Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.04.01 Теплоэнергетика и теплотехника

Наименование образовательной программы: Эффективные теплоэнергетические системы предприятий

и ЖКХ

Уровень образования: высшее образование - магистратура

Форма обучения: Очная

Оценочные материалы по дисциплине Прикладные программные средства в теплоэнергетике

Москва 2023

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Преподаватель (должность)

-D1 1119111D 0 111V1V						
1930 May	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»					
	Сведения о владельце ЦЭП МЭИ					
-	Владелец	Федюхин А.В.				
» <u>МЭИ</u> «	Идентификатор	Rc1c8a01a-FediukhinAV-59cb47d9				
(подпись)						

A.B. Федюхин (расшифровка подписи)

СОГЛАСОВАНО:

Руководитель образовательной программы

(должность, ученая степень, ученое звание)

Заведующий выпускающей кафедры (должность, ученая степень,

ученое звание)

NECTRICORDINATE OF THE PERSON	Подписано электронн	юй подписью ФГБОУ ВО «НИУ «МЭИ»	
100	Сведения о владельце ЦЭП МЭИ		
	Владелец	Яворовский Ю.В.	
» <u>МЭИ</u> «	Идентификатор	7e35b260-YavorovskyYV-dabb149	

(подпись)

1930 mg	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»				
	Сведения о владельце ЦЭП МЭИ				
	Владелец	Яворовский Ю.В.			
» <u>МэИ</u> «	Идентификатор Р	7e35b260-YavorovskyYV-dabb149			

(подпись)

Ю.В.

Яворовский

(расшифровка подписи)

Ю.В. Яворовский

(расшифровка подписи)

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

1. ПК-3 Способен участвовать в эксплуатации теплоэнергетических систем предприятий и ЖКХ

ИД-4 Способен применять на практике различные методики и современные программные пакеты для повышения надежности теплоэнергетических систем предприятий и ЖКХ

и включает:

для текущего контроля успеваемости:

Форма реализации: Компьютерное задание

- 1. Изучение технических характеристик и возможностей программного обеспечения. Обзор и анализ существующих программных средств для решения поставленных задач в области теплоэнергетики. (Семинар)
- 2. Моделирование газификатора твердого топлива (Семинар)
- 3. Моделирование парогазовой установки (Семинар)
- 4. Моделирование ректификационной колонны и органического цикла Ренкина (Семинар)

БРС дисциплины

3 семестр

	Веса контрольных мероприятий, %				
Doored weaveners	Индекс	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	1	2	3	4
	Срок КМ:	4	8	10	14
Изучение технических характеристик и возможност					
программного обеспечения. Обзор и анализ существ	зующих				
программных средств для решения поставленных за	дач в				
области теплоэнергетики.					
Знакомство с программным комплексом Aspen One	И	+			
отдельными ее модулями.					
Решение тестовых задач и получение базовых навыков					
математического моделирования.					
Моделирование ректификационной колонны и органического					
цикла Ренкина.					
Моделирование ректификационной колонны.			+		
			'		
Моделирование органического цикла Ренкина.			+		
			'		
Моделирование парогазовой установки.					
туюделирование нарогазовой установки.					

Моделирование парогазовой установки.				+	
Моделирование газификатора твердого топлива.					
Моделирование газификатора твердого топлива.					+
Bec	KM: 2	.5	25	25	25

\$Общая часть/Для промежуточной аттестации\$

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	-	результаты обучения по	•
		дисциплине	
ПК-3	ИД-4 _{ПК-3} Способен	Знать:	Изучение технических характеристик и возможностей программного
	применять на практике	– типовые методики	обеспечения. Обзор и анализ существующих программных средств для
	различные методики и	проведения расчетов и	решения поставленных задач в области теплоэнергетики. (Семинар)
	современные	проектирования элементов	Моделирование ректификационной колонны и органического цикла
	программные пакеты для	оборудования и объектов	Ренкина (Семинар)
	повышения надежности	деятельности (систем) в	Моделирование парогазовой установки (Семинар)
	теплоэнергетических	целом с использованием	Моделирование газификатора твердого топлива (Семинар)
	систем предприятий и	нормативной	
	ЖКХ	документации и	
		современных методов	
		поиска и обработки	
		информации.	
		Уметь:	
		– анализировать научно-	
		техническую информацию,	
		изучать отечественный и	
		зарубежный опыт по	
		тематике деятельности.	
		 проводить эксперимент с 	
		помощью численного	
		моделирования по	
		заданным методикам и	
		анализировать результаты	
		с привлечением	
		соответствующего	

