Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 15.03.04 Автоматизация технологических процессов и производств

Наименование образовательной программы: Автоматизация технологических процессов и производств

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Технологические процессы автоматизированных производств

Москва 2024

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Разработчик

| Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ» | Кведения о владельце ЦЭП МЭИ | М.Ю. | Владелец | Юркина М.Ю. | Идентификатор | Rde0d4378-YurkinaMY-bacca4c0 | Юркина

СОГЛАСОВАНО:

Руководитель образовательной программы

MON A	Подписано электро	онной подписью ФГБОУ ВО «НИУ «МЭИ»			
	Сведения о владельце ЦЭП МЭИ				
	Владелец	Щербатов И.А.			
	Идентификатор	R6b2590a8-ShcherbatovIA-d91ec17			

И.А. Щербатов

Заведующий выпускающей кафедрой

NGC HALLOBANIA	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»			
New	Сведения о владельце ЦЭП МЭИ				
	Владелец	Щербатов И.А.			
	Идентификатор Р	6b2590a8-ShcherbatovIA-d91ec17			

И.А. Щербатов

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

1. ОПК-9 Способен внедрять и осваивать новое технологическое оборудование ИД-1 Способен участвовать во внедрении и освоении нового оборудования, технологий и технологических режимов

и включает:

для текущего контроля успеваемости:

Форма реализации: Компьютерное задание

1. Итоговое задание (Контрольная работа)

Форма реализации: Письменная работа

- 1. Анализ настоящего уровня технологических процессов автоматизированных производств (Контрольная работа)
- 2. Выпаривание. Сушка (Контрольная работа)
- 3. Разделение неоднородных систем. Перегонка и ректификация (Контрольная работа)
- 4. Регенеративные теплообменные аппараты (Контрольная работа)
- 5. Рекуперативные теплообменные аппараты (Контрольная работа)
- 6. Технологические линии производства (Контрольная работа)
- 7. Технологические решения тепловой обработки (Контрольная работа)

БРС дисциплины

5 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Анализ настоящего уровня технологических процессов автоматизированных производств (Контрольная работа)
- КМ-2 Технологические решения тепловой обработки (Контрольная работа)
- КМ-3 Рекуперативные теплообменные аппараты (Контрольная работа)
- КМ-4 Регенеративные теплообменные аппараты (Контрольная работа)

Вид промежуточной аттестации – Зачет с оценкой.

	Веса контрольных мероприятий, %					
Doowed weeking	Индекс	КМ-	КМ-	КМ-	КМ-	
Раздел дисциплины	KM:	1	2	3	4	
	Срок КМ:	4	8	12	14	
Анализ настоящего уровня технологических проц	ессов					
автоматизированных производств						

Анализ настоящего уровня технологических процессов автоматизированных производств	+			
Технологические решения тепловой обработки				
Технологические решения тепловой обработки		+		
Рекуперативные теплообменные аппараты				
Рекуперативные теплообменные аппараты			+	+
Регенеративные теплообменные аппараты				
Регенеративные теплообменные аппараты			+	+
Смесительные теплообменники				
Смесительные теплообменники			+	+
Bec KM:	25	25	25	25

6 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-5 Выпаривание. Сушка (Контрольная работа)
- КМ-6 Разделение неоднородных систем. Перегонка и ректификация (Контрольная работа)
- КМ-7 Технологические линии производства (Контрольная работа)
- КМ-8 Итоговое задание (Контрольная работа)

Вид промежуточной аттестации – Экзамен.

