Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.04.01 Теплоэнергетика и теплотехника

Наименование образовательной программы: Энергообеспечение предприятий. Тепломассообменные

процессы и установки

Уровень образования: высшее образование - магистратура

Форма обучения: Очная

Оценочные материалы по дисциплине Тепломассоперенос в элементах теплотехнического оборудования

Москва 2025

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Разработчик

New	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»			
	Сведения о владельце ЦЭП МЭИ				
	Владелец	Пурдин М.С.			
	Идентификатор	R73e8cc57-PurdinMS-97ce3ae5			

СОГЛАСОВАНО:

Руководитель образовательной программы

A HELICIAN COMPANY	Подписано электрон	ной подписью ФГБОУ ВО «НИУ «МЭИ»		
1	Сведения о владельце ЦЭП МЭИ			
-	Владелец	Горелов М.В.		
¾ <u>МЭИ</u> ₹	Идентификатор	Re923e979-GorelovMV-5a218dd2		

М.В. Горелов

М.С. Пурдин

Заведующий выпускающей кафедрой

NOSO NOSO	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»				
SHIP CHINESES	Сведения о владельце ЦЭП МЭИ					
	Владелец	Щербатов И.А.				
¾ <u>M⊙N</u> ¾	Идентификатор Р	6b2590a8-ShcherbatovIA-d91ec17				

И.А. Щербатов

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-3 Способен использовать научные методы и современное программное обеспечение при расчете, проектировании и оптимизации оборудования систем энергообеспечения, обеспечения жизнедеятельности и технологических систем при проектировании и выборе оптимальных режимов работы
 - ИД-2 Применяет методы математического моделирования и современные компьютерные программы при расчете и выборе конструкций и режимов работы оборудования
- 2. ПК-4 Способен рассчитывать и проектировать системы обеспечения тепловых режимов работы оборудования и приборов для обеспечения их эффективной, надежной и безопасной работы
 - ИД-2 Проводит тепловые и гидравлические расчеты объектов теплоэнергетики и теплотехники и систем обеспечения тепловых режимов работы оборудования

и включает:

для текущего контроля успеваемости:

Форма реализации: Письменная работа

- 1. Вычисление поправки к теплоотдаче и сопротивлению с учетом массообмена при движении в пограничном слое на поверхности (Контрольная работа)
- 2. Вычисление физических свойств газов и газовых смесей (Контрольная работа)
- 3. Задачи одномерной диффузии (Тестирование)
- 4. Конвективный тепломассообмен (Тестирование)
- 5. Подход к описанию процессов переноса тепла и массы в движущихся средах. Основные понятия и законы, используемые при описании диффузии в смесях (Тестирование)

БРС дисциплины

3 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Подход к описанию процессов переноса тепла и массы в движущихся средах. Основные понятия и законы, используемые при описании диффузии в смесях (Тестирование)
- КМ-2 Вычисление физических свойств газов и газовых смесей (Контрольная работа)
- КМ-3 Конвективный тепломассообмен (Тестирование)
- КМ-4 Задачи одномерной диффузии (Тестирование)
- КМ-5 Вычисление поправки к теплоотдаче и сопротивлению с учетом массообмена при движении в пограничном слое на поверхности (Контрольная работа)

Вид промежуточной аттестации – Экзамен.

	Beca 1	контрол	ьных м	еропри	ятий, %	
Раздел дисциплины	Индекс	КМ-	КМ-	КМ-	КМ-	КМ-
газдел дисциплины	KM:	1	2	3	4	5
	Срок КМ:	4	6	8	12	15
Подход к описанию процессов переноса те	пла и массы					
в движущихся сплошных средах						
Подход к описанию процессов переноса те	пла и массы		+			
в движущихся сплошных средах		+	+			
Основные понятия и законы, используемые	е при					
описании диффузии в смесях						
Основные понятия и законы, используемые						
описании диффузии в смесях	+					
Задачи одномерной диффузии						
Задачи одномерной диффузии			+	+	+	
Совместный конвективный перенос тепла і						
Совместный конвективный перенос тепла в	и массы		+	+	+	+
	Bec KM:	20	20	20	20	20

