Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.03.02 Электроэнергетика и электротехника

Наименование образовательной программы: Техногенная безопасность в электроэнергетике и

электротехнике

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Промышленная электроника

Москва 2024

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ» New Mem Идентификатор

Разработчик

Попков О.3. Rf6d8c936-PopkovOZ-de410db9 О.З. Попков

СОГЛАСОВАНО:

Руководитель образовательной программы

NGGO NGGO	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»			
Sept Contraction and S	Сведен	Сведения о владельце ЦЭП МЭИ		
	Владелец	Боровкова А.М.		
» <u>МЭИ</u> »	Идентификатор	Ra5e5ea5f-BorovkovaAM-0b2d7cd		

A.M. Боровкова

Заведующий выпускающей кафедрой

SON SON	Подписано электро	нной подписью ФГБОУ ВО «НИУ «МЭИ»	
THE PERSON NAMED IN	Сведения о владельце ЦЭП МЭИ		
	Владелец	Кондратьева О.Е.	
∙ МЭИ 🐔	Илентификатор	Rac792df8-KondratvevaOYe-7169b3	

O.E. Кондратьева

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

1. ОПК-5 Способен использовать методы анализа и моделирования электрических цепей и электрических машин

ИД-4 Демонстрирует понимание принципа действия электронных устройств

и включает:

для текущего контроля успеваемости:

Форма реализации: Письменная работа

1. Контрольная работа «Элементная база» (Контрольная работа)

Форма реализации: Устная форма

- 1. Защита лабораторной работы № 3; «Управляемые выпрямители» (Лабораторная работа)
- 2. Защита лабораторной работы №1; «Неуправляемые выпрямители (схема с нулевым выводом)» (Лабораторная работа)
- 3. Защита лабораторной работы №2; «Неуправляемые выпрямители (мостовая)» (Лабораторная работа)

БРС дисциплины

4 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Контрольная работа «Элементная база» (Контрольная работа)
- КМ-2 Защита лабораторной работы №1; «Неуправляемые выпрямители (схема с нулевым выводом)» (Лабораторная работа)
- КМ-3 Защита лабораторной работы №2; «Неуправляемые выпрямители (мостовая)» (Лабораторная работа)
- КМ-4 Защита лабораторной работы № 3; «Управляемые выпрямители» (Лабораторная работа)

Вид промежуточной аттестации – Экзамен.

	Веса контрольных мероприятий, %				
Росман имахимичими	Индекс	KM-1	KM-2	KM-3	KM-4
Раздел дисциплины	KM:				
	Срок КМ:	4	8	12	14
Элементная база устройств промышленной					
электроники					

Введение	+			
Сетевые преобразователи				
Выпрямители неуправляемые		+	+	
Выпрямители управляемые				+
Зависимые инверторы				
Зависимые инверторы				+
Автономные инверторы				
Регуляторы переменного и постоянного напряжения				+
Автономные инверторы				+
Bec KM:	10	30	30	30

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции		результаты обучения по	
		дисциплине	
ОПК-5	ИД-40ПК-5 Демонстрирует	Знать:	КМ-1 Контрольная работа «Элементная база» (Контрольная работа)
	понимание принципа	основные схемные	КМ-2 Защита лабораторной работы №1; «Неуправляемые
	действия электронных	решения устройств	выпрямители (схема с нулевым выводом)» (Лабораторная работа)
	устройств	преобразовательной	КМ-3 Защита лабораторной работы №2; «Неуправляемые
		техники	выпрямители (мостовая)» (Лабораторная работа)
		принцип работы основных	КМ-4 Защита лабораторной работы № 3; «Управляемые выпрямители»
		полупроводниковых	(Лабораторная работа)
		приборов, их	
		характеристики и	
		параметры	
		Уметь:	
		рассчитывать параметры	
		электронных схем	
		анализировать и	
		синтезировать	
		электронные устройства	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Контрольная работа «Элементная база»

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Студентам выдаётся задание на

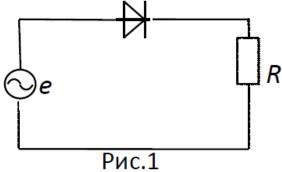
контрольную работу по вариантам из 3-х задач. Время выполнения - 1 час.

