Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.03.02 Электроэнергетика и электротехника

Наименование образовательной программы: Электрооборудование летательных аппаратов и

автомобилей

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Электронные устройства автономных объектов

Москва 2025

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

 Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

 Сведения о владельце ЦЭП МЭИ

 Владелец
 Румянцев М.Ю.

 Идентификатор
 R4b7b75d7-RumyantsevMY-eafe30

М.Ю. Румянцев

Разработчик

СОГЛАСОВАНО:

Руководитель образовательной программы

NO NO NEW YORK OF THE PROPERTY	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»	
	Сведения о владельце ЦЭП МЭИ		
	Владелец	Липай Б.Р.	
	Идентификатор	R8a549539-LipaiBR-275b674e	

Б.Р. Липай

Заведующий выпускающей кафедрой

MCM	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»			
	Сведения о владельце ЦЭП МЭИ				
	Владелец	Румянцев М.Ю.			
	Идентификатор R	4b7b75d7-RumyantsevMY-eafe30			

М.Ю. Румянцев

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-4 Способен понимать принципы основных видов преобразования энергии и общие принципы построения и функционирования электромеханических систем и их элементов, а также устройств силовой и цифровой электроники
 - ИД-3 Демонстрирует понимание принципов построения и функционирования систем силовой электроники
 - ИД-6 Выполняет анализ систем силовой электроники

и включает:

для текущего контроля успеваемости:

Форма реализации: Билеты (письменный опрос)

- 1. Диоды и выпрямители (Контрольная работа)
- 2. Источники вторичного электропитания (конверторы) (Контрольная работа)
- 3. Повышающий и инвертирующий регуляторы напряжения (Контрольная работа)
- 4. Транзисторно-диодные модули. Схемы управления транзисторными ключами. Энергетический и тепловой расчёты силовой части электронных устройств автономных объектов (Контрольная работа)
- 5. Транзисторы (Контрольная работа)
- 6. Электромагнитные компоненты электронных устройств автономных объектов (Контрольная работа)
- 7. Электромагнитные процессы, протекающие в силовой части электронных устройств. Понижающий регулятор напряжения (Контрольная работа)

Форма реализации: Устная форма

- 1. Выпрямители (Лабораторная работа)
- 2. Знакомство с работой лабораторного оборудования (Лабораторная работа)
- 3. Инвертирующий регулятор напряжения (Лабораторная работа)
- 4. Исследование ключевого понижающего преобразователя напряжения (Лабораторная работа)
- 5. Исследование свойств полевых транзисторов с индуцированным каналом (Лабораторная работа)
- 6. Повышающий регулятор напряжения (Лабораторная работа)
- 7. Понижающий регулятор напряжения (Лабораторная работа)

БРС дисциплины

6 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Электромагнитные процессы, протекающие в силовой части электронных устройств. Понижающий регулятор напряжения (Контрольная работа)
- КМ-2 Повышающий и инвертирующий регуляторы напряжения (Контрольная работа)
- КМ-3 Диоды и выпрямители (Контрольная работа)
- КМ-4 Транзисторы (Контрольная работа)
- КМ-5 Понижающий регулятор напряжения (Лабораторная работа)
- КМ-6 Повышающий регулятор напряжения (Лабораторная работа)
- КМ-7 Инвертирующий регулятор напряжения (Лабораторная работа)
- КМ-8 Выпрямители (Лабораторная работа)

Вид промежуточной аттестации – Зачет с оценкой.

		Beca	а контр	ольны	х мероі	прияти	й, %		
Раздел дисциплины	Индекс	КМ-	КМ-	КМ-	КМ-	КМ-	КМ-	КМ-	КМ-
т аздел дисциплины	KM:	1	2	3	4	5	6	7	8
	Срок КМ:	4	7	10	13	5	8	11	14
Электронные устройства а объектов. Регуляторы напр									
Роль и место электронных	устройств в								
структуре электрооборудования автономных объектов. Электромагнитные процессы, протекающие в силовой части электронных устройств		+							
Импульсные регуляторы напряжения		+	+			+	+	+	
Полупроводниковые компоненты									
Полупроводниковые диоды				+	+				+
Транзисторы				+	+				+
	Bec KM:	10	10	10	10	15	15	15	15

