                                                       |  |  |
|                         | R1 R2                                                       |  |  |
|                         | T T                                                         |  |  |
|                         | T1                                                          |  |  |
|                         | T2                                                          |  |  |
|                         | Bx1 /                                                       |  |  |
|                         | 7-2/                                                        |  |  |
|                         | B <u>x2</u>                                                 |  |  |
|                         |                                                             |  |  |
|                         | <u> </u>                                                    |  |  |
|                         | Figure 15 Схема ИЛЭ                                         |  |  |
|                         | -                                                           |  |  |

#### Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «Отлично», если задание выполнено на 85%.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «Хорошо», если задание выполнено на 70%.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «Удовлетворительно», если задание выполнено на 50%.

Оценка: 2 («неудовлетворительно»)

*Описание характеристики выполнения знания:* Контрольная работа считается выполненной на оценку «Неудовлетворительно», если задание выполнено на менее 50%.

#### СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

#### 5 семестр

#### Форма промежуточной аттестации: Экзамен

#### Пример билета




Figure 16 Пример экзаменационного билета

#### Процедура проведения

Проводится в письменной форме по билетам. Время на выполнение экзаменационного задания/подготовку ответа -70 минут. Студент должен дать краткий информативный ответ по заданиям 1-4 и решить задачу задания 5.

### I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

**1. Компетенция/Индикатор:** ИД-5<sub>ОПК-1</sub> Демонстрирует знание элементной базы, принципов действия и особенностей функционирования типовых электронных устройств и ЭВМ

#### Вопросы, задания

- 1.1. Частотные характеристики простых *RC*-цепей
- 2. Прохождение сигналов через линейные RC-цепи
- 3. Свойства полупроводников. Примесные полупроводники
- 4. Диффузионный и дрейфовый токи.
- 5. Электронно-дырочный переход.
- 6. Диод. ВАХ диода.
- 7. Емкостные свойства диода: диффузионная и барьерная емкость.
- 8. Схема замещения диода: полная и упрощенные.
- 9. Выпрямительные схемы.
- 10. Емкостной фильтр. Коэффициент пульсации.
- 11. Параметрический стабилизатор.
- 12. Источники вторичного электропитания питания, структура.

- 13. Биполярный транзистор, структура, режимы и принцип работы, основные соотношения для схемы ОБ.
- 14. Три схемы включения транзистора.
- 15. Схема включения ОЭ: основные соотношения для схемы включения ОЭ, эквивалентная схема замещения, ВАХ биполярного транзистора.
- 16. Простейший усилительный каскад ОЭ: графический расчет схемы, основные соотношения для токов и напряжений.
- 17. Схема замещения транзистора в режиме малого сигнала в h-параметрах.
- 18. Схема замещения транзистора в режиме малого сигнала в у-параметрах.
- 19. Связь h- и y-параметров с режимом работы транзистора.
- 20. Схема усилительного каскада ОЭ. Термостабилизация режима работы.
- 21. Расчет схемы усилительного каскада ОЭ по постоянному току.
- 22. Основные параметры усилительного каскада ОЭ: коэффициент усиления по напряжению, входное сопротивление, выходное сопротивление.
- 23. Усилительный каскад ОК. Расчет по постоянному току и определение его основных параметров: коэффициент усиления по напряжению, входное сопротивление, выходное сопротивление.
- 24. Полевые транзисторы с управляющим p-n-переходом: структура, принцип работы, ВАХ, схемы замещения, параметры.
- 25. Полевые транзисторы со структурой металл диэлектрик полупроводник (МДП) с индуцированным каналом: структура, принцип работы, ВАХ, схемы замещения, параметры.
- 26. Полевые транзисторы со структурой металл диэлектрик полупроводник (МДП) со встроенным каналом: структура, принцип работы, ВАХ, схемы замещения, параметры.
- 27. Малосигнальная схема замещения полевого транзистора в у-параметрах.
- 28. Сравнение свойств биполярных и полевых транзисторов: входное сопротивление, крутизна транзистора.
- 29. Усилительный каскад ОИ. Основные параметры: коэффициент усиления по напряжению, входное сопротивление, выходное сопротивление.
- 30. Усилительный каскад ОС (истоковый повторитель). Основные параметры: коэффициент усиления по напряжению, входное сопротивление, выходное сопротивление.
- 31. АЧХ *RC*—усилителя: неравномерность усиления, граничные частоты, полоса пропускания.
- 32. Амплитудная характеристика *RC*-усилителя. Причины нелинейности.
- 33. Обратные связи в усилителях: положительная и отрицательная обратная связь, последовательная и параллельная обратная связь, обратная связь по напряжению и по току.
- 34. Последовательная обратная связь по напряжению. Условие возбуждения (генерации) схемы.
- 35. Операционные усилители. Структура ОУ. Дифференциальный усилительный каскад.
- 36. Операционный усилитель. Обозначение. Основные характеристики и параметры операционного усилителя.
- 37. Основные правила расчета линейных схем.
- 38. Линейные схемы на операционном усилителе: инвертирующий усилитель, неинвертирующий усилитель, суммирующий усилитель, интегрирующий усилитель.
- 39. Нелинейные схемы на базе ОУ: компаратор, инвертирующий триггер Шмитта, симметричный мультивибратор на ОУ, ждущий мультивибратор на ОУ.
- 40. Ключи: основные свойства, классификация.
- 41. Ключи на биполярных транзисторах.
- 42. Ключ на биполярном транзисторе как логический элемент инвертор: передаточная характеристика, помехоустойчивость инвертора, коэффициент разветвления.

