Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.04.01 Теплоэнергетика и теплотехника

Наименование образовательной программы: Энергообеспечение предприятий. Высокотемпературные

процессы и установки

Уровень образования: высшее образование - магистратура

Форма обучения: Очная

Оценочные материалы по дисциплине Специальные вопросы тепло массообмена в реакторах ВТУ

Москва 2023

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

МЭИ

Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ» LIIII Nem Строгонов К.В. Rad748820-StrogonovKV-3f34a28 Идентификатор (подпись)

Строгонов (расшифровка

СОГЛАСОВАНО:

(должность)

Руководитель образовательной программы

Преподаватель

(должность, ученая степень, ученое звание)

Заведующий выпускающей кафедры

(должность, ученая степень, ученое звание)

NCW M	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»		
	Сведения о владельце ЦЭП МЭИ			
	Владелец	Писарев Д.С.		
	Идентификатор	Radb74374-PisarevDS-0915d1cb		
(подпись)				

Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

Рогалев А.Н. Rb956ba44-RogalevAN-6233a28b Идентификатор (подпись)

Д.С. Писарев (расшифровка подписи)

подписи)

К.В.

А.Н. Рогалев

(расшифровка подписи)

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-3 Способен к разработке мероприятий по энерго- и ресурсосбережению систем энергообеспечения и использования топлива для промышленных и коммунальных предприятий
 - ИД-1 Демонстрирует знание нормативов по энерго- и ресурсосбережению систем энергообеспечения и использования топлива для промышленных и коммунальных предприятий
 - ИД-2 Разрабатывает мероприятия по энерго- и ресурсосбережению систем энергообеспечения и использования топлива для промышленных и коммунальных предприятий

и включает:

для текущего контроля успеваемости:

Форма реализации: Письменная работа

- 1. Высокопроизводительные реакторы (Контрольная работа)
- 2. Конвективный теплообмен в ВТУ (Контрольная работа)
- 3. Лучистый теплообмен в ВТУ (Контрольная работа)
- 4. Теплопроводность и фазовый переход (Контрольная работа)

БРС дисциплины

3 семестр

	Веса конт	рольных мероприятий,			í, %
Dogway wygyyyyyyy	Индекс	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	1	2	3	4
	Срок КМ:	4	8	12	16
Лучистый теплообмен в ВТУ					
Особенности лучистого теплообмена в высокотемп реакторах	ературных	+			+
Уравнение баланса тепловой энергии элементарног излучающего газа				+	
Конвективный теплообмен в ВТУ					
Тепломассообмен в реакторах скоростной обработи измельченных материалов		+	+		
Движение и передача теплоты к частицам в закрученном потоке газов					+
Теплообмен при грануляции расплавов					

Грануляция расплавов в воде и других жидких средах			+	+
Высокопроизводительные реакторы				
Теоретические и экспериментальные исследование различных тепло - и массообменных процессов в скоростных реакторах ВТУ			+	
Bec KM:	25	25	25	25

\$Общая часть/Для промежуточной аттестации\$

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции		результаты обучения по	
		дисциплине	
ПК-3	ИД-1 _{ПК-3} Демонстрирует	Знать:	Теплопроводность и фазовый переход (Контрольная работа)
	знание нормативов по	справочники наилучших	Высокопроизводительные реакторы (Контрольная работа)
	энерго- и	доступных технологий	
	ресурсосбережению	терминологию в области	
	систем энергообеспечения	энергосбережения и	
	и использования топлива	границы эффективности	
	для промышленных и	мероприятий по	
	коммунальных	энергосбережению в	
	предприятий	конкретных	
		экономических условиях	
		производства	
		Уметь:	
		осуществлять подбор	
		наилучших технологий	
		определять потенциал	
		энергосбережения в	
		теплотехнологии и	
		экономически	
		эффективные границы	
		реализации	
		энергосберегающих	
		мероприятий в конкретных	
		ценовых условиях	
ПК-3	$ИД-2_{\Pi K-3}$ Разрабатывает	Знать:	Лучистый теплообмен в ВТУ (Контрольная работа)
	мероприятия по энерго- и	теплотехнические	Конвективный теплообмен в ВТУ (Контрольная работа)