7 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по лиспиплине:

- КМ-9 Транзисторно-диодные модули. Схемы управления транзисторными ключами. Энергетический и тепловой расчёты силовой части электронных устройств автономных объектов (Контрольная работа)
- КМ- Электромагнитные компоненты электронных устройств автономных объектов
- 10 (Контрольная работа)
- КМ- Источники вторичного электропитания (конверторы) (Контрольная работа)

11

12

- КМ- Знакомство с работой лабораторного оборудования (Лабораторная работа)
- КМ- Исследование свойств полевых транзисторов с индуцированным каналом (Лабораторная работа)

КМ- Исследование ключевого понижающего преобразователя напряжения (Лабораторная работа)

Вид промежуточной аттестации – Экзамен.

	В	еса кон	трольні	ых меро	приятиі	í, %	
Doo you wysyyy wyyy	Индекс	КМ-	КМ-	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	9	10	11	12	13	14
	Срок КМ:	3	8	13	10	12	14
Транзисторно-диодные модули							
Транзисторно-диодные модули		+				+	+
Схемы управления транзисторным	ии ключами						
Схемы управления транзисторным	ии ключами	+				+	+
Энергетический и тепловой расчёт	ты силовой						
части электронных устройств авто	номных						
объектов							
Энергетический и тепловой расчёт							
части электронных устройств авто	номных	+				+	+
объектов							
Электромагнитные компоненты эл	ектронных						
устройств автономных объектов							
Электромагнитные компоненты электронных			+				
устройств автономных объектов			'				
Источники вторичного электропитания							
Источники вторичного электропит	гания			+	+		
	Вес КМ:	15	15	15	15	20	20

БРС курсовой работы/проекта

7 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по курсовому проекту:

КМ-1 Соблюдение графика выполнения КП

КМ-2 Оценка выполнения разделов КП

Вид промежуточной аттестации – защита КП.

	Веса контрольных мероприятий, %				
Doored wassers	Индекс	KM-1	KM-2		
Раздел дисциплины	KM:				
	Срок КМ:	6	15		
Оформление задания по КП	+				
Подготовка КП		+			

Вес КМ:	10	90

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	-	результаты обучения по	
		дисциплине	
ПК-4	ИД-3 _{ПК-4} Демонстрирует	Знать:	КМ-1 Электромагнитные процессы, протекающие в силовой части
	понимание принципов	основные схемы	электронных устройств. Понижающий регулятор напряжения
	построения и	импульсных	(Контрольная работа)
	функционирования систем	преобразователей	КМ-2 Повышающий и инвертирующий регуляторы напряжения
	силовой электроники	напряжения и конверторов	(Контрольная работа)
		и их свойства	КМ-3 Диоды и выпрямители (Контрольная работа)
		устройство, принципы	КМ-4 Транзисторы (Контрольная работа)
		действия и характеристики	КМ-5 Понижающий регулятор напряжения (Лабораторная работа)
		элементов силовой части	КМ-6 Повышающийрегулятор напряжения (Лабораторная работа)
		электронных устройств	КМ-7 Инвертирующий регулятор напряжения (Лабораторная работа)
		основные физические	КМ-8 Выпрямители (Лабораторная работа)
		явления и процессы,	КМ-10 Электромагнитные компоненты электронных устройств
		протекающие в силовой	автономных объектов (Контрольная работа)
		части электронных	КМ-12 Знакомство с работой лабораторного оборудования
		устройств	(Лабораторная работа)
		источники научно-	
		технической информации	
		(журналы, сайты	
		Интернет)	
		Уметь:	
		составлять	
		принципиальные схемы	
		электронных устройств	
		грамотно рассчитывать и	
		подбирать элементы	