- 43. Переходные процессы в инверторе:зарядовая модель транзистора, переходные процессы при открывании ключа, переходные процессы при запирании ключа.
- 44. Повышение быстродействия ключа.
- 45. Ключ на полевом транзисторе с резистивной нагрузкой.
- 46. Ключ на полевом транзисторе с нелинейной нагрузкой (n-МОП технология):
- 47. КМДП инвертор:статический режим, передаточная характеристика, переходные процессы.
- 48. Логические интегральные схемы: классификация и основные параметры.
- 49. ТТЛ логический элемент с простым инвертором.
- 50. ТТЛ логический элемент со сложным инвертором. Статический режим, назначение элементов.
- 51. Основные характеристики ТТЛ элемента со сложным инвертором: передаточная характеристика, входная характеристика, выходные характеристики.
- 52. Схема ТТЛ с повышенной помехоустойчивостью.
- 53. Быстродействующая схема ТТЛШ.
- 54. Схема ТТЛ с открытым коллектором.
- 55. Схема ТТЛ с тремя состояниями.
- 56. Триггер Шмитта в схеме ТТЛ: триггер Шмитта на биполярных транзисторах: схема, входная и передаточная характеристика.
- 57. КМОП логические схемы И-НЕ.
- 58. КМОП логические схемы ИЛИ-НЕ.
- 59. КМОП логическая схема с тремя состояниями.
- 60. Логические схемы И-НЕ, ИЛИ-НЕ в п-МОП технологии.
- 61. Формирователи импульсов на основе логических схем КМОП: формирователь коротких импульсов на дифференцирующей RC-цепи, формирователь коротких импульсов на интегрирующей RC-цепи, формирователь длинных импульсов (одновибраторор).
- 62. Генератор прямоугольных импульсов (мультивибратор).

#### Материалы для проверки остаточных знаний

- 1.По входной характеристике транзистора определяют Ответы:
- 1) коэффициент усиления базового тока
- 2) дифференциальное входное сопротивление
- 3) дифференциальное выходное сопротивление
- 4) все характеристики транзистора

Верный ответ: 2

2. Дайте определение передаточной характеристики (ПХ) инвертора:

Ответы:

- 1) ПХ это зависимость выходного напряжения от входного напряжения
- 2) ПX это временная зависимость выходного сигнала при подаче на вход скачка напряжения 1 В
- 3) ПХ это зависимость выходного тока инвертора от приложенного на вход напряжения
- 4)  $\Pi X$  это временная зависимость выходного сигнала при подаче на вход прямоугольного импульса
- 5)  $\Pi X$  это зависимость входного тока инвертора от частоты приложенного к нему сигнала

Верный ответ: 1

3.Указать достоинства МОП- логических схем по сравнению с ИЛЭ на биполярных транзисторах:

Ответы:

1) меньшая стоимость

- 2) не нагружает источник входного сигнала
- 3)малое потребление от источника питания
- 4) высокое быстродействие Верный ответ: 1,2,3

#### II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Оценка «ОТЛИЧНО» выставляется студенту, правильно выполнившему 85 % задания и на все вопросы, предполагающие письменный ответ, студент дал правильный и полный ответ.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка «ХОРОШО» выставляется студенту, правильно выполнившему 75 % задания и на все вопросы, предполагающие письменный ответ, студент дал правильный ответ, но допустил незначительные ошибки и не показал необходимой полноты.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка «УДОВЛЕТВОРИТЕЛЬНО» выставляется студенту, который правильно выполнил 50 % задания и на все вопросы, предполагающие письменный ответ, дал непротиворечивый ответ, или при ответе допустил значительные неточности и не показал полноты.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка «НЕУДОВЛЕТВОРИТЕЛЬНО» выставляется студенту, если он не выполнил условия, предполагающие оценку «Удовлетворительно».

#### III. Правила выставления итоговой оценки по курсу

Итоговая оценка выставляется в соответствии с оценкой промежуточной аттестации.