Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.04.01 Теплоэнергетика и теплотехника

Наименование образовательной программы: Информационные технологии сопровождения жизненного

цикла

Уровень образования: высшее образование - магистратура

Форма обучения: Очная

Оценочные материалы по дисциплине Системы измерения и сбора данных

> Москва 2023

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

 Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

 Сведения о владельце ЦЭП МЭИ

 Владелец
 Щербатов И.А.

 Идентификатор
 R6b2590a8-ShcherbatovIA-d91ec17

СОГЛАСОВАНО:

Руководитель образовательной программы

Разработчик

NGO NGO	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»	
San International Res	Сведения о владельце ЦЭП МЭИ		
NCM	Владелец	Бурмакина А.В.	
	Идентификатор	Ree6ce9d4-BurmakinaAV-003bbda	

А.В. Бурмакина

И.А.

Щербатов

Заведующий выпускающей кафедрой

1930 Mg	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»
	Сведения о владельце ЦЭП МЭИ	
	Владелец	Рогалев А.Н.
NOM &	Идентификатор	Rb956ba44-RogalevAN-6233a28b

А.Н. Рогалев

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-2 Способен осуществлять сопровождение наукоемких изделий и комплексов на всех стадиях жизненного цикла с использованием информационных технологий
 - ИД-2 Разрабатывает математические модели сложных технических систем

и включает:

для текущего контроля успеваемости:

Форма реализации: Письменная работа

- 1. КМ-1. Основные понятия и определения (Тестирование) (Тестирование)
- 2. КМ-2. Математические модели динамических систем (Тестирование)

Форма реализации: Устная форма

- 1. КМ-3. Защита лабораторных работ № 1-4 (Перекрестный опрос)
- 2. КМ-4. Защита лабораторной работы №5 (Перекрестный опрос)

БРС дисциплины

1 семестр

	Веса контрольных мероприятий, %				
Danway wyayyyyyyyy	Индекс	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	1	2	3	4
	Срок КМ:	4	8	12	16
Основные термины и понятия в области сбора да	нных				
технологических процессов					
Основные термины и понятия в области измерен	ий			,	
технологических процессов		+		+	
Динамические модели					
Динамические модели					
Методы и средства измерения					
Методы и средства измерения			+		
Системы измерения и сбора данных и протоколы передачи					
Системы измерения и сбора данных и протоколы передачи			+		
Монтаж средств измерений					

Монтаж средств измерений			+	
Стандартизация и сертификация				
Стандартизация и сертификация			+	
Техническая документация				
Техническая документация				+
Нормативная документация энергетической отрасли				
Нормативная документация энергетической отрасли				+
Bec KM:	15	15	45	25

^{\$}Общая часть/Для промежуточной аттестации\$

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции		результаты обучения по	•
		дисциплине	
ПК-2	ИД-2пк-2 Разрабатывает	Знать:	КМ-1. Основные понятия и определения (Тестирование)
	математические модели	принципы построения	(Тестирование)
	сложных технических	систем информационного	КМ-2. Математические модели динамических систем (Тестирование)
	систем	обеспечения и	КМ-3. Защита лабораторных работ № 1-4 (Перекрестный опрос)
		организовывать сбор	КМ-4. Защита лабораторной работы №5 (Перекрестный опрос)
		данных для	
		автоматизированных	
		систем управления	
		объектами промышленной	
		теплоэнергетики	
		базовые понятия теории	
		погрешности и	
		неопределенности	
		измерений	
		основные принципы	
		организации	
		государственной системы	
		обеспечения единства	
		измерений, нормативные	
		документы, регулирующие	
		систему метрологического	
		обеспечения	
		основные виды и методы	
		измерений различных	
		технических величин	

основные виды и способы передачи данных к автоматизированным системам управления объектами промышленной теплоэнергетики Уметь: определять метрологические характеристики средств измерения, формировать требования к приборному парку предприятия применять современные системы программирования для реализации различных алгоритмов управления и оценки качества работы систем регулирования производить оценку погрешности и неопределенности результатов измерений составлять функциональные схемы контрольноизмерительных и информационноизмерительных систем