	Bec	Веса контрольных мероприятий, %				
Раздел дисциплины	Индекс	KM-5	KM-6	KM-7	KM-8	
	KM:		_			
	Срок КМ:	4	8	12	14	
Выпаривание						
Выпаривание		+	+			
Сушка						
Сушка	+	+				
Разделение неоднородных систем						
Разделение неоднородных систем		+	+			
Перегонка и ректификация						
Перегонка и ректификация		+	+			
Абсорбция и адсорбция						

Абсорбция и адсорбция			+	
Основные технологические линии производства				
Основные технологические линии производства				+
Bec KM:	25	25	25	25

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	-	результаты обучения по	
		дисциплине	
ОПК-9	ИД-10ПК-9 Способен	Знать:	КМ-1 Анализ настоящего уровня технологических процессов
	участвовать во внедрении	характеристики	автоматизированных производств (Контрольная работа)
	и освоении нового	производства и	КМ-2 Технологические решения тепловой обработки (Контрольная
	оборудования, технологий	оборудования как объектов	работа)
	и технологических	автоматического	КМ-3 Рекуперативные теплообменные аппараты (Контрольная работа)
	режимов	регулирования	КМ-4 Регенеративные теплообменные аппараты (Контрольная работа)
		основные сведения о	КМ-5 Выпаривание. Сушка (Контрольная работа)
		моделировании	КМ-6 Разделение неоднородных систем. Перегонка и ректификация
		физических явлений, о	(Контрольная работа)
		теории тепло- и	КМ-7 Технологические линии производства (Контрольная работа)
		массообмена; методику	КМ-8 Итоговое задание (Контрольная работа)
		расчета важнейших	
		параметров	
		технологических	
		процессов и аппаратов	
		методы анализа	
		технологических	
		процессов и оборудования	
		для их реализации, как	
		объектов автоматизации и	
		управления, основные	
		схемы автоматизации	
		типовых технологических	
		объектов отрасли,	
		структуры и функции	

автоматизированных систем управления технологические процессы и производства в промышленности Уметь: пользоваться методическими и нормативными материалами при расчёте и анализе технологических процессов и аппаратов выполнять анализ технологических процессов и оборудования как объектов автоматизации и управления выбирать пути интенсификации процессов и совершенствования технологического оборудования

II. Содержание оценочных средств. Шкала и критерии оценивания

5 семестр

КМ-1. Анализ настоящего уровня технологических процессов автоматизированных производств

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: На работу отводится от 40 минут во время практического занятия. Студентам раздаются варианты заданий, каждый из которых содержит 2 теоретических вопроса по материалам лекций. Студент должен дать исчерпывающий ответ на вопросы в письменном виде.

Краткое содержание задания:

Выполнение задания по теме «Анализ настоящего уровня технологических процессов автоматизированных производств»

Контрольные вопросы/задания:

контрольные вопросы/задания:	
Запланированные результаты обучения по дисциплине	Вопросы/задания для
	проверки
Знать: методы анализа технологических процессов и	1.Классификация
оборудования для их реализации, как объектов автоматизации	процессов
и управления, основные схемы автоматизации типовых	промышленности
технологических объектов отрасли, структуры и функции	2.Основы
автоматизированных систем управления технологические	рационального
процессы и производства в промышленности	построения аппаратов
	3.Технологические
	свойства материалов
	4.Роль основных
	отраслей
	промышленности

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-2. Технологические решения тепловой обработки

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: На работу отводится от 40 минут во время практического занятия. Студентам раздаются варианты заданий, каждый из которых содержит 2 теоретических вопроса по материалам лекций. Студент должен дать исчерпывающий ответ на вопросы в письменном виде.

Краткое содержание задания:

Выполнение задания по теме «Технологические решения тепловой обработки»

Контрольные вопросы/задания:

поптрольные вопросы, задания.		
Запланированные результаты обучения по дисциплине	Вопросы/задания	для
	проверки	
Знать: основные сведения о моделировании физических	1. Способы передачи	
явлений, о теории тепло- и массообмена; методику расчета	теплоты	
важнейших параметров технологических процессов и	2.Классификация	
аппаратов	тепловых процессов.	

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-3. Рекуперативные теплообменные аппараты

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: На работу отводится от 40 минут во время практического занятия. Студентам раздаются варианты заданий, каждый из которых содержит 1 задачу и 1 теоретический вопрос по материалам лекций. Студент должен дать исчерпывающий ответ на вопрос в письменном виде, а также решить задачу и представить решение в надлежащей форме.