Краткое содержание задания:

Рассчитать режим работы полупроводникового прибора в заданной схеме, в соответствии с вариантом задания.

Контрольные вопросы/задания:

контрольные вопросы/за	ідання.
Запланированные	Вопросы/задания для проверки
результаты обучения по	
дисциплине	
Знать: принцип работы	1.ВАРИАНТ №1
основных	1. В схеме рис.1 $e = 16\sin(\omega t)$; $R = 0.014 \ \kappa O_M$;
полупроводниковых	Параметры схемы замещения диода: $ri = 1 \ O_M$; $E0 = 1 \ B$.
приборов, их	Определить величину максимального значения
характеристики и	тока,протекающего через диод.
параметры	
	N I
	$ \qquad \qquad $
	(∨)e
	Рис.1
	2. В схеме рис.2 $E\kappa$ =10 B ; $R\kappa$ =10 O_M ; $R\delta$ =200 O_M ; β =50.
	Определить, при какой величине напряжения управления Евх
	транзистор будет находится в режиме насыщения, если
	напряжение между базой и эмиттером открытого транзистора
	Uбэ=1 B .


Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки
	R_{K}
	<u>К</u> Б <u>Свх</u> <u>Свх</u> <u>Ск</u>
	 3. Трансформатор (потерями пренебречь) включен в сеть с напряжением 220 В. Сопротивление нагрузки, включенного во вторичную обмотку трансформатора Rн=10 Ом, напряжение на нагрузке Uн=10 В. Определить ток первичной обмотки трансформатора. 2.ВАРИАНТ №2 1. В схеме рис.1 действующее значение напряжения источника питания E=10 В; величина ограничивающего сопротивления R=1 кОм; Параметры схемы замещения диода: ri =2 Ом; E0=0,7 В. Определить на какие допустимые параметры Iamax и
	Uakmax необходимо выбрать светодиод.

2. В схеме рис.2 $E\kappa$ =10 B; $R\kappa$ =10 Oм; $R\delta$ =200 Oм; β =50, $E\epsilon$ x=2 B.

Рис.1

Определить величину напряжения на сопротивлении $R\kappa$, если напряжение между базой и эмиттером открытого транзистора U69=1 B.

Запланированные	Вопросы/задания для проверки
результаты обучения по	
дисциплине	
	$R_{\rm K}$ 3. Трансформатор (потерями пренебречь) включен в сеть с напряжением 220 B . Ток первичной обмотки трансформатора $I=1$ A . Ток вторичной обмотки трансформатора $I=1$ A . Ток вторичной обмотки трансформатора $I=1$ A . Определить напряжение $U2$. 3. ВАРИАНТ №3 1. В схеме рис. 1 $e=16\sin(\omega t)$; $R=0.014$ κOm ; Параметры схемы замещения диода: $ri=1$ Om ; $E0=1$ B . Определить величину максимального значения падения напряжения на диоде в открытом состоянии.

2. В схеме рис.2 $E\kappa$ =10 B; $R\kappa$ =10 Oм; $R\delta$ =200 Oм; β =50, $E\epsilon$ x=2 B.

Определить величину напряжения на транзисторе $U\kappa$ э, если напряжение между базой и эмиттером открытого транзистора $U\delta$ э=1 B.

Запланированные	Вопросы/задания для проверки
результаты обучения по	
цисциплине	
	$\bigcap_{\mathcal{D}_{i,i}}$
	$ R_{K} $
	$R_{\rm B}$ \uparrow \uparrow $E_{\rm K}$
	U_{K9}
	(
	│
	Рис.2 —
	3.Трансформатор (потерями пренебречь) включен в сеть с
	напряжением 220 В. Ток первичной обмотки трансформатора
	I1=1 A. Определить мощность, выделяемую на
	сопротивлении R_H =100 O_M , включенного во вторичную обмотку трансформатора.
	4.ВАРИАНТ №4
	1. B cxeme puc. 1 $e = 16\sin(\omega t)$; $R = 0.014 \kappa O_M$;
	Параметры схемы замещения диода: $ri = 1 \ O_M; E0 = 1 \ B,$
	Справочная величина обратного теплового тока диода
	<i>I</i> 0=0,01 <i>A</i> .
	Определить величину максимального значения падения
	напряжения на диоде в закрытом состоянии.
	$\bigcirc e$ $\Box R$

2. В схеме рис.2 $E\kappa$ =15 B; $R\kappa$ =10 Oм; $R\delta$ =200 Oм; β =50, $E\epsilon$ x=2 B.

