Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.03.01 Теплоэнергетика и теплотехника

Наименование образовательной программы: Теплоэнергетика и теплотехника

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Основы программирования

> Москва 2024

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

Сведения о владельце ЦЭП МЭИ

Владелец Опарин М.В.

Идентификатор R3d26d776-OparinMV-f001ba5b

Разработчик

СОГЛАСОВАНО:

Руководитель образовательной программы

NOSO NE	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»		
New	Сведения о владельце ЦЭП МЭИ		
	Владелец	Рогалев А.Н.	
	Идентификатор	Rb956ba44-RogalevAN-6233a28b	

А.Н. Рогалев

М.В. Опарин

Заведующий выпускающей кафедрой

New Mem	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»		
	Сведения о владельце ЦЭП МЭИ		
	Владелец	Рогалев А.Н.	
	Идентификатор	Rb956ba44-RogalevAN-6233a28b	

А.Н. Рогалев

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ОПК-2 Способен разрабатывать алгоритмы и компьютерные программы, пригодные для практического применения
 - ИД-1 Алгоритмизирует решение задачи и реализует алгоритмы с помощью программных средств
 - ИД-2 Применяет информационные технологии для поиска, хранения, обработки, анализа и представления информации

и включает:

для текущего контроля успеваемости:

Форма реализации: Письменная работа

- 1. КМ-1. Основы Python (Тестирование)
- 2. КМ-2. Циклы и типы данных (Тестирование)
- 3. КМ-3. Объектно-ориетированное программирование в Python (Тестирование)
- 4. КМ-4. Базы данных и Python (Тестирование)

БРС дисциплины

2 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по лиспиплине:

- КМ-1 КМ-1. Основы Python (Тестирование)
- КМ-2. Циклы и типы данных (Тестирование)
- КМ-3. Объектно-ориетированное программирование в Python (Тестирование)
- КМ-4 КМ-4. Базы данных и Python (Тестирование)

Вид промежуточной аттестации – Зачет с оценкой.

	Веса контрольных мероприятий, %				
Возная видууныму	Индекс	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	1	2	3	4
	Срок КМ:	4	8	12	16
Основы работы в прикладном языке программирования					
«Python»					
Основы работы в прикладном языке программирования					
«Python»					
Знакомство с современными интегрированными средами					

Типизация данных в языке высокого уровня «Python»				
Типизация данных в языке высокого уровня «Python»	+			
Виды трансляторов	+	+		
Циклы и условные операторы в объектно-ориентированном языке программирования				
Циклы и логические операции, операции сравнения		+		
Операторы		+		
Методы и свойства в Python. Работа с несколькими файлами и библиотеками				
Методы и свойства в Python		+		
Инкапсуляция		+		
Инкапсуляция в прикладном языке программирования «Python»				
Инкапсуляция в прикладном языке программирования «Python».			+	
Наследование: принцип наследования в ООП			+	
Полиморфизм в прикладном языке программирования «Python»				
Полиморфизм в прикладном языке программирования «Python».			+	
Исключение: обработка исключений try-except			+	
Наследование в прикладном языке программирования «Python»				
Наследование в прикладном языке программирования «Python».				+
Базы данных				
Базы данных				+
Оптимизация запросов.				+
Bec KM:	25	25	25	25

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	-	результаты обучения по	•
		дисциплине	
ОПК-2	ИД-1 _{ОПК-2}	Знать:	КМ-1 КМ-1. Основы Python (Тестирование)
	Алгоритмизирует решение	основные алгоритмы для	КМ-2 КМ-2. Циклы и типы данных (Тестирование)
	задачи и реализует	решения физико-	· · · · · · · · · · · · · · · · · · ·
	алгоритмы с помощью	математических задач на	
	программных средств	компьютере	
		особенности применения	
		аналитической математики	
		и численных методов для	
		решения систем линейных	
		и нелинейных	
		алгебраических уравнений	
		основные численные	
		методы решения физико-	
		математических задач	
		Уметь:	
		использовать встроенные	
		функции математических	
		пакетов и встроенные	
		методы объектно-	
		ориентированных языков	
		программирования, а	
		также графическое	
		представление результатов	
		для обработки, анализа и	
		представления	