Краткое содержание задания:

Выполнение задания по теме «Рекуперативные теплообменные аппараты»

Контрольные вопросы/задания:

Запланированные	результаты	обучения	ПО	Вопросы/задания для проверки
дисциплине				
Знать: характер	истики пр	оизводства	И	1.Распределение температур в
оборудования как	объектов	автоматичес	кого	трубах и каналах теплообменников
регулирования				2. Рекуперативные теплообменники
				периодического действия

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-4. Регенеративные теплообменные аппараты

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: На работу отводится от 40 минут во время практического занятия. Студентам раздаются варианты заданий, каждый из которых содержит 1 задачу и 1 теоретический вопрос по материалам лекций. Студент должен дать исчерпывающий ответ на вопрос в письменном виде, а также решить задачу и представить решение в надлежащей форме.

Краткое содержание задания:

Выполнение задания по теме «Регенеративные теплообменные аппараты»

Контрольные вопросы/задания:

<u> </u>	
Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	
Знать: характеристики производства и	1.Преимущества и недостатки
оборудования как объектов	регенеративных теплообменников по
автоматического регулирования	сравнению с рекуперативными.
	2.Теплообменники с неподвижной и
	подвижной насадками

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

6 семестр

КМ-5. Выпаривание. Сушка

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: На работу отводится от 40 минут во время практического занятия. Студентам раздаются варианты заданий, каждый из которых содержит 1 задачу и 1 теоретический вопрос по материалам лекций. Студент должен дать исчерпывающий ответ на вопрос в письменном виде, а также решить задачу и представить решение в надлежащей форме.

Краткое содержание задания:

Выполнение задания по теме «Выпаривание. Сушка»

Контрольные вопросы/задания:

Запланированные резу.	льтаты	Вопросы/задания для проверки
обучения по дисциплине		
Уметь: выбирать интенсификации процес совершенствования технологического оборудования	пути	1.В выпарной установке выпаривается раствор поваренной соли с начальной концентрацией — 9% и с расходом 11320 кг/час. Концентрация соли в крепком растворе — 56%. Найти расход вторичного пара, уходящего из установки и расход крепкого раствора. Найти площадь поверхности конденсатора, если коэффициент теплопередачи 670 Вт/м2град, температура греющего пара 190 оС, температура вторичного пара в барометрическом конденсаторе 75 оС, суммарные температурные потери 16 оС. Расход греющего пара 150 кг/ч, теплота парообразования 2200 кДж/кг. 2.Определить расход воздуха в сушильной установке для удаления 350 кг/ч влаги и тепловую мощность калорифера для подогрева этого воздуха, если

Запланированные результаты	Вопросы/задания для проверки	
обучения по дисциплине		
	энтальпия воздуха перед калорифером 6 кДж/кг,	
	влагосодержание 2,5 г/кг; энтальпия воздуха на выходе	
	из сушильной установки 165 кДж/кг, влагосодержание	
	100 г/кг. Разность между суммой удельных величин	
	теплопритоков и теплопотерь в сушильной установке -	
	170 кДж/кг испаренной влаги	

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-6. Разделение неоднородных систем. Перегонка и ректификация

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: На работу отводится от 40 минут во время практического занятия. Студентам раздаются варианты заданий, каждый из которых содержит 1 задачу и 1 теоретический вопрос по материалам лекций. Студент должен дать исчерпывающий ответ на вопрос в письменном виде, а также решить задачу и представить решение в надлежащей форме.

Краткое содержание задания:

Выполнение задания по теме «Разделение неоднородных систем. Перегонка и ректификация»

Контрольные вопросы/задания:

Запланированные	Вопросы/задания для проверки	
результаты обучения по		
дисциплине		
Уметь: выбирать пути	1.В ректификационной колонне непрерывного действия	
интенсификации процессов	разделяется бинарная смесь хлороформ - бензол.	
и совершенствования	Концентрация летучего компонента в исходной смеси	
технологического	(питание) $xf=0.53$, в дистилляте $xd=0.9$, в кубовом остатке	
оборудования	xw=0,07. Расход питания Gf=7,5т/ч. Коэффициент	
	избытка флегмы b=2,5. Давление в колонне атмосферное.	