Рис.1

Определить величину напряжения на сопротивлении $R\kappa$, если напряжение между базой и эмиттером открытого транзистора U6 $\mathfrak{5}$ =1 B.

20111011112010111111	Родрому/осломуя иня пророжи
Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	
дисцивине	
	R_{F} E_{K}
	E _{BX} E _K
	3. Трансформатор (потерями пренебречь) включен в сеть с напряжением 220 <i>B</i> . Ток первичной обмотки трансформатора <i>I</i> 1=0,5 <i>A</i> . Ток вторичной обмотки трансформатора <i>I</i> 2=1 <i>A</i> . Определить величину сопротивления <i>RH</i> , включенного во вторичную обмотку трансформатора.
	5.ВАРИАНТ №5 1. В схеме рис.1 действующее значение напряжения питания $E = 10B$; $R = 0.012 \kappa O M$; Параметры схемы замещения диода: $ri = 1 O M$; $E0 = 1 B$. Определить величину максимального значения тока, протекающего через R .
	$\bigcirc e$
	Рис.1
	2. В схеме рис.2 $E\kappa$ =15 B ; $R\kappa$ =10 Om ; $R\delta$ =200 Om ; β =50, $E\epsilon x$ =2 B . Определить величину напряжения на транзисторе $U\kappa$ 9, если напряжение между базой и эмиттером открытого транзистора $U\delta$ 9=1 B .

Запланированные	Вопросы/задания для проверки
результаты обучения по	
дисциплине	
дисциплине	$R_{\rm K}$ $R_{$
	сопротивления Rh , включенного во вторичную обмотку трансформатора. 6.ВАРИАНТ №6 1. В схеме рис.1 $e = 16\sin(\omega t)$; $R = 0.014 \ \kappa Om$; Параметры схемы замещения диода: $ri = 1 \ Om$; $E0 = 1 \ B$. Определить величину максимального значения напряжения на сопротивлении R .
	Рис.1
	2. В схеме рис.2 $E\kappa$ =10 B ; $R\kappa$ =50 Om ; $R\delta$ =200 Om ; β =50, $E\epsilon x$ =2 B . Определить величину напряжения на сопротивлении $UR\kappa$, если напряжение между базой и эмиттером открытого транзистора $U\delta$ 2–1 R

транзистора *Uб*э=1 *B*.

Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки
	$R_{\rm K}$ $U_{\rm K9}$ $E_{\rm BX}$
	3. Трансформатор (потерями пренебречь) включен в сеть с напряжением 220 В. Напряжение на вторичной обмотке
	трансформатора $U2=11\ B$. Вторичная обмотка работает в
	режиме холостого хода. Определить величину тока
	первичной обмотки трансформатора.

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если не выполнены условия для оценки "3"

КМ-2. Защита лабораторной работы №1; «Неуправляемые выпрямители (схема с нулевым выводом)»

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 30

Процедура проведения контрольного мероприятия: После проверки отчёта по лабораторной работе студенту задаются контрольные вопросы на знания и умения для оценки остаточных знаний.