		информации применительно к инженерным расчетам	
		применять алгоритмы для решения физико-	
		математических задач на	
		компьютере	
		применять основные	
		численные методы	
		решения физико-	
		математических задач	
ОПК-2	ИД-20ПК-2 Применяет	Знать:	КМ-1 КМ-1. Основы Python (Тестирование)
	информационные	методы анализа и	КМ-3 КМ-3. Объектно-ориетированное программирование в Python
	технологии для поиска,	моделирования	(Тестирование)
	хранения, обработки,	экспериментального	КМ-4 КМ-4. Базы данных и Python (Тестирование)
	анализа и представления	исследования	
	информации	основные средства	
		информационных	
		технологий для поиска,	
		хранения, обработки,	
		анализа и представления	
		информации	
		основы применения	
		положений физики,	
		математики, химии,	
		инженерной графики для	
		решения физико-	
		математических задач на	
		компьютере	
		Уметь:	
		применять методы	
		обработки	
		экспериментальных	

данных в инженерных	
расчетах	
использовать встроенные	
функции аналитических	
преобразований и	
численных методов	
расчета для систем	
линейных и нелинейных	
алгебраических уравнений	
применять аналитические	
и численные методы для	
решения поставленных	
1	
задач	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. КМ-1. Основы Python

Формы реализации: Письменная работа

Тип контрольного мероприятия: Тестирование **Вес контрольного мероприятия в БРС:** 25

Процедура проведения контрольного мероприятия: Студенты за прошедшие и текущее занятия решают задачи: Решают тест на тему прикладной язык программирования «Python».

Краткое содержание задания:

Что будет в результате выполнения программы:

a = 120

b = a + 4/2

a = b * 100

print(a)

В качестве ответа введите число

Контрольные вопросы/задания:

Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	
Знать: основные численные методы решения	1.Язык программирования высокого
физико-математических задач	уровня.
Знать: основы применения положений	1.Определение процедуры.
физики, математики, химии, инженерной	
графики для решения физико-математических	
задач на компьютере	
Уметь: применять аналитические и численные	1.Построить двухмерный график
методы для решения поставленных задач	функции
	2.Определить численное значение
	корней уравнения на графике
Уметь: применять основные численные	1. Работать с встроенными
методы решения физико-математических	аналитическими и численными
задач	функциями нахождения корней и
	экстремумов уравнения.

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 65

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-2. КМ-2. Циклы и типы данных

Формы реализации: Письменная работа

Тип контрольного мероприятия: Тестирование

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Студенты за прошедшие и текущее занятия решают задачи: решают тест на тему прикладной язык программирования «Python».

Краткое содержание задания:

Пример тестового вопроса

Алгоритм, в котором действия выполняются последовательно друг за другом называется Варианты ответов

- 1. линейный
- 2. разветвляющийся
- 3. циклический

Контрольные вопросы/задания:

контрольные вопросы/задания.	T		
Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки		
Знать: основные алгоритмы для решения физико-	1.Назвать методы		
математических задач на компьютере	сортировки данных и поиск		
	максимального элемента		
Знать: особенности применения аналитической	1.Определение алгоритма		
математики и численных методов для решения систем			
линейных и нелинейных алгебраических уравнений			
Уметь: использовать встроенные функции математических	1.Начертить блок-схему		
пакетов и встроенные методы объектно-ориентированных	алгоритма.		
языков программирования, а также графическое			
представление результатов для обработки, анализа и			
представления информации применительно к инженерным			
расчетам			
Уметь: применять алгоритмы для решения физико-	1.Применить функцию		
математических задач на компьютере	вывода информации в		
	языке программирования		
	«Python».		
	2. Назвать способы решения		
	систем линейных		
	алгебраических уравнений		

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 65

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-3. КМ-3. Объектно-ориетированное программирование в Python

Формы реализации: Письменная работа

Тип контрольного мероприятия: Тестирование

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Студенты решают поставленные задачи. Желательно продемонстрировать несколько способов решения одной задачи, описать алгоритм решения, графически проиллюстрировать, объяснить ход решения. По результатам решения и объяснения выставляется оценка.

Краткое содержание задания:

- 1. Проанализировать исходные данные и построить график данных по исходным условиям, отформатировать его, создать процедуру по аппроксимации данных полиномом 2 степени.
- 2. Тест по теме объектно-ориентированного программирования в Python.