		силовой части электронных устройств составлять	
		принципиальные схемы	
		электронных устройств	
ПК-4	ИД-6пк-4 Выполняет анализ систем силовой электроники	Знать: принципы работы средств контроля и измерения электрических параметров электронных устройств энергетические и частотные характеристики транзисторно-диодных модулей цифровые методы анализа цепей постоянного и переменного токов Уметь: подбирать элементы силовой части электронных устройств анализировать информацию о характеристиках элементов и электронных устройств в целом использовать для решения прикладных задач средства имитационно-компьютерного моделирования использовать приборы и средства контроля и	КМ-1 Электромагнитные процессы, протекающие в силовой части электронных устройств. Понижающий регулятор напряжения (Контрольная работа) КМ-2 Повышающий и инвертирующий регуляторы напряжения (Контрольная работа) КМ-5 Понижающий регулятор напряжения (Лабораторная работа) КМ-6 Повышающийрегулятор напряжения (Лабораторная работа) КМ-7 Инвертирующий регулятор напряжения (Лабораторная работа) КМ-9 Транзисторно-диодные модули. Схемы управления транзисторными ключами. Энергетический и тепловой расчёты силовой части электронных устройств автономных объектов (Контрольная работа) КМ-11 Источники вторичного электропитания (конверторы) (Контрольная работа) КМ-13 Исследование свойств полевых транзисторов с индуцированным каналом (Лабораторная работа) КМ-14 Исследование ключевого понижающего преобразователя напряжения (Лабораторная работа)

измерения для исследования работы электронных устройств уметь грамотно рассчитывать и подбирать
элементы силовой части
электронных устройств

II. Содержание оценочных средств. Шкала и критерии оценивания

6 семестр

KM-1. Электромагнитные процессы, протекающие в силовой части электронных устройств. Понижающий регулятор напряжения

Формы реализации: Билеты (письменный опрос)

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Продолжительность контроля составляет не более 15 минут. Работа выполняется индивидуально по вариантам.

Краткое содержание задания:

Контрольная работа ориентирована на проверку знаний по электромагнитным процессам, протекающим в силовой части электронных устройств, а также по понижающим регуляторам напряжения

Контрольные вопросы/задания:

Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки
Знать: основные схемы импульсных преобразователей напряжения и конверторов и их свойства	1. Нарисуйте схему замещения понижающего регулятора напряжения при разомкнутом ключе 2. Напишите формулу зависимости выходного напряжения от входного в режиме непрерывных токов дросселя 3. Нарисуйте осциллограмму напряжения на ключе в режиме прерывистых токов дросселя 4. Приведите регулировочную характеристику понижающего регулятора напряжения
Знать: основные физические явления и процессы, протекающие в силовой части электронных устройств	1.Правило вольт-секундных площадей
Уметь: анализировать информацию о характеристиках элементов и электронных устройств в целом	1.Написать формулу расчета КПД при известных входной и выходной мощностях
Уметь: использовать для решения прикладных задач средства имитационно-компьютерного моделирования	1.КПД преобразователя равен 90%, а мощность потерь P пот = 10 Вт. Рассчитайте мощность источника P ист

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-2. Повышающий и инвертирующий регуляторы напряжения

Формы реализации: Билеты (письменный опрос)

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Продолжительность контроля составляет не более 15 минут. Работа выполняется индивидуально по вариантам.

Краткое содержание задания:

Контрольная работа ориентирована на проверку знаний по повышающим и инвертирующим регуляторам напряжения

Контрольные вопросы/задания:

Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
Знать: основные схемы	1. Нарисуйте схему повышающего регулятора
импульсных	напряжения. Для режима граничных токов дросселя
преобразователей напряжения	приведите графики токов индуктивности, ключа и диода
и конверторов и их свойства	2. Нарисуйте регулировочную характеристику
	повышающего регулятора напряжения с учетом
	сопротивления элементов
	3. Нарисуйте схему инвертирующего регулятора
	напряжения. Для режима прерывистых токов дросселя
	приведите графики токов индуктивности, ключа и диода
Уметь: использовать для	1.На входе повышающего регулятора напряжения,
решения прикладных задач	работающего в режиме граничных токов дросселя, стоит
средства имитационно-	источник 5 В, а ключ работает на частоте 100 Гц. Для
компьютерного	коэффициента заполнения $\gamma = 0.5$ и мощности нагрузки
моделирования	100 Вт определите индуктивность дросселя L
	2.На входе инвертирующего регулятора напряжения,
	работающего в режиме граничных токов дросселя, стоит
	источник 30 В, а ключ работает на частоте 500 Гц. Для
	выходного напряжения 20 В и сопротивлении нагрузки
	10 Ом определите индуктивность дросселя L. Для
	выходного напряжения 70 В и сопротивлении нагрузки
	10 Ом определите индуктивность дросселя L