Запланированные	Вопросы/задания для проверки	
результаты обучения по		
дисциплине		
	Греющий пар в кубе колонны имеет избыточное давление	
	Ризб=1,9атм. Степень сухости пара х = 0,97. Начальная	
	температура воды, поступающей в дефлегматор 15°C,	
	конечная температура воды 25°С. Коэффициент	
	теплопередачи в дефлегматоре К = 1200 Вт/м2*К.	
	Определить - расход дистиллята - расход греющего пара -	
	расход воды в дефлегматоре - поверхность теплопередачи дефлегматора Написать уравнение рабочей линии для	
	верхней части колонны	
	2.Производительность насадочной ректификационной	
	колонны непрерывного действия по кубовому остатку W	
	кг/ч. Концентрация исходной смеси по низкокипящему	
	компаненту xf(мольн). Коэффициент избытка флегмы b,	
	отношение производительностей колонны по исходной	
	смеси и дистилляту f, а коэффициент массоотдачи в	
	жидкой и газовой фазе С. Насадка керамическая кольца рашига размерами ахhxb. Диаметр колонны D	
	Определить:	
	1. Производительность колонны по исходной смеси и продукту	
	2. Высоту и число единиц переноса по газовой и жидкой	
	фазе	
	3. Коэффициент массопередачи по газовой и жидкой фазе 4. Высоту насадки	
	4. высоту насадки Исходные данные Ацетон-вода, W=3000кг/ч, xf=0,3 мольн	
	доля, xp=0,9 мольн доля, b=2,2, f=5, c=0,35, axhxb =	
	доля, хр–0,9 мольн доля, b=2,2, 1=3, c=0,53, ахихb = 35x35x4, D=0,4	
	JJAJJA4, D-0,4	

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-7. Технологические линии производства

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: На работу отводится от 40 минут во время практического занятия. Студентам раздаются варианты заданий, каждый из которых содержит 1 задачу и 1 теоретический вопрос по материалам лекций. Студент должен дать исчерпывающий ответ на вопрос в письменном виде, а также решить задачу и представить решение в надлежащей форме.

Краткое содержание задания:

Выполнение задания по теме «Разделение неоднородных систем. Перегонка и ректификация»

Контрольные вопросы/задания:

Запланированные результаты	Вопросы/задания для проверки	
обучения по дисциплине		
Уметь: выполнять анализ	1. Сравнить равновесные количества пропана,	
технологических процессов и	адсорбирую-щиеся одним килограммом	
оборудования как объектов	мелкопористого силикагеля при 20°С и относительных	
автоматизации и управления	давлениях пропана 0,07 и 0,14. Считать спра-ведливой	
	изотерму БЭТ с параметрами аМ = 9,5 % (массовая	
	доля) и С1 = 9,2	
	2. Концентрация поташного раствора после	
	поглощения H2S рав C(K2CO3) = 200 кг/м3; CH2S = 15	
	кг/м3 (без учета реакции между компонентами).	
	Растворитель - вода; плотность раствора рж = 1200	
	кг/м3. Выразить состав раствора мольных долях	

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-8. Итоговое задание

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: В форме письменного ответа на вопросы.

Краткое содержание задания:

В форме письменного ответа на вопросы

Контрольные вопросы/задания:

	1	1	
	Запланированные	результаты обучения по дисциплине	Вопросы/задания для проверки
	Уметь: пользоват	ться методическими и нормативными	1.Выделять общие признаки
	материалами при	расчёте и анализе технологических	массообменных процессов
процессов и аппаратов		ратов	

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

5 семестр

Форма промежуточной аттестации: Зачет с оценкой

Пример билета

- 1. Нагревание. Виды теплоносителей. Охлаждение.
- 2. Расчет коэффициента теплопередачи в регенераторе. Температурный гистерезис
- 3. В выпарной установке выпаривается раствор поваренной соли с начальной концентрацией 9% и с расходом 11320 кг/час. Концентрация соли в крепком растворе 56%. Найти расход вторичного пара, уходящего из установки и расход крепкого раствора. Найти площадь поверхности конденсатора, если коэффициент теплопередачи 670 Вт/м2град, температура греющего пара 190 оС, температура вторичного пара в барометрическом конденсаторе 75 оС, суммарные температурные потери 16 оС. Расход греющего пара 150 кг/ч, теплота парообразования 2200 кДж/кг.