Краткое содержание задания:

Составить отчёт по лабораторной работе. Содержание отчёта:

- а) наименование и цель работы;
- б) принципиальные электрические схемы для выполнения экспериментов;
- в) результаты экспериментальных исследований и проведённых по ним расчетов, помещенные в соответствующие таблицы;
- г) экспериментально снятые и построенные характеристики и осциллограммы;
- е) сравнить осциллограммы и построенные диаграммы; сравнить расчетное и экспериментальное значение; объяснить расхождения;
- з) сделать выводы о влиянии на внешние характеристики и угол коммутации анодной индуктивности La

Контрольные вопросы/задания:

2 опростительные вопросы/задания.	Ронтоски/полония ная провожи
Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
Знать: основные схемные решения	1.Трехфазная нулевая схема выпрямителя.
устройств преобразовательной	Временные диаграммы и основные расчетные
техники	формулы при работе на активную нагрузку без
	фильтра
	2. Трехфазная нулевая схема выпрямителя. Режим работы питающего сетевого трансформатора
	3. Трехфазная нулевая схема выпрямителя.
	Временные диаграммы и основные расчетные
	формулы при работе на активно-индуктивную
	нагрузку
Уметь: анализировать и	1.Сравнить трехфазную нулевую и трехфазную
синтезировать электронные	мостовую схемы по основным показателям
устройства	2.Сравните форму токов <i>ia</i> и <i>i</i> 2 для трехфазной
	нулевой схемы при $Xd=\infty$. Почему отличаются
	формулы для <i>Ia</i> и <i>I</i> 2
	3. Будут ли осциллограммы, снятые в лабораторной
	работе, отличаться от временных диаграмм?
	Почему
	4.Почему измеренный ток <i>II</i> отличается от
	расчетного
	5.Порядок включения и выключения лабораторной
	установки. Какие переключения и при каких
	условиях запрещается производить

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если: даны развернутые ответы на вопрос и задание выполнено в полном объеме

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если: большинство вопросов раскрыто, выбрано верное направление для выполнения задания и выполнена основная его часть

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если: вопросы раскрыты на базовом уровне, выбрано верное направление для выполнения задания, но результаты содержат ошибки

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если не выполнены условия для оценки "3"

КМ-3. Защита лабораторной работы №2; «Неуправляемые выпрямители (мостовая)»

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 30

Процедура проведения контрольного мероприятия: После проверки отчёта по лабораторной работе студенту задаются контрольные вопросы на знания и умения для оценки остаточных знаний.

Краткое содержание задания:

Составить отчёт по лабораторной работе. Содержание отчёта:

- а) наименование и цель работы;
- б) принципиальные электрические схемы для выполнения экспериментов;
- в) результаты экспериментальных исследований и проведённых по ним расчетов, помещенные в соответствующие таблицы;
- г) экспериментально снятые и построенные характеристики и осциллограммы;
- е) сравнить осциллограммы и построенные диаграммы; сравнить расчетное и экспериментальное значение; объяснить расхождения;
- з) сделать выводы о влиянии на внешние характеристики и угол коммутации анодной индуктивности La

Контрольные вопросы/задания:

контрольные вопросы/задания:				
Запланированные результаты	Вопросы/задания для проверки			
обучения по дисциплине				
Знать: основные схемные решения	1.Трехфазная мостовая схема выпрямителя.			
устройств преобразовательной	Временные диаграммы и основные расчетные			
техники	формулы при работе на активную нагрузку без			
	фильтра			
	2. Трехфазная мостовая схема выпрямителя. Режим			
	работы питающего сетевого трансформатора			
	3. Трехфазная мостовая схема выпрямителя.			
	Временные диаграммы и основные расчетные			
	формулы при работе на активно-индуктивную			
	нагрузку			
Уметь: анализировать и	1.Сравнить трехфазную нулевую и трехфазную			
синтезировать электронные	мостовую схемы по основным показателям			
устройства	2. Сравните форму токов <i>ia</i> и <i>i</i> 2 для трехфазной			
	мостовой схемы при $Xd=\infty$. Почему отличаются			
	формулы для <i>Ia</i> и <i>I2</i>			
	3. Будут ли осциллограммы, снятые в лабораторной			
	работе, отличаться от теоретических временных			
	диаграмм? Почему?			
	4.Почему измеренный ток <i>II</i> отличается от			
	расчетного?			

Запланированные	результаты	Вопросы/задания для проверки
обучения по дисциплине		
		5.Порядок включения и выключения лабораторной
		установки. Какие переключения и при каких
		условиях запрещается производить?