Описание шкалы опенивания:

Оиенка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-3. Диоды и выпрямители

Формы реализации: Билеты (письменный опрос)

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Продолжительность контроля составляет не более 15 минут. Работа выполняется индивидуально по вариантам.

Краткое содержание задания:

Контрольная работа ориентирована на проверку знаний по диодам и выпрямителям

Контрольные вопросы/задания:

Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
Знать: устройство, принципы	1.Нарисуйте схему однофазного
действия и характеристики	двухполупериодного выпрямителя, его входное
элементов силовой части	синусоидальное и выходное напряжения без
электронных устройств	выходного фильтра (конденсатора)
	2.Изобразите движение рабочей точки диода при
	его переключении на повышенной частоте
	3. Нарисуйте схему трехфазного
	однополупериодного выпрямителя, его входное
	синусоидальное и выходное напряжения
	4.Приведите схему замещения диода для прямого
	смещения р-п перехода
	5. Чему равно среднее значение выходного
	напряжения трехфазного двухполупериодного
	выпрямителя. Приведите график входного
	синусоидального и выходного напряжений

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-4. Транзисторы

Формы реализации: Билеты (письменный опрос)

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Продолжительность контроля составляет не более 15 минут. Работа выполняется индивидуально по вариантам.

Краткое содержание задания:

Контрольная работа ориентирована на проверку знаний по транзисторам

Контрольные вопросы/задания:

Запланированные результаты	Вопросы/задания для проверки	
обучения по дисциплине		
Знать: устройство, принципы	1.Нарисуйте УГО n – канального полевого	
действия и характеристики	транзистора (ПТ). Нарисуйте входные	
элементов силовой части	характеристики ПТ со встроенным и	
электронных устройств	индуцированным каналами	
	2.Нарисуйте УГО биполярного транзистора n-p-n и	
	р-п-р типа	
	3.Классификация и типы транзисторов, их	
	обозначения и основные свойства	
	4. Эффект Миллера в полевых транзисторах	
	5. Работа транзисторно-диодного модуля на	
	биполярных транзисторах на активно-индуктивную	
	нагрузку при непрерывном токе в индуктивности:	
	осциллограммы, траектория движения рабочей	
	точки БТ	

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-5. Понижающий регулятор напряжения

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Продолжительность контроля составляет не более 10 минут. Опрос выполняется индивидуально.

Краткое содержание задания:

Лабораторная работа ориентирована на проверку знаний по понижающим регуляторам напряжения и умения проводить анализ их работы

Контрольные вопросы/задания:

Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки		
Знать: основные схемы импульсных преобразователей напряжения и конверторов и их свойства	1. Режимы работы понижающего регулятора напряжения 2. Связь тока и напряжения в дросселе понижающего регулятора напряжения. Правило ампер-секундных площадей		
Уметь: использовать для решения прикладных задач средства имитационно-компьютерного моделирования	1.Как изменится график тока дросселя понижающего регулятора напряжения при увеличении частоты коммутации ключа 2.Определить по регулировочной характеристике напряжение питания понижающего регулятора напряжения 3.По результатам моделирования определить КПД понижающего регулятора напряжения		

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-6. Повышающий регулятор напряжения

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Продолжительность контроля составляет не более 10 минут. Опрос выполняется индивидуально.