ресурсосбережению	принципы и источники	Теплопроводность и фазовый переход (Контрольная работа)
систем энергообеспечения	литературы, описывающие	
и использования топлива	методики оценок	
для промышленных и	последовательность	
коммунальных	действий по оптимизации	
предприятий	теплообмена в	
	высокотемпературных	
	реакторах	
	Уметь:	
	давать оценку	
	эффективности	
	использования	
	теплотехнических	
	принципов в действующих	
	выполнять расчёты по	
	теплообмену	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Лучистый теплообмен в ВТУ

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: По вариантам выдаются контрольные

вопросы. На подготовку и заполнение ответов студентам выделяется 25 минут

Краткое содержание задания:

Специальные вопросы тепломассообмена в реакторах ВТУ
(Тесты для 6-ой контрольной недели)
lapraint 1 Fpynna
 Промлестрируйте принстай теплообием негодом эффективных тепловых потном
2. Проиллестрируйте изменение теллового потока по длине и сечению реактора с лучистини теллообиеном.
Запишите формалу устанавливающую связь жежду плотностью положе собственного излучения и его температурой
4. Запишите определение термина ТЕПЛОТЕОНИ-ССКИЙ ПРИНЦИП (МЕТОД)
Драге определение и приведите примерытеллогения ского принципа излучающего банела

Контрольные вопросы/задания:

Уметь:	дават	ď	оцені	ку
эффективно	ости	исполь	вовані	RГ
теплотехни	ческих	принц	ипов	В
действующ	ИХ			

1.Предложите (подберите) технологию, наилучшую с точки зрения минимального окисления металла при нагреве перед прокаткой

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 85 Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 75 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-2. Конвективный теплообмен в ВТУ

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: По вариантам выдаются контрольные

вопросы. На подготовку и заполнение ответов студентам выделяется 25 минут

Краткое содержание задания:

	Cne	циал	ьные-вопр	осы-тепл	омассообме	на-в-реакторах	-BIN4
			(Тесты-д	ұля-8-ой∗	онтрольной	недели)¶	
Ва	риант-1-	•	Группа		Фамилия.	и.о	
	1.•Дайт	e-ong	ределение	термину	конвективне	ый-теплообмен	4
1							
1							
			-формулу; вном-тепло		га-теплового	о-потока-при-	
1							
1							
1							
			определе соответств			уемого-слоя,-пр	риведите-
1							
1							
1							
	4Запи	шите	определе	ние-перес	ыпающегос	я-слоя, привед	ите-
	прим	еры	соответств	ующих ра	макторов¶		

Контрольные вопросы/задания:

Уметь: выполнять расчёты по	1.Предложите наиболее оптимальную технологию
теплообмену	термической обработки сыпучих материалов

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-3. Теплопроводность и фазовый переход

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: По вариантам выдаются контрольные

вопросы. На подготовку и заполнение ответов студентам выделяется 25 минут

Краткое содержание задания:

Специальные вопросы тепломассообмена в реакторах ВТУ

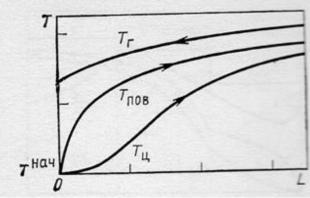
(Тесты для 12-ой контрольной недели)

Вариант 1 Группа — Фамилия. И.О.