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. КМ-1. Основные понятия и определения (Тестирование)

Формы реализации: Письменная работа

Тип контрольного мероприятия: Тестирование **Вес контрольного мероприятия в БРС:** 15

Процедура проведения контрольного мероприятия: Студенты за прошедшие и текущее занятия решают задачи: Решают тест на тему «Основные термины и понятия в области сбора данных технологических процессов»

Краткое содержание задания:

Выбрать правильный вариант ответа.

Пример задания:

- 1. Под классом точности прибора подразумевается:
- а) максимально допустимая погрешность при измерении
- б) минимально допустимая погрешность при измерении
- в) абсолютная погрешность при измерении
- г) относительная погрешность при измерении

Контрольные вопросы/задания:

Знать: базовые понятия теории	1. Дать определение SCADA
погрешности и	2. Дать определение протоколам передачи данных
неопределенности измерений	
Знать: принципы построения	1.Определить требуемый прибор в зависимости от
систем информационного	заданных условий
обеспечения и организовывать	
сбор данных для	
автоматизированных систем	
управления объектами	
промышленной теплоэнергетики	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задачи решены в полном объеме или выполнены преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 65

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если выбрано верное направление для решения задач и большинство задач решено

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если не все задачи решены или решения задач не доведено до конца

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-2. КМ-2. Математические модели динамических систем

Формы реализации: Письменная работа

Тип контрольного мероприятия: Тестирование

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: Студенты за прошедшие и текущее занятия решают задачи: решают тест на тему «Математические модели динамических систем»

Краткое содержание задания:

Выбрать правильный вариант ответа.

Пример тестового вопроса

Динамическая модель это:

Варианты ответов

- 1. теоретическая конструкция (модель), описывающая изменение состояний объекта во времени.
- 2. теоретическая конструкция (модель), описывающая изменение состояний объекта в пространстве относительно других объектов.
- 3. теоретическая конструкция (модель), описывающая установившееся состояние объекта

Контрольные вопросы/задания:

Troub pour property and minimal	
Знать: основные виды и методы	1.Уметь пользоваться парком приборов и
измерений различных	сопутствующей к нему документацией
технических величин	
Знать: основные виды и способы	1.Относительная погрешность
передачи данных к	
автоматизированным системам	
управления объектами	
промышленной теплоэнергетики	
Знать: основные принципы	1. Абсолютная погрешность
организации государственной	
системы обеспечения единства	
измерений, нормативные	
документы, регулирующие	
систему метрологического	
обеспечения	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задачи решены в полном объеме или выполнены преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 65

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если выбрано верное направление для решения задач и большинство задач решено

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если не все задачи решены или решения задач не доведено до конца

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-3. КМ-3. Защита лабораторных работ № 1-4

Формы реализации: Устная форма

Тип контрольного мероприятия: Перекрестный опрос

Вес контрольного мероприятия в БРС: 45

Процедура проведения контрольного мероприятия: Студенты показывают результаты

обработки лабораторной работы и отвечают на вопросы преподавателя

Краткое содержание задания:

Что подразумевает понятие «масштаб времени» при динамическом моделирование объекта?

Контрольные вопросы/задания:

1 1	
Уметь: определять	1.ОРС - сервер
метрологические характеристики	2.Уметь использовать инструменты динамического
средств измерения, формировать	моделирования (SimInTech, Matlab Simulink и др)
требования к приборному парку	
предприятия	
Уметь: применять современные	1.Динамическая модель, АСР
системы программирования для	
реализации различных	
алгоритмов управления и оценки	
качества работы систем	
регулирования	
Уметь: производить оценку	1.Статическая модель
погрешности и	
неопределенности результатов	
измерений	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задачи решены в полном объеме или выполнены преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если выбрано верное направление для решения задач и большинство задач решено

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если не все задачи решены или решения задач не доведено до конца

Оиенка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-4. КМ-4. Защита лабораторной работы №5

Формы реализации: Устная форма

Тип контрольного мероприятия: Перекрестный опрос

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Студенты показывают результаты

обработки лабораторной работы и отвечают на вопросы преподавателя

Краткое содержание задания:

Какие уравнения в дифференциальной форме используются для расчета гидравлических потерь в модели трубопровода?