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если: даны развернутые ответы на вопрос и задание выполнено в полном объеме

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если: большинство вопросов раскрыто, выбрано верное направление для выполнения задания и выполнена основная его часть

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если: вопросы раскрыты на базовом уровне, выбрано верное направление для выполнения задания, но результаты содержат ошибки

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если не выполнены условия для оценки "3"

КМ-4. Защита лабораторной работы № 3; «Управляемые выпрямители»

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 30

Процедура проведения контрольного мероприятия: После проверки отчёта по лабораторной работе студенту задаются контрольные вопросы на знания и умения для опенки остаточных знаний.

Краткое содержание задания:

Составить отчёт по лабораторной работе. Содержание отчёта:

- а) наименование и цель работы;
- б) предварительные расчеты и построения;
- в) исходные данные, принципиальная силовая схема;
- г) обработанные осциллограммы. Указать, чем отличаются осциллограммы для непрерывного и прерывистого режима и для разных видов нагрузки;
- д) результаты экспериментальных исследований и проведенных по ним расчетов, помещенные в соответствующие таблицы;
- е) экспериментально снятые осциллограммы и построенные характеристики;
- ж) сравнение регулировочных и внешних характеристик при различных видах нагрузки;
- з) выводы по работе:
- -объяснить влияние режима работы на вид внешних и регулировочных характеристик;
- -объяснить влияние вида нагрузки на вид внешних и регулировочных характеристик;
- -объяснить влияние угла управления на величину граничного тока

Контрольные вопросы/задания:

Запланирова	нные	Вопросы/задания для проверки
результаты	обучения по	
дисциплине		
Уметь:	рассчитывать	1. Можно ли снять регулировочную характеристику на
параметры	электронных	холостом ходу?
схем		2.От чего зависят <i>Idгр</i> и α <i>гр</i>
		3. Как определить экспериментально <i>Idгр</i> и агр
		4.Что такое граничный ток <i>Ідгр и граничный угол αгр</i>
		5. Что такое угол управления α и как он определяется при
		выполнении работы
		6.Чем отличаются временные диаграммы (осциллограммы)
		выпрямленного напряжения Ud и тока id в различных
		режимах при различных видах нагрузки
		7. Какие переключения нельзя делать при включенному
		автомате "Модуля питания"

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если не выполнены условия для оценки "3"

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

4 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

1. Трехфазный мостовой выпрямитель работает с LC фильтром.

 $R_{\rm H}=100~O_{\rm M}$.

L фильтра= 0,1 Γ н,

C фильтра= 100мк Φ

Определить коэффициент пульсации на нагрузке в процентах.

2. Устройство, принцип работы полууправляемого мостового выпрямителя, работающего в режиме непрерывного тока. Регулировочная характеристика (вывод зависимости, определяющей ход регулировочной характеристики).

Процедура проведения

Студентам раздаются билеты, даётся время на подготовку не более 60 мин. По истечению времени на подготовку студент предоставляет устный ответ преподавателю с письменным решением задач по билету. Далее производится оценивание студента и присвоение оценки.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-4_{ОПК-5} Демонстрирует понимание принципа действия электронных устройств

Вопросы, задания

1. Двухполупериодный мостовой выпрямитель питается от сети Uc=220 B и работает на активную нагрузку.

 $K_T=20$, ΔU ак=0.9 B, rпотерь $=1 O_M$, $R_H=7.1 O_M$.

Нарисовать: а) принципиальную схему;

- б) схему замещения;
- в) форму напряжения на нагрузке.

Найти величину напряжения на нагрузке.

2. Трехфазный мостовой выпрямитель работает с индуктивным фильтром.

*R*н=100 *Ом. L*фильтра= 1 Гн. Определить коэффициент пульсации на нагрузке в процентах.

3.Определить величину тока нагрузки трехфазного мостового выпрямителя с активно – индуктивной нагрузкой. Обмотки трансформатора включены по схеме звезда / звезда, Uc=220~B, Kt=12,3, ΔU ак=0,9 B, rпотерь=0 , Rн=10 Oм, индуктивность рассеяния трансформатора Lа=0,0067 Γ н.