1. Запишите определение теплопроводности

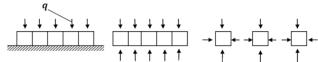
2. Запишите безразмерный критерий, характеризующий процесс теплопроводности

3. Нарисуйте графики одноступенчатого нагрева тел в камере непрерывного действия


 Запишите как соотносится длительность при одностороннем, дуктороннем и многостороннем нагреве квадратных заготовок

Контрольные вопросы/задания:

Знать: последовательность действий по оптимизации теплообмена в высокотемпературных реакторах


1. Нарисуйте графики одноступенчатого нагрева тел в камере непрерывного действия

2.Запишите как соотносится время нагрева при одностороннем, двухстороннем и многостороннем нагреве квадратных заготовок

Ответ:

Если длительность одностороннего нагрева плотно лежащих тел квадратного сечения обозначить через t1, то при переходе к двустороннему нагреву этих тел длительность нагрева сократиться вдвое (t2=t1/2), а при раздельном размещении тел и однородном нагреве каждого из тел в четыре раза (t3=t1/4)

Знать: теплотехнические принципы и источники литературы, описывающие методики оценок

1.Запишите определение теплопроводности Ответ: **Теплопроводность** – молекулярный перенос тепла в телах (или между ними), обусловленный переменностью температуры в рассматриваемом пространстве

Уметь: осуществлять подб	р 1.Выполните расчёт теплового потока
наилучших технологий	теплопроводностью

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 85
Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 75 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-4. Высокопроизводительные реакторы

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: По вариантам выдаются контрольные вопросы. На подготовку и заполнение ответов студентам выделяется 25 минут

Краткое содержание задания:

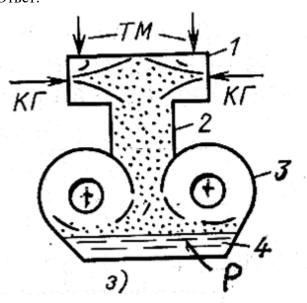
Cnequ	кальные вопросы	и тепломассообмена в реакторах ВТУ
	(Тесты для 1	(6-ой контрольной недели)
Вармант 1	Группа	Фамилия. И.О.
1. Проко	нострируйте кон	струнцию ПВПК
시 아이네이 많이라면	лите установку е киминескую акку	о использованию теплоты шлаков на окуляцию
3. Перечи	слите варианты	плавильных камер с погруженным в
pacnae	в факелом	
4. 3anusus		ге формулу объёмной производительности

Контрольные вопросы/задания:

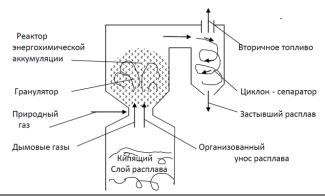
Знать: справочники наилучших	1.Перечислите варианты плавильных камер с
доступных технологий	погруженным в расплав факелом
	Ответ:
	Верхняя подача газа – наиболее энергоёмкий
	вариант, так как газовой струе требуется сообщить
	значительную энергию, чтобы она внедрилась в

расплав. Однако, получил широкое распространение в плавильных печах периодического действия. Боковая подача газа требует чуть меньших затрат для подачи в расплав.

Нижняя (донная) подача газа наиболее энергоэкономичная и эффективная, может быть выполнена в т.ч. рассредоточенной


2.Запишите и расшифруйте формулу объёмной производительности реактора Ответ:

$$p_{v} = \frac{P}{V} = \frac{G_{\rm M}}{\tau_{\rm cp} V} = \frac{V_{\rm 3M} (1 - m) p_{\rm M}}{\tau_{\rm cp} (V_{\rm 3M} + V_{\rm cB})}$$


Здесь G_{M} — масса обрабатываемого слоя материала, одновременно находящаяся в реакторе, кг; τ_{Cp} — среднее время пребывания обрабатываемого слоя материала в реакторе, с; V_{SM} — часть объёма занятая слоем материала, м³; V_{CB} — свободная часть объёма V, свободная от обрабатываемого слоя материала, м³; m — порозность слоя материала в объёме V_{SM} ; p_{M} — плотность обрабатываемого материала, кг/м³.