Краткое содержание задания:

Лабораторная работа ориентирована на проверку знаний по повышающим регуляторам напряжения и умения проводить анализ их работы

Контрольные вопросы/задания:

Запланированные результаты обучения	Вопросы/задания для проверки		
по дисциплине			
Знать: основные схемы импульсных	1.Режимы работы повышающего регулятора		
преобразователей напряжения и	напряжения		
конверторов и их свойства	2.Связь тока и напряжения в дросселе		
	повышающего регулятора напряжения.		
	Правило ампер-секундных площадей		
Уметь: использовать для решения	1. Как изменится график тока дросселя		
прикладных задач средства имитационно-	повышающего регулятора напряжения при		
компьютерного моделирования	увеличении частоты коммутации ключа		
	2.Определить по регулировочной		
	характеристике напряжение питания		
	повышающего регулятора напряжения		
	3.По результатам моделирования определить		
	КПД повышающего регулятора напряжения		

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-7. Инвертирующий регулятор напряжения

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Продолжительность контроля составляет не более 10 минут. Опрос выполняется индивидуально.

Краткое содержание задания:

Лабораторная работа ориентирована на проверку знаний по инвертирующим регуляторам напряжения и умения проводить анализ их работы

Контрольные вопросы/задания:

Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки	
Знать: основные схемы импульсных преобразователей напряжения и конверторов и их свойства	1. Режимы работы инвертирующего регулятора напряжения 2. Связь тока и напряжения в дросселе инвертирующего регулятора напряжения. Правило ампер-секундных площадей	
Уметь: использовать для решения прикладных задач средства имитационно-компьютерного моделирования	1.Как изменится график тока дросселя инвертирующего регулятора напряжения при увеличении частоты коммутации ключа 2.Определить по регулировочной характеристике напряжение питания инвертирующего регулятора напряжения 3.По результатам моделирования определить КПД инвертирующего регулятора напряжения	

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оиенка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-8. Выпрямители

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Продолжительность контроля составляет не более 10 минут. Опрос выполняется индивидуально.

Краткое содержание задания:

Лабораторная работа ориентирована на проверку знаний по выпрямителям и умения проводить анализ их работы

Контрольные вопросы/задания:

контрольные вопросы задания:			
Запланированные результаты	Вопросы/задания для проверки		
обучения по дисциплине			
Знать: устройство, принципы	1. Какой выпрямитель работает с пульсностью 3		
действия и характеристики	2. Нарисуйте условно-графическое обозначение		
элементов силовой части	диода Шоттки и укажите, где анод и катод		
электронных устройств			
Уметь: грамотно рассчитывать и	1.Оцените качество выпрямленного напряжения		
подбирать элементы силовой части	в среде OrCAD Capture		
электронных устройств			
Уметь: подбирать элементы силовой	1.Изобразите осциллограммы выходного		
части электронных устройств	напряжения трехфазного однополупериодного и		
	двухполупериодного выпрямителей		
Уметь: уметь грамотно рассчитывать	1.Как изменится график выходного напряжения		
и подбирать элементы силовой части	однофазного двухполупериодного выпрямителя		
электронных устройств	со средней точке при установке выходного С-		
	фильтра		

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

7 семестр

КМ-9. Транзисторно-диодные модули. Схемы управления транзисторными ключами. Энергетический и тепловой расчёты силовой части электронных устройств автономных объектов

Формы реализации: Билеты (письменный опрос) **Тип контрольного мероприятия:** Контрольная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Продолжительность контроля составляет не более 15 минут. Работа выполняется индивидуально по вариантам.

Краткое содержание задания:

Контрольная работа ориентирована на проверку знаний по транзисторно-диодным модулям, схемам управления транзисторными ключами и энергетическому и тепловому расчёту силовой части электронных устройств автономных объектов

Контрольные вопросы/залания:

Контрольные вопросы/задания:			
Запланированные результаты	Вопросы/задания для проверки		
обучения по дисциплине			
Знать: принципы работы средств	1.Перечислите виды потерь в силовой части		
контроля и измерения	электронных устройств		
электрических параметров			
электронных устройств			
Знать: энергетические и	1.Приведите формулу расчета энергии потерь		
частотные характеристики	биполярного транзистора с изолированным затвором		
транзисторно-диодных модулей	в режиме насыщения ключа		
	2. Нарисуйте осциллограммы процесса выключения		
	транзисторно-диодного модуля с биполярным		
	транзистором при активно-индуктивной нагрузке		
	3. Приведите линеаризированную осциллограмму при		
	включении транзистора ТДМ. Приведите формулу		
	расчета мощности потерь в ключе на этапе		
	нарастания тока в ключе и отметьте этот этап на		
	осциллограмме		
	4.Приведите осциллограммы тока и напряжения при		
	выключении транзистора без снаббера и со		
	снаббером		