Процедура проведения

К зачету допускаются студенты, выполнившие все текущие контрольные мероприятия на оценку не ниже «Удовлетворительно». Зачет проводится в устной форме по билетам в виде подготовки и изложения развернутого ответа. Текст задачи прилагается к билету. Время на выполнение экзаменационного задания/подготовку ответа — 60 минут. Задание выбирается студентом случайным образом и состоит из билета с двумя вопросами по теории дисциплины, предполагающими развернутый ответ с необходимыми письменными пояснениями (схемы и формулы), и практического задания в виде задачи. Преподаватель также может задать несколько дополнительных вопросов по программе зачета.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-1_{ОПК-9} Способен участвовать во внедрении и освоении нового оборудования, технологий и технологических режимов

Вопросы, задания

- 1. Классификация процессов промышленности
- 2. Движущая сила процесса
- 3. Технологические свойства материалов
- 4. Основы рационального построения аппаратов
- 5. Роль основных отраслей промышленности
- 6. Классификация тепловых процессов. Способы передачи теплоты
- 7. Пути интенсификации теплопередачи
- 8. Нагревание. Виды теплоносителей. Охлаждение
- 9. Рекуперативные теплообменные аппараты, их классификация, назначение и области применения
- 10.Основные конструкции: кожухотрубные, секционные теплообменники, теплообменники с оребренными трубами, пластинчатые теплообменники, их виды, змеевиковые и спиральные теплообменники
- 11.Схемы относительного движения теплоносителей
- 12. Распределение температур в трубах и каналах теплообменников

- 13. Эффективность теплообменников
- 14. Рекуперативные теплообменники периодического действия
- 15. Тепловые трубы. Теплообменные аппараты на тепловых трубах
- 16. Методы интенсификации теплообмена в рекуперативных теплообменниках
- 17. Регенеративные теплообменные аппараты, область их применения, конструкции и принцип действия
- 18.Преимущества и недостатки регенеративных теплообменников по сравнению с рекуперативными
- 19.Теплообменники с неподвижной и подвижной насадками. Виды применяемых насадок
- 20.Изменение температур в насадке регенеративного теплообменника. Коэффициент аккумуляции насадки
- 21. Виды теплообмена в регенераторе
- 22. Расчет коэффициента теплопередачи в регенераторе. Температурный гистерезис
- 23. Сравнение тепловой эффективности работы регенератора и рекуператора
- 24.Влияние характеристик насадки на тепловую эффективность регенератора

Материалы для проверки остаточных знаний

1.Зачем в кожухотрубных теплообменных аппаратах применяются сегментные перегородки?

Ответы:

для сужения проходного сечения по межтрубному пространству; для сужения проходного сечения по трубному пространству; для повышения прочности конструкции; для облегчения обслуживания аппарата; для уменьшения температур теплоносителей; для компенсации температурных напряжений в элементах конструкции; для красоты - зависит от бренда; для увеличения площади поверхности теплообмена

Верный ответ: для сужения проходного сечения по межтрубному пространству; для сужения проходного сечения по трубному пространству; для повышения прочности конструкции; для облегчения обслуживания аппарата; для уменьшения температур теплоносителей; для компенсации температурных напряжений в элементах конструкции; для красоты - зависит от бренда; для увеличения площади поверхности теплообмена

2. Что такое тепловая эффективность теплообменного аппарата?