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции		результаты обучения по	
		дисциплине	
ПК-3	ИД-2 _{ПК-3} Применяет	Знать:	КМ-1 Подход к описанию процессов переноса тепла и массы в
	методы математического	современные и	движущихся средах. Основные понятия и законы, используемые при
	моделирования и	перспективные пути	описании диффузии в смесях (Тестирование)
	современные	оптимизации и	КМ-2 Вычисление физических свойств газов и газовых смесей
	компьютерные программы	усовершенствования	(Контрольная работа)
	при расчете и выборе	теплотехнических	
	конструкций и режимов	процессов и аппаратов	
	работы оборудования	Уметь:	
		определять оптимальные	
		производственно-	
		технологические режимы	
		работы	
		тепломассообменных	
		аппаратов	
ПК-4	$И$ Д- $2_{\Pi K-4}$ Проводит	Знать:	КМ-3 Конвективный тепломассообмен (Тестирование)
	тепловые и	уравнения, описывающие	КМ-4 Задачи одномерной диффузии (Тестирование)
	гидравлические расчеты	процессы	КМ-5 Вычисление поправки к теплоотдаче и сопротивлению с учетом
	объектов теплоэнергетики	тепломассообмена,	массообмена при движении в пограничном слое на поверхности
	и теплотехники и систем	протекающие в элементах	(Контрольная работа)
	обеспечения тепловых	теплотехнического	
	режимов работы	оборудования	
	оборудования	Уметь:	
		планировать и проводить	
		теоретические и	
		экспериментальные	

	научные исследования,	
	направленные на	
	совершенствование	
	теплообменного	
	оборудования	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Подход к описанию процессов переноса тепла и массы в движущихся средах. Основные понятия и законы, используемые при описании диффузии в смесях

Формы реализации: Письменная работа

Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Каждому студенту раздается бланк с вопросами и вариантами ответов на него. На один вопрос возможны один или несколько ответов. Также присутствуют вопросы, на которые студент должен дать развернутый ответ.

Краткое содержание задания:

Необходимо выбрать правильный или правильные ответы на вопросы из предложенных вариантов. При отсутствии вариантов ответов, дать развернутый ответ своими словами

Контрольные вопросы/задания:	
Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
Знать: современные и	1.В систему уравнений, описывающих
перспективные пути оптимизации и	конвективный теплообмен, не входит:
усовершенствования	а). уравнение сохранения импульса;
теплотехнических процессов и	б). уравнение сохранения момента импульса;
аппаратов	в). уравнение диффузии
	2. Уравнение диффузии выражает закон
	сохранения:
	а). массы смеси;
	б). масс компонента;
	в). энергии смеси
	3. Число уравнений диффузии равно:
	а). единице;
	б). количеству компонентов смеси (n);
	в). n-1
	4.Сумма массовых долей компонентов смеси:
	n
	$\sum \omega_i = 0$
	i = 1
	Figure 1 A

Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки
обучения по дисциплине	$\sum_{i=1}^{n} \omega_{i} = 1$
	Figure 2 5
	$\sum_{i=1}^{n} \omega_i - \text{HC } \text{ AЗВЕСТНА}$
	5.Сумма мольных долей компонентов:
	$\sum_{i=1}^{n} X_i = 0$
	Figure 4 A
	$\sum_{i=1}^{n} X_i = 1$
	$\sum_{i=1}^{n} X_i$ — не известна
	6.Сумма массовых потоков в смеси, привязанных к средней скорости смеси:

Запланированные	результаты	Вопросы/задания для проверки
обучения по дисциплин	<u> </u>	<u> </u>
		$\sum_{i=0}^{n} J_{i}^{*} = 0$
		i=1
		Figure 7 A
		$\sum_{i=1}^{n} J_{i}^{*} = 1$
		i=1
		Figure 8 Б
		$\sum_{i=1}^{n} J_{i}^{*}$ — не известна

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-2. Вычисление физических свойств газов и газовых смесей

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Каждому студенту раздается бланк с

задачей для самостоятельного решения в аудитории.

Краткое содержание задания:

Решить задачу

Контрольные вопросы/задания:

Roll Posibilible Boll	росы задания	1.		
Запланированные	результаты	обучения	ПО	Вопросы/задания для проверки
дисциплине				
Уметь: опр	еделять	оптималь	ные	1.Рассчитать вязкость CO2 при P=1
производственно-т	ехнологическ	ие режи	имы	атм, t =0 градусах Цельсия
работы тепломассо	обменных апт	іаратов		2.Рассчитать вязкость воздуха при t
				=100 градусах Цельсия и t =20
				градусах Цельсия, Р=1 атм (С=111)
				3.Вычислить коэффициент диффузии
				смеси CO2 (x=0,5) и N2 при P=105
				атм, t =50 градусах Цельсия

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-3. Конвективный тепломассообмен

Формы реализации: Письменная работа

Тип контрольного мероприятия: Тестирование **Вес контрольного мероприятия в БРС:** 20

Процедура проведения контрольного мероприятия: Каждому студенту раздается бланк с вопросами и вариантами ответов на него. На один вопрос возможны один или несколько ответов. Также присутствуют вопросы, на которые студент должен дать развернутый ответ.