Контрольные вопросы/задания:

Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	
Знать: методы анализа и моделирования	1. Определение Декартовых систем
экспериментального исследования	координат
	2.Определение корня решения уравнения
Уметь: использовать встроенные функции	1.Уметь использовать функции различных
аналитических преобразований и	библиотек языка программирования Python
численных методов расчета для систем	для численного решения системы
линейных и нелинейных алгебраических	уравнений и аналитического решения
уравнений	различных задач

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 65

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-4. КМ-4. Базы данных и Python

Формы реализации: Письменная работа

Тип контрольного мероприятия: Тестирование **Вес контрольного мероприятия в БРС:** 25

Процедура проведения контрольного мероприятия: Студенты выполняют в качестве задания тест по теме «Базы данных и Python» и решают задачу по выгрузке информации и её обработке из базы данных.

Краткое содержание задания:

Основное отличие реляционной БД:

- 1) данные организовываются в виде отношений
- 2) строго древовидная структура
- 3) представлена в виде графов

Задача на тему выгрузке стоимости электроэнергии за последние 3 года по часу в Москве и нахождение её максимального и минимального значения.

Контрольные вопросы/задания:

топтроприве вопросы задания:		
Запланированные результаты обучения по	Вопросы/задания для проверки	
дисциплине		
Знать: основные средства информационных	1.Построение графиков в языках	
технологий для поиска, хранения, обработки,	программирования.	
анализа и представления информации	2.Определение алгоритма решения	
	физической задачи с качественной	
	оценкой.	
Уметь: применять методы обработки	1.Библиотека matplotlib в «Python»	
экспериментальных данных в инженерных	2.Вывод информации из базы	
расчетах	данных в консоль	

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 65

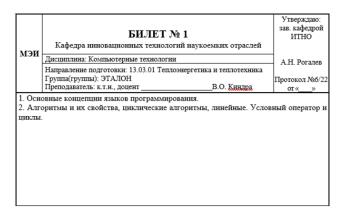
Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)


Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

2 семестр

Форма промежуточной аттестации: Зачет с оценкой

Пример билета

Процедура проведения

Зачет проводится в устной форме. В билете содержится два теоретических вопроса. На подготовку студенту дается 30 мин.

- I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины
- **1. Компетенция/Индикатор:** ИД- $1_{\rm O\Pi K-2}$ Алгоритмизирует решение задачи и реализует алгоритмы с помощью программных средств

Вопросы, задания

- 1.Системы единиц измерения (встроенные и пользовательские), размерность, единицы измерения (встроенные и пользовательские)
- 2.Создание функции пользователя при решении задачи оптимизации на примере нахождения максимального объема емкости по заданным геометрическим размерам
- 3. Комбинирование численных и аналитических методов при решении задач на компьютере

Материалы для проверки остаточных знаний

- 1. Выберите пункт, не относящийся к свойствам алгоритма?
 - Ответы:
- 1 Понятность
- 2 Повторяемость
- 3 Цикличность

Верный ответ: 3

2. Какая алгоритмическая конструкция после действия проверяет условие?

Ответы:

- 1 Цикл с постпроверкой
- 2 Цикл с предпроверкой

Верный ответ: 1

3.Сколько выводов выходит от блока «условие»?

Ответы:

1 Одно

- 2 Два
- 3 Более двух

Верный ответ: 2

2. Компетенция/Индикатор: ИД- $2_{O\Pi K-2}$ Применяет информационные технологии для поиска, хранения, обработки, анализа и представления информации

Вопросы, задания

- 1.Оператор ввода числового значения с единицей физической величины. Ввод и вывод значения температуры по различным шкалам. Градусы Цельсия на графике
- 2. Работа с размерными физическими, эмпирическими и псевдоэмпирическими формулами в математических пакетах.

Материалы для проверки остаточных знаний

1. Алгоритм, в котором действия выполняются последовательно друг за другом называется

Ответы:

- 1. линейный
- 2. разветвляющийся
- 3. циклический

Верный ответ: 1

2.Сколько байт в мегабайте?

Ответы:

- 1.1048576
- 2. 1024*1024
- 3.1000000

Верный ответ: 1,2

- 3. Под хранение какой переменной резервируется минимум памяти компьютера? Ответы:
- 1 Целочисленной
- 2 Булевой
- 3 Вещественной

Верный ответ: 2

II. Описание шкалы оценивания

Оценка: «зачтено»

Описание характеристики выполнения знания: Работа выполнена верно или с несущественными недостатками

Оценка: «не зачтено»

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ "МЭИ".