Контрольные вопросы/задания:

Уметь:	составлять	1.Протоколы передачи данных
функциональные	схемы	2.Определение SCADA
контрольно-измери	тельных и	3.Р&I диаграмма
информационно-из	мерительных	4. Установка щитовых изделий в соответствие с ПУЭ
систем		

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задачи решены в полном объеме или выполнены преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если выбрано верное направление для решения задач и большинство задач решено

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если не все задачи решены или решения задач не доведено до конца

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

1 семестр

Форма промежуточной аттестации: Зачет с оценкой

Пример билета

	БИЛЕТ № 1 Кафедра инновационных технологий наукоемких отраслей	Утверждаю: зав. кафедрой ИТНО
	Дисциплина: Система измерения и сбора данных	
мэи	Направление подготовки: 13.03.01 Теплоэнергетика и теплотехника	А.Н. Рогалев
	Группа(группы): ФП-13м-23 Преподаватель: к.т.н., доцент И.А. Щербатов	Протокол №
		2023 r.
	I диаграмма. KKS- кодировка и кодировка по ГОСТ.	

Процедура проведения

Зачет проводится в устной форме. В билете содержится два теоретических вопроса. На подготовку студенту дается 30 мин.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-2_{ПК-2} Разрабатывает математические модели сложных технических систем

Вопросы, задания

- 1.Основные метрологические характеристики в теплоэнергетике. Дать определение абсолютной и относительной погрешности, классу точности, чувствительности
- 2. Назвать наиболее распространенные протоколы передачи данных и способ их работы
- 3. Дать определение ККЅ кодировке и для чего она применяется
- 4. Дайте определение и расшифровку аббревиатуре SCADA.
- 5. Дайте определение и расшифровку аббревиатуре ПЛК.
- 6. Назовите преимущество токового сигнала 4-20 мА
- 7. Дайте определение опросным листам на приборы
- 8. Дайте определение полевому уровню АСУТП
- 9. Дайте определение ОРС серверу
- 10. Назовите что включает в себя эскизный проект объекта разработки
- 11. Дайте определение техническому процессу
- 12.Перечислите основные виды исполнительных устройств
- 13. Назовите для чего в проекте необходим выбор IP- защиты ПЛК

Материалы для проверки остаточных знаний

- 1.ККS кодировку изобрели и впервые использовала компания? Ответы:
- 1 Siemens
- 2 Danfos
- 3 IEK

Верный ответ: 1

2. Какого вида погрешности не существует?

Ответы:

- 1. Абсолютной
- 2. Относительной
- 3. Мнимой

Верный ответ: 3

3. Метрология – это

Ответы:

- 1. теория передачи размеров единиц физических величин;
- 2. теория исходных средств измерений (эталонов);
- 3. наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности;

Верный ответ: 3

4. Физическая величина – это

Ответы:

- 1. объект измерения;
- 2. величина, подлежащая измерению, измеряемая или измеренная в соответствии с основной целью измерительной задачи;
- 3. одно из свойств физического объекта, общее в качественном отношении для многих физических объектов, но в количественном отношении индивидуальное для каждого из них.

Верный ответ: 3

5. Количественная характеристика физической величины называется?

Ответы:

- 1. размером;
- 2. размерностью;
- 3. объектом измерения.

Верный ответ: 1

6. Для поверки рабочих мер и приборов служат

Ответы:

- 1. рабочие эталоны;
- 2. эталоны-копии;
- 3. эталоны сравнения.