Ответы:

его коэффициент полезного действия; отношение его тепловой мощности к электрической мощности, требуемой на прокачку теплоносителей; отношение его тепловой мощности к тепловой мощности идеального теплообменника; это то, насколько хорошо передается теплота

Верный ответ: его коэффициент полезного действия; отношение его тепловой мощности к электрической мощности, требуемой на прокачку теплоносителей; отношение его тепловой мощности к тепловой мощности идеального теплообменника; это то, насколько хорошо передается теплота

3.Зачем применяют оребрение поверхностей теплообмена?

Ответы:

чтобы увеличить площадь поверхности теплообмена; чтобы развить площадь поверхности теплообмена со стороны теплоносителя с низким коэффициентом теплоотдачи; чтобы сделать конструкцию аппарата прочнее; чтобы увеличить коэффициент теплоотдачи со стороны газа; чтобы увеличить аэродинамическое сопротивления аппарата; чтобы организовать нужную схему движения теплоносителей

Верный ответ: чтобы увеличить площадь поверхности теплообмена; чтобы развить площадь поверхности теплообмена со стороны теплоносителя с низким коэффициентом теплоотдачи; чтобы сделать конструкцию аппарата прочнее; чтобы

увеличить коэффициент теплоотдачи со стороны газа; чтобы увеличить аэродинамическое сопротивления аппарата; чтобы организовать нужную схему движения теплоносителей

4. Что такое идеальное ребро?

Ответы:

Ввести ответ в поле самостоятельно

Верный ответ: Ввести ответ в поле самостоятельно

5.Верно ли утверждение: эффективность одиночного ребра всегда ниже эффективности оребренной поверхности?

Ответы:

Да

Верный ответ: Да

6.В кожухотрубном теплообменном аппарате нагревается вода от температуры +60 градусов Цельсия до температуры + 120 градусов Цельсия. Расход воды - 12 м^3/ч. Вода нагревается насыщенным водяным паром с температурой +160 градусов Цельсия и теплотой парообразования 2200 кДж/кг. Оценить площадь теплообменной поверхности, найти расход пара и эффективность аппарата.

Ответы:

Ответ задачи зависит от того, какими значениями коэффициентов теплоотдачи задастся студент. Он должен вспомнить и выбрать правильный диапазон значений и задаться любым значением из этого диапазона. Затем определить значение коэффициента теплоотдачи. Тепловую мощность и расход пара надо определить из теплового баланса. Площадь поверхности теплообмена - из уравнения теплопередачи. Эффективность определяется исходя из физического смысла этой величины

Верный ответ: Ответ задачи зависит от того, какими значениями коэффициентов теплоотдачи задастся студент. Он должен вспомнить и выбрать правильный диапазон значений и задаться любым значением из этого диапазона. Затем определить значение коэффициента теплоотдачи. Тепловую мощность и расход пара надо определить из теплового баланса. Площадь поверхности теплообмена - из уравнения теплопередачи. Эффективность определяется исходя из физического смысла этой величины

7.Пользуясь h-d-диаграммой влажного воздуха, определить остальные параметры воздуха, если известно, что

- температура по мокрому термометру 12 оС,
- влагосодержание 3 г/кг.

Найти температуру по сухому воздуху, энтальпию воздуха и относительную влажность. Ответы:

По прилагающейся к вопросу H-d-диаграмме определяем положение точки, характеризующей данное состояние влажного воздуха

Верный ответ: По прилагающейся к вопросу H-d-диаграмме определяем положение точки, характеризующей данное состояние влажного воздуха

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

III. Правила выставления итоговой оценки по курсу

6 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

- 1. Коэффициенты теплопередачи в смесительных теплообменниках
- 2. Абсорбция. Адсорбция. Десорбция
- 3. В выпарной установке выпаривается раствор поваренной соли с начальной концентрацией 9% и с расходом 11320 кг/час. Концентрация соли в крепком растворе 56%. Найти расход вторичного пара, уходящего из установки и расход крепкого раствора. Найти площадь поверхности конденсатора, если коэффициент теплопередачи 670 Вт/м2град, температура греющего пара 190 оС, температура вторичного пара в барометрическом конденсаторе 75 оС, суммарные температурные потери 16 оС. Расход греющего пара 150 кг/ч, теплота парообразования 2200 кДж/кг