Краткое содержание задания:

Необходимо выбрать правильный или правильные ответы на вопросы из предложенных вариантов. При отсутствии вариантов ответов, дать развернутый ответ своими словами

Контрольные вопросы/задания:

Заплани	рованные	результаты	обу	чения	ПО	Вопросы/задания для проверки
дисципл	тине					
Знать:	уравнения	, описываю	цие	проце	ессы	1.Мольный (массовый) поток
теплома	ессообмена,	протекающие	В	элеме	нтах	компонентов смеси Na (nA)
теплоте	хнического (оборудования				остается постоянным:
						а). для стационарной задачи
						б). для нестационарной задачи
						в). никогда не постоянен
						2.Пренебречь диффузным
						тепловым потоком в уравнении
						энергии можно:
						а). для бесконечно разбавленного
						раствора
						б). при близких значениях
						изобарной теплоемкости
						компонентов
						в). нельзя пренебречь
						3.Пренебречь тепловым потоком
						Дюфо можно:
						а). при низких температурах
						б). при высоких температурах
						в). нельзя пренебречь

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-4. Задачи одномерной диффузии

Формы реализации: Письменная работа

Тип контрольного мероприятия: Тестирование **Вес контрольного мероприятия в БРС:** 20

Процедура проведения контрольного мероприятия: Каждому студенту раздается бланк с вопросами и вариантами ответов на него. На один вопрос возможны один или несколько ответов. Также присутствуют вопросы, на которые студент должен дать развернутый ответ.

Краткое содержание задания:

Необходимо выбрать правильный или правильные ответы на вопросы из предложенных вариантов. При отсутствии вариантов ответов, дать развернутый ответ своими словами

Контрольные вопросы/задания:

Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	
Знать: уравнения, описывающие процессы	1.Для расчета концентрации бинарной
тепломассообмена, протекающие в элементах	смеси, образующейся при испарении
теплотехнического оборудования	жидкости из сосуда, используется:
	а). закон Стокса
	б). закон Фурье
	в). закон Фика
	2. Мольный поток в неподвижной
	системе паров жидкости Na от
	поверхности к срезу сосуда:
	а). уменьшается
	б). увеличивается
	в). не изменяется
	3.Поток Стефана можно не учитывать?
	a). Xa - 1
	б). Xa - 0
	в). Надо учитывать при любых Ха

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оиенка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-5. Вычисление поправки к теплоотдаче и сопротивлению с учетом массообмена при движении в пограничном слое на поверхности

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Каждому студенту раздается бланк с задачей для самостоятельного решения в аудитории.

Краткое содержание задания:

Решить задачу

Контрольные вопросы/задания:

Запланированные результаты обучения	Вопросы/задания для проверки	
по дисциплине		
Уметь: планировать и проводить	1.Водная поверхность обтекается воздухом с	
теоретические и экспериментальные	массовыми долями водных паров у	
научные исследования, направленные	поверхности и вдали от нее $\omega c=0,1$ и $\omega \infty=0,001$.	
на совершенствование теплообменного	Как отличается величина коэффициента	
оборудования	сопротивления трения от этой величины при	
	обтекании твердой поверхности. Sc=0,6	
	2.Водная поверхность с температурой Т0=293	
	К обдувается потоком воздуха с температурой	
	T∞=400 K, p=1 атм. Определить, как повлиял	
	массообмен на коэффициент теплоотдачи	
	3.Пленка жидкого конденсата на твердой	
	поверхности обтекается воздухом с массовыми	
	долями водяных паров у поверхности и вдали	
	от нее ω с=0,02 и ω ∞=0,04. Как повлияет	
	процесс массообмена на теплоотдачу. Sc=0,8	

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

3 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

	ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № <u>1</u>	Утверждаю: Зав.кафедрой	
мэи	ДисциплинаТМП в ЭТТО		
	Факультет <u>ИПГЭЭФ</u>	«30» декабря 2019 г.	
 Перенос тепла в смесях. Составляющие теплового потока. Расчет сопротивления трения, теплоотдачи, массоотдачи по результатам автомодельного решения задачи о пограничном слое на поверхности. 			
3. 3	вадача.		