Знать: терминологию в области энергосбережения и границы эффективности мероприятий по энергосбережению в конкретных экономических условиях производства

1.Проиллюстрируйте конструкцию ПВПК Ответ:

2.Изобразите установку по использованию теплоты шлаков на энергохимическую аккумуляцию Ответ:

Уметь: определять потенциал энергосбережения в теплотехнологии и экономически эффективные границы реализации энергосберегающих

1.Осуществите подбор наиболее производительной технологии для плавления стали

мероприятий	В	конкретных
ценовых услов	XRN	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 85 Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 75 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

3 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

Процедура проведения

Студенту выдаётся билет. Выделяется время на подготовку, в ходе которой студент письменно отвечает на вопросы. По готовности билет и ответы подготовленные в письменном виде передаются преподавателю. Преподаватель задаёт уточняющие вопросы, после которых ставится оценка.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисииплины

1. Компетенция/Индикатор: ИД- $1_{\Pi K-3}$ Демонстрирует знание нормативов по энерго- и ресурсосбережению систем энергообеспечения и использования топлива для промышленных и коммунальных предприятий

Вопросы, задания

- 1. Аэродинамическое сопротивление прямоточно-вихревых камер
- 2. Модель грануляции капли расплава
- 3. Теплообмен к твердым и жидким частицам в кипящем слое расплава
- 4.Перемешивание расплавов в реакторах с кипящим слоем расплава
- 5. Перемешивание расплавов при барботировании горелочными устройствами

Материалы для проверки остаточных знаний

1.Запишите определение теплопроводности Ответы:

Теплопроводность – молекулярный перенос тепла в телах (или между ними), обусловленный переменностью температуры в рассматриваемом пространстве

Верный ответ: Теплопроводность – молекулярный перенос тепла в телах (или между ними), обусловленный переменностью температуры в рассматриваемом пространстве

2.Запишите безразмерный критерий, характеризующий процесс теплопроводности Ответы:

Число Био (Bi) – безразмерный комплекс, характеризующий процесс теплопроводности, процесс теплообмена между телом и окружающей средой

Верный ответ: Число Био (Ві) – безразмерный комплекс, характеризующий процесс теплопроводности, процесс теплообмена между телом и окружающей средой

3.Запишите как соотносится время нагрева при одностороннем, духстороннем и многостороннем нагреве квадратных заготовок

Ответы:

Если длительность одностороннего нагрева плотно лежащих тел квадратного сечения обозначить через t1, то при переходе к двустороннему нагреву этих тел длительность нагрева сократиться вдвое (t2=t1/2), а при раздельном размещении тел и однородном нагреве каждого из тел в четыре раза (t3=t1/4)

Верный ответ: Если длительность одностороннего нагрева плотно лежащих тел квадратного сечения обозначить через t1, то при переходе к двустороннему нагреву этих тел длительность нагрева сократиться вдвое (t2=t1/2), а при раздельном размещении тел и однородном нагреве каждого из тел в четыре раза (t3=t1/4)

4.Перечислите варианты плавильных камер с погруженным в расплав факелом Ответы:

Верхняя подача газа — наиболее энергоёмкий вариант, так как газовой струе требуется сообщить значительную энергию, чтобы она внедрилась в расплав. Однако, получил широкое распространение в плавильных печах периодического действия.

Боковая подача газа требует чуть меньших затрат для подачи в расплав.

Нижняя (донная) подача газа наиболее энергоэкономичная и эффективная, может быть выполнена в т.ч. рассредоточенной

Верный ответ: Верхняя подача газа — наиболее энергоёмкий вариант, так как газовой струе требуется сообщить значительную энергию, чтобы она внедрилась в расплав. Однако, получил широкое распространение в плавильных печах периодического действия. Боковая подача газа требует чуть меньших затрат для подачи в расплав. Нижняя (донная) подача газа наиболее энергоэкономичная и эффективная, может быть выполнена в т.ч. рассредоточенной

5. Как рассчитать объёмную производительность реактора Ответы:

Производительность реактора разделить на полезный реактора

Верный ответ: Производительность реактора разделить на полезный реактора

2. Компетенция/Индикатор: ИД- $2_{\Pi K-3}$ Разрабатывает мероприятия по энерго- и ресурсосбережению систем энергообеспечения и использования топлива для промышленных и коммунальных предприятий

Вопросы, задания

- 1. Методы решения задач лучистого теплообмена и их анализ применительно к высокотемпературным реакторам
- 2.Метод многократного поглощения и отражения при решения задач лучистого теплообмена
- 3. Метод эффективных тепловых потоков при решения задач лучистого теплообмена
- 4.Особенности использования системы «газ-кладка-материал» при решении задач лучистого теплообмена
- 5.Теплообмен излучением через отверстия, окна и щели в реакторах ВТУ

Материалы для проверки остаточных знаний

1. Дайте определение и приведите примеры теплотехнического принципа Лучистоконвективного факела

Ответы:

Лучисто-конвективного факела (тепловая обработка тел газовым теплоносителем в условиях существенного вклада как лучистого, так и конвективного теплообмена) Пример: методические печи

Верный ответ: Лучисто-конвективного факела (тепловая обработка тел газовым теплоносителем в условиях существенного вклада как лучистого, так и конвективного теплообмена) Пример: методические печи

2.Запишите определение термина Теплотехнологическая установка Ответы:

Теплотехнологическая установка - Совокупность теплотехнологического реактора и эксплуатационно связанного с ним технологического, теплотехнического, энергетического, транспортного, приемно-распределительного и другого оборудования, непосредственно обеспечивающая реализацию данного теплотехнологического процесса и работающая в едином технологическом ритме

Верный ответ: Теплотехнологическая установка - Совокупность теплотехнологического реактора и эксплуатационно связанного с ним технологического, теплотехнического, энергетического, транспортного, приемнораспределительного и другого оборудования, непосредственно обеспечивающая реализацию данного теплотехнологического процесса и работающая в едином технологическом ритме

3. Дайте определение термину конвективный теплообмен

Это процесс переноса теплоты между поверхностью твердого тела и жидкой средой Верный ответ: Это процесс переноса теплоты между поверхностью твердого тела и жидкой средой

4.Запишите формулу для расчёта теплового потока при конвективном теплообмене Ответы:

Интенсивность конвективного теплообмена характеризуется коэффициентом теплоотдачи α , который определяется по формуле Ньютона—Рихмана

$$Q = \alpha \left(t_{c} - t_{x} \right) F. \tag{2-1}$$

Согласно этому закону тепловой поток Q пропорционален поверхности теплообмена F и разности температур стенки и жидкости $(t_{\mathbf{c}} - t_{\mathbf{w}})$.

Верный ответ: Тепловой поток пропорционален поверхности теплообмена и разности температур стенки и жидкости, и коэффициенту теплоотдачи.

5.Запишите определение плотного фильтруемого слоя, приведите примеры соответствующих реакторов

Ответы:

Принцип плотного фильтруемого слоя (тепловая обработка свободной засыпки дробленых материалов, мелких изделий и других тел, продуваемых газовым теплоносителем).

Например: доменные печи, шахтные печи цветной металлургии, вагранки, шахтные обжиговые печи и пр

Верный ответ: Принцип плотного фильтруемого слоя (тепловая обработка свободной засыпки дробленых материалов, мелких изделий и других тел, продуваемых газовым теплоносителем). Например: доменные печи, шахтные печи цветной металлургии, вагранки, шахтные обжиговые печи и пр

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Ответы на все вопросы с иллюстрациями и пояснениями, допускаются не принципиальные ошибки. Ответы показывают полное понимание заданий

Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Ответы на все вопросы, допускается не более двух ошибок

Оценка: 3

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Ответы на два задания из трёх, допускаются ошибки. Ответы показывают полное понимание как минимум по двум заданиям

III. Правила выставления итоговой оценки по курсу

С учётом средне семестровой составляющей