математического аппарата.	
— ВЫЯВИТЬ	
естественнонаучную	
сущность проблем,	
возникающие в ходе	
профессиональной	
деятельности, и	
способностью привлечь	
для их решения	
соответствующий физико-	
математический аппарат.	

II. Содержание оценочных средств. Шкала и критерии оценивания

KM-1. Изучение технических характеристик и возможностей программного обеспечения. Обзор и анализ существующих программных средств для решения поставленных задач в области теплоэнергетики.

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Семинар Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Выполнение учебных и тестовых

лабораторных заданий с использованием изучаемого программного обеспечения.

Краткое содержание задания:

Выполнение учебных и тестовых лабораторных заданий с использованием изучаемого программного обеспечения.

Контрольные вопросы/задания:

Знать: – типовые методики проведения расчетов проектирования элементов оборудования И объектов деятельности (систем) в целом с использованием нормативной документации и современных методов поиска и обработки информации.

- 1.1. Какие ключевые особенности Aspen PLUS?
- 2. Какие основные задачи решает Aspen PLUS?
- 3. Какие существуют пакет термодинамических свойств?
- 4. Для каких веществ корректно применять уравнение Пенга-Робинсона?
- 5. В чем отличие модулей PLUS и HYSYS?

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-2. Моделирование ректификационной колонны и органического цикла Ренкина

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Семинар Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Выполнение учебных и тестовых лабораторных заданий с использованием изучаемого программного обеспечения.

Краткое содержание задания:

Выполнение учебных и тестовых лабораторных заданий с использованием изучаемого программного обеспечения.

Контрольные вопросы/задания:

Уметь: — выявить естественнонаучную сущность проблем, возникающие в ходе профессиональной деятельности, и способностью привлечь для их решения соответствующий физико-математический аппарат.

- 1.1. Какие основные типы ректификационных колонн, представлены в Aspen HYSYS?
- 2. Что будет если увеличить или уменьшить температуру сырьевого потока?
- 3. Как настроить конденсатор ректификационной колонны?
- 4. Как построить профиль температур тарелок ректификационной колонны?
- 5. Как ввести блок Рецикл в схему органического пикла Ренкина?
- 6. С использованием программы Aspen HYSYS провести моделирование схемы органического цикла Ренкина. Параметры исходного потока: циклопентан, 32 С, 320 кПа, 1200 кг⋅моль/ч. Потеря давления в испарителе 20 кПа, разница температур + 70 С. Перепад давления в турбине 200 кПа. Режимные характеристики конденсатора и насоса подобрать таким образом, чтобы цикл замкнулся и правильно функционировал.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-3. Моделирование парогазовой установки

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Семинар Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Выполнение учебных и тестовых лабораторных заданий с использованием изучаемого программного обеспечения.

Краткое содержание задания:

Выполнение учебных и тестовых лабораторных заданий с использованием изучаемого программного обеспечения.

Контрольные вопросы/задания:

Уметь: – анализировать научнотехническую информацию, изучать отечественный и зарубежный опыт по тематике деятельности.