Нарисовать схему замещения.

- 4.Начиная с какого минимального угла управления возможно регулирование выходного напряжения в регуляторе переменного напряжения при активно-индуктивной нагрузке: $R_{\rm H}=10~OM$, L=32M Γ H. Нарисовать схему регулятора.
- 5.Определить величину тока вторичной обмотки трансформатора трехфазного выпрямителя без потерь с активно нагрузкой. Обмотки трансформатора включены по схеме звезда / звезда,

Uс=220 B, ΔU ак=0, rпотерь=0 , La=Ld=0, RH=18 OM, KT=10. Hарисовать форму тока i2.

6.Повышающий регулятор постоянного напряжения (РПН) питается от однофазного мостового выпрямителя с LC фильтром без трансформатора. Определить длительность открытого состояния транзисторного ключа tu, если:

Ucemu=220B, $fP\Pi H=10\kappa \Gamma u$, UH=400B. Активными потерями пренебречь. Нарисовать схему устройства.

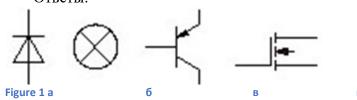
7. Определить величину зарядного тока аккумулятора, питающегося от однофазного выпрямителя с нулевым выводом.

Uc=220 B, $\Delta Uak=0$, $R=3 O_M$, Kt=22. E0=7 B

Нарисовать форму тока id.

- 8. Какими параметрами характеризуется степень пульсации выпрямленного напряжения и эффективность фильтра? Расчет параметров LC фильтра. Внешняя характеристика выпрямителя с LC фильтром.
- 9. Принцип инвертирования. Принцип работы зависимого инвертора в режиме непрерывного тока на примере двухполупериодной схемы.
- 10. Устройство, принцип работы полууправляемого мостового выпрямителя, работающего в режиме непрерывного тока. Регулировочная характеристика (вывод зависимости, определяющей ход регулировочной характеристики).
- 11. Формирование выходного напряжения с переменным углом управления ПЧНС. Объяснить на временных диаграммах тока и напряжения основных гармоник на нагрузке на каких участках и в каком режиме работают составляющие преобразователи при комплексной нагрузке.
- 12.Внешние характеристики мощных неуправляемых выпрямителей (вывод зависимости, определяющей ход выходной характеристики).
- 13.Входная характеристика зависимого инвертора (вывод зависимости, определяющей ход характеристики). Ограничительная характеристика.
- 14.Внешние характеристики мощных управляемых выпрямителей (вывод зависимости, определяющей ход выходной характеристики).

Материалы для проверки остаточных знаний


1. Сколько выводов имеет диод?

Ответы:

- a. 1
- б. 2
- в. 3
- г. 4

Верный ответ: б

2.Выберете верное условное графическое обозначение биполярного *pnp*-транзистора: Ответы:

Верный ответ: в

3. На каком рисунке представлена внешняя характеристика выпрямителя?

Ответы:



Figure 2 a

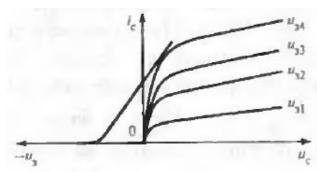


Figure 3 6

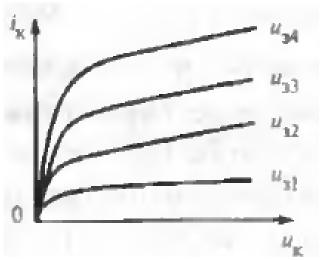


Figure 4 B

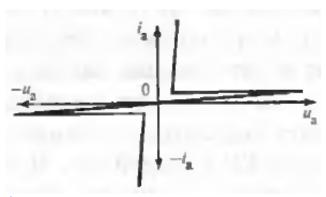


Figure 5 r

Верный ответ: а

4. Какое устройство называется выпрямителем?