Процедура проведения

К экзамену допускаются студенты, выполнившие все текущие контрольные мероприятия на оценку не ниже «Удовлетворительно». Экзамен проводится в устной форме по билетам в виде подготовки и изложения развернутого ответа. Текст задачи прилагается к билету. Время на выполнение экзаменационного задания/подготовку ответа — 60 минут. Экзаменационное задание выбирается студентом случайным образом и состоит из билета с двумя вопросами по теории дисциплины, предполагающими развернутый ответ с необходимыми письменными пояснениями (схемы и формулы), и практического задания в виде задачи. Экзаменатор также может задать несколько дополнительных вопросов по программе экзамена.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-1_{ОПК-9} Способен участвовать во внедрении и освоении нового оборудования, технологий и технологических режимов

Вопросы, задания

1.Смесительные теплообменные аппараты. Принцип действия, области применения и конструкции смесительных теплообменников

- 2.Полые, насадочные, пенные скрубберы
- 3.Смесительные теплообменники со взвешенным слоем насадки
- 4.Скрубберы Вентури
- 5. Контактные аппараты с активной насадкой (КТАН)
- 6.Испарители и конденсаторы смесительного типа
- 7. Процессы обработки воздуха в прямоточных и противоточных скрубберах
- 8. Тепловой баланс смесительного аппарата
- 9. Построение процесса изменения состояния воздуха в смесительном теплообменнике
- 10. Средняя разность температур в смесительном теплообменнике
- 11. Коэффициенты теплопередачи в смесительных теплообменниках
- 12. Конденсационные теплообменники для глубокой утилизации теплоты влажных газов
- 13.Системы оборотного водоснабжения промышленных предприятий
- 14. Аппараты воздушного охлаждения
- 15. Методы выпаривания и выпарные установки
- 16. Однокорпусные и многокорпусные выпарные установки. Конденсация
- 17.Общие признаки массообменных процессов
- 18. Кинетика массопередачи. Материальный баланс массообменных процессов
- 19.Основные законы массопередачи
- 20. Массопередача с твердой фазой
- 21. Движущая сила массообменых процессов. Формы связи влаги с материалом
- 22. Кинетика сушки
- 23. Способы сушки и их характеристики. Устройство и принцип действия сушилок
- 24. Разделение компонентов жидких систем. Классификация процессов разделения неоднородных систем
- 25.Осаждение. Пути интенсификации отстаивания. Устройство отстойников
- 26.Осаждение под действием центробежной силы. Способы создания поля действия центробежной силы. Устройства для центробежного осаждения
- 27. Простая перегонка. Теоретические основы процессов
- 28. Ректификация. Ректификационные аппараты. Схемы ректификационных аппаратов
- 29. Абсорбция. Адсорбция. Десорбция
- 30.Схемы абсорбционных и адсорбционных аппаратов. Ионообменные процессы
- 31.Организация машинных технологий. Организация процессов в машинах и аппаратах технологических линий
- 32. Технологические линии производства

Материалы для проверки остаточных знаний

1.Зачем в кожухотрубных теплообменных аппаратах применяются сегментные перегородки?

Ответы:

для сужения проходного сечения по межтрубному пространству; для сужения проходного сечения по трубному пространству; для повышения прочности конструкции; для облегчения обслуживания аппарата; для уменьшения температур теплоносителей; для компенсации температурных напряжений в элементах конструкции; для красоты - зависит от бренда; для увеличения площади поверхности теплообмена

Верный ответ: для сужения проходного сечения по межтрубному пространству; для сужения проходного сечения по трубному пространству; для повышения прочности конструкции; для облегчения обслуживания аппарата; для уменьшения температур теплоносителей; для компенсации температурных напряжений в элементах конструкции; для красоты - зависит от бренда; для увеличения площади поверхности теплообмена

2. Что такое тепловая эффективность теплообменного аппарата? Ответы: его коэффициент полезного действия; отношение его тепловой мощности к электрической мощности, требуемой на прокачку теплоносителей; отношение его тепловой мощности к тепловой мощности идеального теплообменника; это то, насколько хорошо передается теплота

Верный ответ: его коэффициент полезного действия; отношение его тепловой мощности к электрической мощности, требуемой на прокачку теплоносителей; отношение его тепловой мощности к тепловой мощности идеального теплообменника; это то, насколько хорошо передается теплота

3. Зачем применяют оребрение поверхностей теплообмена?