- 1.1. Какие отличия моделирования ПГУ в Aspen PLUS и THERMOFLEX?
- 2. Как провести оптимизационный расчет в THERMOFLEX?
- 3. Из каких основных компонентов состоит $\Pi\Gamma Y$ в Aspen Plus?
- 4. Как задать температуру оборотной воды в паросиловом цикле.
- 5. С использованием программы Aspen Plus провести моделирование схемы паротурбинной установки с котлом-утилизатором. Утилизируемое тепло диоксид углерода с температурой на входе 1800 С. Расход питательный воды принять 3 т/ч, давление на нагнетании питательного насоса 15 бар, температура оборотной воды +10 С, давление в конденсаторе 0.3 бар. В ручном режиме или с использованием процедуры оптимизации подобрать расход диоксида углерода, при котором температура дымовых газов после котла утилизатора будет в диапазоне 200 300 С и паротурбинный цикл будет верно функционировать (происходить процессы испарения, конденсации воды и совершаться полезная работа в паровой турбине).

Описание шкалы оценивания:

Оиенка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оиенка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-4. Моделирование газификатора твердого топлива

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Семинар Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Выполнение учебных и тестовых лабораторных заданий с использованием изучаемого программного обеспечения.

Краткое содержание задания:

Выполнение учебных и тестовых лабораторных заданий с использованием изучаемого программного обеспечения.

Контрольные вопросы/задания:

Уметь: — проводить эксперимент с помощью численного моделирования по заданным методикам и анализировать результаты с привлечением соответствующего математического аппарата.

- 1.1. Какие элементы используются для моделирования реактора газификации?
- 2. Как настроить реактор стехиометрических реакций?
- 3. Как настроить реактор Гиббса?
- 4. Как можно повлиять на состав и выход продуктов?
- 5. Как увеличить выход водорода в газообразных продуктах?
- 6. С использованием программы Aspen Plus провести моделирование схемы газификатора бурого угля. Температура в реакторе 800 С, давление 7 атм, расход окислителя определяется из коэффициента избытка воздуха 0,3 при расходе топлива 100 кг/ч.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 75 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

3 семестр

Форма промежуточной аттестации: Зачет с оценкой

Пример билета

- 1. С использованием программы Aspen Plus провести моделирование схемы газотурбинной установки со сжиганием метана в камере сгорания. Расход метана 80 кг/ч, давление на выходе из воздушного компрессора 18 бар, давление разрежения после газовой турбины 1 бар. Давление и температура окружающего воздуха равны 1 бар и -20 С. Добавить в контур газотурбинной установки теплообменник регенерации тепла дымовых газов для подогрева воздуха, идущего на горение. С помощью процедуры оптимизации подобрать такой расход воздуха, при котором на газовой турбине будет максимальная выработка электрической энергии.
- 2. Как проводится первоначальная настройка Thermoflex?
- 3. Для чего необходимо охлаждать верхний продукт и нагревать нижний в ректификационной колонне?

Процедура проведения

Проведение очного зачета с опросом студентов.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД- $4_{\Pi K-3}$ Способен применять на практике различные методики и современные программные пакеты для повышения надежности теплоэнергетических систем предприятий и ЖКХ

Вопросы, задания

- 1.1. С использованием программы Thermoflex рассчитать режим работы теплового насоса для воздушного отопления жилого дома. Температуру наружного воздуха принять по СНиП 23-01-99 (2002) «Строительная климатология» для города Ярославля, расход подогреваемого воздуха 100 кг/ч, температура грунта в январе +2,8 С.
- 2. Как проводится первоначальная настройка Aspen HYSYS? Какие методы расчета термодинамических свойств используются в Aspen HYSYS?
- 3. Что представляет собой цикл ПГУ, какие его основные особенности?
- 1. С использованием программы Thermoflex рассчитать режим работы теплового насоса для воздушного отопления жилого дома. Температуру наружного воздуха принять по СНиП 23-01-99 (2002) «Строительная климатология» для города Владивостока, расход подогреваемого воздуха 70 кг/ч, температура грунта в январе +3,7 С.
- 2. Какие основные задачи решает Aspen Plus? Как проводится первоначальная настройка Aspen Plus?
- 3. Что представляет собой процесс ректификации?