Верный ответ: 1

7.По способу получения результата все измерения делятся на

Ответы:

- 1. прямые, косвенные, совместные и совокупные.
- 2. прямые и косвенные;
- 3. статические и динамические;

Верный ответ: 1

8.Единством измерений называется

Ответы:

- 1. система калибровки средств измерений;
- 2. сличение национальных эталонов с международными;
- 3. состояние измерений, при которых их результаты выражены в узаконенных единицах величин и погрешности измерений не выходят за установленные пределы с заданной вероятностью.

Верный ответ: 3

9. Воспроизводимость измерений – это

Ответы:

- 1. характеристика качества измерений, отражающая близость к нулю систематических погрешностей результатов измерений;
- 2. характеристика качества измерений, отражающая близость друг к другу результатов измерений одной и той же величины, выполняемых повторно одними и теми же методами и средствами измерений и в одних и тех же условиях; отражает влияние случайных погрешностей на результат измерения;
- 3. характеристика качества измерений, отражающая близость друг к другу результатов измерений одной и той же величины, полученных в разных местах, разными методами и средствами измерений, разными операторами, но приведённых к одним и тем же условиям.

Верный ответ: 3

10. Цели стандартизации – это

Ответы:

- 1. аудит систем качества;
- 2. внедрение результатов унификации;
- 3. разработка норм, требований, правил, обеспечивающих безопасность продукции, взаимозаменяемость и техническую совместимость, единство измерений, экономию ресурсов.

Верный ответ: 3

11. Принципами стандартизации являются

Ответы:

- 1. добровольное подтверждение соответствия объекта стандартизации;
- 2. обязательное подтверждение соответствия объекта стандартизации;
- 3. гармонизация национальных стандартов с международными при максимальном учёте законных интересов заинтересованных сторон.

Верный ответ: 1

12.К документам в области стандартизации не относятся

Ответы:

- 1. национальные стандарты;
- 2. бизнес-планы.
- 3. технические регламенты;

Верный ответ: 2

- 13.Ведущей организацией в области международной стандартизации является Ответы:
- 1. Международная электротехническая комиссия (МЭК);
- 2. Международная организация по стандартизации (ИСО);
- 3. Всемирная организация здравоохранения (ВОЗ).

Верный ответ: 2

14.Полевой уровень АСУТП включает в себя

Ответы:

- 1.Первичные датчики,
- 2. Приводы и исполнительные устройства,
- 3. Клеммники и нормирующие преобразователи
- 4. Щиты сбора данных измерения, копки пуска и останова исполнительных устройств, кабели и клемники соединений.

Верный ответ: 1

- 15. Выбор измерительного устройства с HART интерфейсом в АСУ ТП определяется: Ответы:
- 1. Невысокой стоимостью датчика
- 2.Улучшенными возможностями использования барьеров искробезопасности
- 3. Высокой надежностью датчика

Верный ответ: 1

16.Присоединение измерительного устройства давления к процессу с использованием рекомендаций ANSI означает

Ответы:

- 1. Необходимость использования метрической длины присоединения
- 2. Дюймовой резьбы присоединения
- 3. Метрической резьбы присоединения

Верный ответ: 3

17. Модули (АІ) выбираются для:

Ответы:

- 1.Выполнения проектного решения по вводу аналоговых сигналов
- 2.Выполнения проектного решения по выводу аналоговых сигналов
- 3.Выполнения проектного решения по выводу сигналов на диспетчерский уровень управления

Верный ответ: 1

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70 Описание характеристики выполнения знания: Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Большинство ответов даны верно. В части практического задания есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Основная часть задания выполнена верно. На дополнительные вопросы были даны неполные ответы

Оценка: 2

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

III. Правила выставления итоговой оценки по курсу

Основная часть задания выполнена верно. На дополнительные вопросы были даны неполные ответы.