Процедура проведения

Студент самостоятельно выбирает экзаменационный билет из предложенных ему экземпляров, содержание билета студент не видит. На подготовку студенту отводится 45 минут. Допускается досрочный ответ

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД- $2_{\Pi K-3}$ Применяет методы математического моделирования и современные компьютерные программы при расчете и выборе конструкций и режимов работы оборудования

Вопросы, задания

- 1. Упрощение уравнений, описывающих конвективный теплообмен
- 2. Концентрации, скорости смеси, диффузионные потоки
- 3. Различные виды диффузионных потоков. Вывести соотношения между ними
- 4.Обобщенный закон Фика для диффузии в многокомпонентной смеси
- 5. Диффузия через одномерный слой газовой смеси. Расчет распределения концентраций трехкомпонентной смеси при испарении жидкости (использовать уравнения Стефана-Максвелла)

Материалы для проверки остаточных знаний

1.Сумма мольных долей компонентов:

Ответы:

$$\sum_{i=1}^{n} X_i = 0$$

Figure 10 A

$$\sum_{i=1}^{n} X_i = 1$$

Figure 11 5

$$\sum_{i=1}^{n} X_i$$
 — не известна

Figure 12 B

Верный ответ: Б

2.Сумма массовых потоков в смеси, привязанных к средней скорости смеси: Ответы:

$$\sum_{i=1}^{n} \mathcal{J}_{i}^{*} = 0$$

Figure 13 A

Figure 14 B

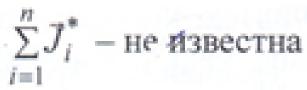


Figure 15 B

Верный ответ: А

3. Мольный (массовый) поток компонентов смеси Na (nA) остается постоянным:

Ответы:

- а). для стационарной задачи
- б). для нестационарной задачи
- в). никогда не постоянен

Верный ответ: в

4.Пренебречь диффузным тепловым потоком в уравнении энергии можно:

Ответы

- а). для бесконечно разбавленного раствора
- б). при близких значениях изобарной теплоемкости компонентов
- в). нельзя пренебречь

Верный ответ: б

5. Пренебречь тепловым потоком Дюфо можно:

Ответы:

- а). при низких температурах
- б). при высоких температурах
- в). нельзя пренебречь

Верный ответ: б

6.Для расчета концентрации бинарной смеси, образующейся при испарении жидкости из сосуда, используется:

Ответы:

- а). закон Стокса
- б). закон Фурье
- в). закон Фика

Верный ответ: в

7. Мольный поток в неподвижной системе паров жидкости Na от поверхности к срезу сосуда:

Ответы:

- а). уменьшается
- б). увеличивается

в). не изменяется

Верный ответ: а

8. Поток Стефана можно не учитывать?

Ответы:

- a). Xa 1
- б). Xa 0
- в). Надо учитывать при любых Ха

Верный ответ: а

2. Компетенция/Индикатор: ИД- $2_{\Pi K-4}$ Проводит тепловые и гидравлические расчеты объектов теплоэнергетики и теплотехники и систем обеспечения тепловых режимов работы оборудования

Вопросы, задания

- 1. Перенос тепла в смесях. Составляющие теплового потока
- 2. Расчет сопротивления трения, теплоотдачи, массоотдачи по результатам автомодельного решения задачи о пограничном слое на поверхности
- 3. Закон Стокса, Фурье, Фика
- 4. Коэффициент теплопроводности газов
- 5. Уравнение Стефана-Максвелла

Материалы для проверки остаточных знаний

- 1.В систему уравнений, описывающих конвективный теплообмен, не входит: Ответы:
- а). уравнение сохранения импульса;
- б). уравнение сохранения момента импульса;
- в). уравнение диффузии

Верный ответ: в

2. Уравнение диффузии выражает закон сохранения:

Ответы:

- а). массы смеси;
- б). масс компонента;
- в). энергии смеси

Верный ответ: б

3. Число уравнений диффузии равно:

Ответы:

- а). единице;
- б). количеству компонентов смеси (n);
- в). n-1

Верный ответ: в

4.Сумма массовых долей компонентов смеси:

Ответы:

Figure 16 A

$$\sum_{i=1}^{n} \omega_i = 1$$

Figure 17 Б

$$\sum_{i=1}^{n} \omega_{i} - \text{HC } \text{известна}$$

Figure 18 B

Верный ответ: Б

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

ІІІ. Правила выставления итоговой оценки по курсу