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-10. Электромагнитные компоненты электронных устройств автономных объектов

Формы реализации: Билеты (письменный опрос) **Тип контрольного мероприятия:** Контрольная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Продолжительность контроля составляет не более 15 минут. Работа выполняется индивидуально по вариантам.

Краткое содержание задания:

Контрольная работа ориентирована на проверку знаний по электромагнитным компонентам электронных устройств автономных объектов

Контрольные вопросы/задания:

Запланированные результаты	Вопросы/задания для проверки			
обучения по дисциплине				
Знать: источники научно-	1. Характеристики магнитного поля (индукция,			
технической информации (журналы,	напряженность, магнитный поток,			
сайты Интернет)	намагниченность)			
	2. Теорема Остроградского-Гаусса. Силовые			
	линии магнитного поля			
	3. Закон Ома для магнитной цепи. Магнитное			
	сопротивление			
	4.Классификация магнитных материалов.			
	Процесс намагничивания магнитопровода с			
	прямоугольной петлей гистерезиса			
	5.Классификация дросселей. Расчетные формулы			
	для индуктивности			

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-11. Источники вторичного электропитания (конверторы)

Формы реализации: Билеты (письменный опрос) Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Продолжительность контроля составляет не более 15 минут. Работа выполняется индивидуально по вариантам.

Краткое содержание задания:

Контрольная работа ориентирована на проверку знаний по конверторам в электронных устройств автономных объектов

Контрольные вопросы/задания:			
Запланированные	Вопросы/задания для проверки		
результаты обучения по			
дисциплине			
Знать: цифровые методы	1.Однотактный прямоходовой конвертор без		
анализа цепей	дополнительной обмотки размагничивания: схема, принцип		
постоянного и	работы, связь входного и выходного напряжений, рабочие		
переменного токов	процессы, осциллограммы работы. Влияние индуктивности		
	рассеяния (основные проблемы). Протекание тока		
	намагничивания. Схемы для облегчения размагничивание		
	сердечника		
	2.Однотактный обратноходовой конвертор: схема, принцип		
	работы, связь входного и выходного напряжений, рабочие		
	процессы, осциллограммы работы. Влияние индуктивности		
	рассеяния (основные проблемы)		
	3. Двухтактный конвертор со средней точкой в первичной		
	обмотке трансформатора: схема, принцип работы, связь		
	входного и выходного напряжений, рабочие процессы,		
	осциллограммы работы. Влияние индуктивности рассеяния		
	(основные проблемы). Соотношение силового тока		
	транзистора и тока нагрузки. Соотношение напряжения на		
	запертом транзисторе и входного напряжения		
	4.Полумостовой двухтактный конвертор с делителем		
	напряжения: схема, принцип работы, связь входного и		
	выходного напряжений, рабочие процессы, осциллограммы		
	работы. Влияние индуктивности рассеяния (основные		
	проблемы). Осциллограммы напряжений на конденсаторах.		
	Соотношение силового тока транзистора и тока нагрузки.		
	Соотношение напряжения на запертом транзисторе и		
	входного напряжения 5. Мостовой конвертор: схема, принцип работы, связь		
	входного и выходного напряжений, рабочие процессы,		
	осциллограммы работы. Влияние индуктивности рассеяния		
	(основные проблемы). Соотношение силового тока		
	транзистора и тока нагрузки. Соотношение напряжения на		
	запертом транзисторе и входного напряжения. Возможные		
	запертом транзисторе и входного напряжения. Возможные		

Запланированные	Вопросы/задания для проверки
результаты обучения по	
дисциплине	
	способы организации паузы

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-12. Знакомство с работой лабораторного оборудования

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Продолжительность контроля составляет не более 15 минут. Опрос выполняется индивидуально.