- 1. С использованием программы Thermoflex рассчитать режим работы теплового насоса для воздушного отопления жилого дома. Температуру наружного воздуха принять по СНиП 23-01-99 (2002) «Строительная климатология» для города Магадана, расход подогреваемого воздуха 50 кг/ч, температура грунта в январе -6,5 С.
- 2. Какие ключевые особенности Aspen HYSYS? Какие основные задачи решает Aspen HYSYS?
- 3. Как задать критерий оптимизации и оптимизируемые параметры математической модели, на примере ПГУ?
- 1. С использованием программы Aspen Plus провести моделирование схемы газотурбинной установки со сжиганием метана в камере сгорания. Расход метана 120 кг/ч, давление на выходе из воздушного компрессора 20 бар, давление разрежения после газовой турбины 1 бар. Давление и температура окружающего воздуха равны 1 бар и -10 С. С помощью процедуры оптимизации подобрать такой расход воздуха, при котором будет полное сжигание метана, и температура дымовых газов на входе в газовую турбину не превысит 1500 С.
- 2. Какие ключевые особенности Thermoflex? Какие основные задачи решает Thermoflex?
- 3. Чем отличается органический цикл Ренкина от цикла Ренкина-Клаузиуса?
- 1. С использованием программы Aspen Plus провести моделирование схемы газотурбинной установки со сжиганием метана в камере сгорания. Расход метана 250 кг/ч, давление на выходе из воздушного компрессора 15 бар, давление разрежения после газовой турбины 2 бар. Давление и температура окружающего воздуха равны 1 бар и -15 С. Добавить в контур газотурбинной установки теплообменник регенерации тепла дымовых газов для подогрева воздуха, идущего на горение. С помощью процедуры оптимизации подобрать такой расход воздуха, при котором на газовой турбине будет максимальная выработка электрической энергии.
- 2. Из каких элементов состоит тепловой насос в Thermoflex?
- 3. Какие элементы используются для моделирования реактора газификации?
- 1. С использованием программы Aspen Plus провести моделирование схемы газотурбинной установки со сжиганием метана в камере сгорания. Расход метана 80 кг/ч, давление на выходе из воздушного компрессора 18 бар, давление разрежения после газовой турбины 1 бар. Давление и температура окружающего воздуха равны 1 бар и -20 С. Добавить в контур газотурбинной установки теплообменник регенерации тепла дымовых газов для подогрева воздуха, идущего на горение. С помощью процедуры оптимизации подобрать такой расход воздуха, при котором на газовой турбине будет максимальная выработка электрической энергии.
- 2. Как проводится первоначальная настройка Thermoflex?
- 3. Для чего необходимо охлаждать верхний продукт и нагревать нижний в ректификационной колонне?
- 1. С использованием программы Aspen Plus провести моделирование схемы паротурбинной установки с котлом-утилизатором. Утилизируемое тепло диоксид углерода с температурой на входе 1800 С. Расход питательный воды принять 3 т/ч, давление на нагнетании питательного насоса 15 бар, температура оборотной воды +10 С,

давление в конденсаторе 0.3 бар. В ручном режиме или с использованием процедуры оптимизации подобрать расход диоксида углерода, при котором температура дымовых газов после котла — утилизатора будет в диапазоне 200 — 300 С и паротурбинный цикл будет верно функционировать (происходить процессы испарения, конденсации воды и совершаться полезная работа в паровой турбине).