Ответы:

- а. устройство, которое преобразует постоянный ток в переменный
- б. устройство, которое преобразует напряжение в ток
- в. устройство, которое преобразует ток в напряжение
- г. устройство, которое преобразует переменный ток в постоянный Верный ответ: г
- 5. Дайте определение коэффициенту мощности:

Ответы:

- а. отношение частоты пульсации к частоте питающего напряжения
- б. отношение амплитуды к-ой гармоники к средневыпрямленному значению напряжения
- в. отношение активной мощности к полной
- г. отношение средневыпрямленного значения напряжения к действующему значению напряжения во вторичной цепи трансформатора

Верный ответ: в

6.На каком рисунке показан трехфазный выпрямитель с LC-фильтром? Ответы:

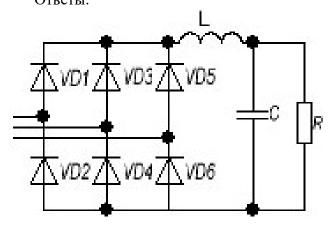


Figure 6 a

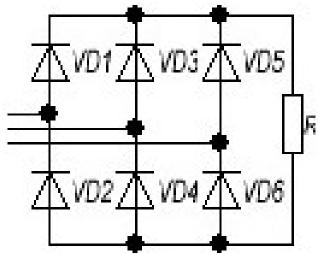


Figure 7 б

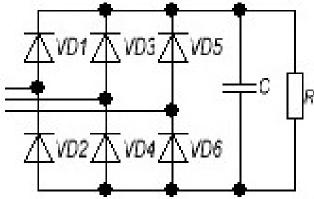


Figure 8 в

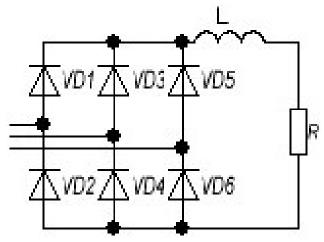


Figure 9 r

Верный ответ: а

7.По какой формуле определяется среднее значение тока вентиля в трехфазной мостовой схеме Ларионова?

Ответы:

a.
$$I_{a} = \frac{I_{d}}{8\sqrt{2}}$$
6. $I_{a} = \frac{I_{d}}{9}$
8. $I_{a} = 5I_{d}$

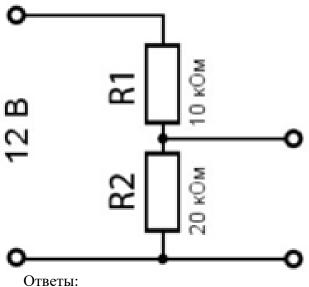
$$\Gamma$$
. $I_a = \frac{I_d}{3}$

Верный ответ: г

8. Что необходимо учитывать для определения габаритной мощности двухобмоточного трансформатора?

Ответы:

- а. мощность только первичной обмотки трансформатора
- б. мощность только вторичной обмотки трансформатора
- в. мощности первичной и вторичной обмотки трансформатора
- г. мощности обмоток учитывать не нужно


Верный ответ: в

9. Какой коэффициент связывает действующее значения синусоидального тока с амплитудным значением синусоидального тока?

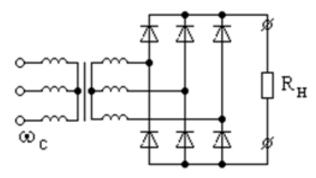
Ответы:

Верный ответ: б

10.Определите напряжение на выходе резистивного делителя напряжения

OIB

a. 24 B


б. 8 В

в. 14 В

г. 4В

Верный ответ: б

11.Схема какого выпрямителя изображена на рисунке?

Ответы:

- а. однофазный
- б. 12-пульсный
- в. 16-пульсный
- г. трехфазный мостовой

Верный ответ: г

12. Применение каких выпрямителей обеспечит наименьшие пульсации выпрямленного напряжения; лучший гармонический состав потребляемого из сети тока и наименьшую расчетную мощность трансформатора?

Ответы:

- а. многофазные
- б. однофазные
- в. однофазные однополупериодные
- г. только однофазные с нулевым выводом

Верный ответ: а

II. Описание шкалы оценивания

Оценка: 5 («отлично») Нижний порог выполнения задания в процентах: 70 Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Не выполнены условия оценки "3"

ІІІ. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.