Ответы:

чтобы увеличить площадь поверхности теплообмена; чтобы развить площадь поверхности теплообмена со стороны теплоносителя с низким коэффициентом теплоотдачи; чтобы сделать конструкцию аппарата прочнее; чтобы увеличить коэффициент теплоотдачи со стороны газа; чтобы увеличить аэродинамическое сопротивления аппарата; чтобы организовать нужную схему движения теплоносителей

Верный ответ: чтобы увеличить площадь поверхности теплообмена; чтобы развить площадь поверхности теплообмена со стороны теплоносителя с низким коэффициентом теплоотдачи; чтобы сделать конструкцию аппарата прочнее; чтобы увеличить коэффициент теплоотдачи со стороны газа; чтобы увеличить аэродинамическое сопротивления аппарата; чтобы организовать нужную схему движения теплоносителей

4. Что такое идеальное ребро?

Ответы:

Это ребро, температура которого по всей высоте неизменна и равна температуре основания

Верный ответ: Это ребро, температура которого по всей высоте неизменна и равна температуре основания

5.Верно ли утверждение: эффективность одиночного ребра всегда ниже эффективности оребренной поверхности?

Ответы:

Да

Верный ответ: Да

6.В кожухотрубном теплообменном аппарате нагревается вода от температуры +60 градусов Цельсия до температуры + 120 градусов Цельсия. Расход воды - 12 м^3/ч. Вода нагревается насыщенным водяным паром с температурой +160 градусов Цельсия и теплотой парообразования 2200 кДж/кг. Оценить площадь теплообменной поверхности, найти расход пара и эффективность аппарата.

Ответы:

Ответ задачи зависит от того, какими значениями коэффициентов теплоотдачи задастся студент. Он должен вспомнить и выбрать правильный диапазон значений и задаться любым значением из этого диапазона. Затем определить значение коэффициента теплоотдачи. Тепловую мощность и расход пара надо определить из теплового баланса. Площадь поверхности теплообмена - из уравнения теплопередачи. Эффективность определяется исходя из физического смысла этой величины

Верный ответ: Ответ задачи зависит от того, какими значениями коэффициентов теплоотдачи задастся студент. Он должен вспомнить и выбрать правильный диапазон значений и задаться любым значением из этого диапазона. Затем определить значение коэффициента теплоотдачи. Тепловую мощность и расход пара надо определить из теплового баланса. Площадь поверхности теплообмена - из уравнения теплопередачи. Эффективность определяется исходя из физического смысла этой величины

7.Пользуясь h-d-диаграммой влажного воздуха, определить остальные параметры воздуха, если известно, что

- температура по мокрому термометру 12 оС,
- влагосодержание 3 г/кг.

Найти температуру по сухому воздуху, энтальпию воздуха и относительную влажность. Ответы:

По прилагающейся к вопросу H-d-диаграмме определяем положение точки, характеризующей данное состояние влажного воздуха и получаем следующий ответ: температура по сухому термометру составит ~26,5 градусов Цельсия, энтальпия воздуха 34 кДж/кг, относительная влажность ~15%

Верный ответ: По прилагающейся к вопросу H-d-диаграмме определяем положение точки, характеризующей данное состояние влажного воздуха и получаем следующий ответ: температура по сухому термометру составит ~26,5 градусов Цельсия, энтальпия воздуха 34 кДж/кг, относительная влажность ~15%

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

ІІІ. Правила выставления итоговой оценки по курсу