- 2. Какие достоинства и недостатки есть Aspen HYSYS по сравнению с Aspen Plus?
- 3. Что будет если увеличить или уменьшить температуру сырьевого потока в ректификационной колонне?
- 1. С использованием программы Aspen Plus провести моделирование схемы паротурбинной установки с котлом-утилизатором. Утилизируемое тепло диоксид углерода с температурой на входе 1700 С. Расход питательный воды принять 2 т/ч, давление на нагнетании питательного насоса 12 бар, температура оборотной воды +10 С, давление в конденсаторе 0.2 бар. В ручном режиме или с использованием процедуры оптимизации подобрать расход диоксида углерода, при котором температура дымовых газов после котла утилизатора будет в диапазоне 200 300 С и паротурбинный цикл будет верно функционировать (происходить процессы испарения, конденсации воды и совершаться полезная работа в паровой турбине).
- 2. В чем заключается принцип работы, и какие особенности теплового насоса?
- 3. Какие основные элементы содержит вкладка ModelPalette в Aspen Plus?
- 1. С использованием программы Aspen Plus провести моделирование схемы паротурбинной установки с котлом-утилизатором. Утилизируемое тепло диоксид углерода с температурой на входе 1600 С. Расход питательный воды принять 2 т/ч, давление на нагнетании питательного насоса 11 бар, температура оборотной воды +10 С, давление в конденсаторе 0.1 бар. В ручном режиме или с использованием процедуры оптимизации подобрать расход диоксида углерода, при котором температура дымовых газов после котла утилизатора будет в диапазоне 200 300 С и паротурбинный цикл будет верно функционировать (происходить процессы испарения, конденсации воды и совершаться полезная работа в паровой турбине).
- 2. Какие основные типы ректификационных колонн, представлены в Aspen HYSYS?
- 3. Какие основные особенности и преимущества органического цикла Ренкина?
- 1. С использованием программы Aspen HYSYS провести моделирование схемы органического цикла Ренкина. Параметры исходного потока: циклопентан, 30 С, 300 кПа, 1000 кг·моль/ч. Потеря давления в испарителе 10 кПа, разница температур + 75 С. Перепад давления в турбине 150 кПа. Режимные характеристики конденсатора и насоса подобрать таким образом, чтобы цикл замкнулся и правильно функционировал.
- 2. Из каких основных компонентов состоит ПГУ в Aspen Plus?
- 3. Варьированием, каких параметров в среде Thermoflex достигается оптимизация режимов работы теплового насоса?
- 1. С использованием программы Aspen HYSYS провести моделирование схемы органического цикла Ренкина. Параметры исходного потока: циклопентан, 32 С, 320 кПа, 1200 кг⋅моль/ч. Потеря давления в испарителе 20 кПа, разница температур + 70 С. Перепад давления в турбине 200 кПа. Режимные характеристики конденсатора и насоса подобрать таким образом, чтобы цикл замкнулся и правильно функционировал.

- 2. Что представляет собой процесс газификации твердого топлива, и какие его основные технологические параметры?
- 3. На основе каких балансовых уравнениях, возможно строить математические модели Aspen Plus?
- 1. С использованием программы Aspen HYSYS провести моделирование схемы органического цикла Ренкина. Параметры исходного потока: циклопентан, 35 С, 360 кПа, 1500 кг⋅моль/ч. Потеря давления в испарителе 30 кПа, разница температур + 65 С. Перепад давления в турбине 220 кПа. Режимные характеристики конденсатора и насоса подобрать таким образом, чтобы цикл замкнулся и правильно функционировал.
- 2. В чем особенность моделирования процесса горения (газификации) твердого топлива?
- 3. Какие параметры влияют на процесс ректификации?

Материалы для проверки остаточных знаний

- 1.1. Какие ключевые особенности Aspen PLUS?
- 2. Какие основные задачи решает Aspen PLUS?
- 3. Как проводится первоначальная настройка Aspen PLUS?
- 4. Какие основные элементы содержит вкладка Model Palette?
- 5. Из каких основных компонентов состоит ПГУ в Aspen PLUS?
- 6. С помощью каких процедур решается задача оптимизации энергетической установки на примере ПГУ?
- 7. Что представляет собой процесс газификации твердого топлива, и какие его основные технологические параметры?
- 8. Какие элементы используются для моделирования реактора газификации?
- 9. Как провести расчет эксергетического КПД приводной ГТУ?
- 10. Какие основные особенности и преимущества органического цикла Ренкина? Ответы:

Ответы озвучиваются студентами в устной форме при проведении зачета. Верный ответ: Студенты могут использовать математическую модель в качестве вспомогательного инструмента при ответе на вопросы.

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

ІІІ. Правила выставления итоговой оценки по курсу