Краткое содержание задания:

Лабораторная работа ориентирована на проверку умений по работе с лабораторным оборудованием для исследования электронных устройств автономных объектов

Контрольные вопросы/задания:

Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	1 1
Уметь: составлять принципиальные	1. Что такое источник питания. Его входы и
схемы электронных устройств	выходы. Пример задания выходного напряжения
	2.Принцип сбора электронных устройств на
	макетной плате. Перемычки
	3.Модульное макетирование регуляторов и
	конверторов
	4.Что такое осциллограф. Его входы и выходы.
	Пример исследования сигнала специальной формы
	5. Что такое генератор сигналов специальной
	формы. Его входы и выходы. Пример задания
	сигналов разных форм

Описание шкалы оценивания:

Оиенка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-13. Исследование свойств полевых транзисторов с индуцированным каналом

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Продолжительность контроля составляет не более 15 минут. Опрос выполняется индивидуально.

Краткое содержание задания:

Лабораторная работа ориентирована на проверку умений исследованию работы транзисторно-диодных модулей электронных устройств автономных объектов

Контрольные вопросы/задания:

топтроприе вопросы, задания.		
Запланированные результаты обучения по	Вопросы/задания для проверки	
дисциплине		
Уметь: использовать приборы и средства	1.Как измерить ток с помощью	
контроля и измерения для исследования	осциллографа	
работы электронных устройств	2.Вывести график мощности потерь	
	транзисторно-диодного модуля,	
	работающего на активно-индуктивную	
	нагрузку	
	3.Собрать схему для исследования работы	
	диодного модуля	
	4.Зачем в цепь затвора транзисторного	
	модуля ставится резистор	
	5. Назначение обратного диода транзистора	

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-14. Исследование ключевого понижающего преобразователя напряжения

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Продолжительность контроля составляет не более 15 минут. Опрос выполняется индивидуально.

Краткое содержание задания:

Лабораторная работа ориентирована на проверку умений исследованию работы регуляторов напряжения электронных устройств автономных объектов

Контрольные вопросы/задания:

Запланированные	результаты	обучения	ПО	Вопросы/задания для проверки
дисциплине				
Уметь: использоват	ъ приборы и с	редства конт	роля	1.Собрать схему повышающего
и измерения для ис	следования раб	оты электрог	ных	регулятора напряжения
устройств				2.Привести осциллограммы токов
				компонентов схем
				3.Снять регулировочную
				характеристику преобразователя
				4.Снять внешнюю характеристику
				преобразователя
				5. Назначение и выбор входных
				конденсаторов преобразователей

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

Для курсового проекта/работы

7 семестр

І. Описание КП/КР

Импульсный регулятор напряжения (понижающий, повышающий или инвертирующий), выпрямитель (однофазный или трехфазный), конвертор напряжения, инвертор напряжения (однофазный или трехфазный) или комбинация из двух устройств в составе автономного объекта

II. Примеры задания и темы работы

Пример задания

Преобразователь частоты (выпрямитель + инвертор)

Тематика КП/КР:

Импульсный регулятор напряжения (понижающий, повышающий или инвертирующий), выпрямитель (однофазный или трехфазный), конвертор напряжения, инвертор напряжения (однофазный или трехфазный) или комбинация из двух устройств в составе автономного объекта

КМ-1. Соблюдение графика выполнения КП Описание шкалы оценивания

Оценка: «зачтено»

Описание характеристики выполнения знания:

Оценка: «не зачтено»

Описание характеристики выполнения знания:

КМ-2. Оценка выполнения разделов КП Описание шкалы оценивания

Оценка: «зачтено»

Описание характеристики выполнения знания:

Оценка: «не зачтено»

Описание характеристики выполнения знания:

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

6 семестр

Форма промежуточной аттестации: Зачет с оценкой

Пример билета

- 1. Классификация электрооборудования АО. Обобщённая функциональная схема устройств силовой электроники. Назначение основных узлов. Задачи, решаемые электронными устройствами АО, особенности их работы.
- 2. Работа ИРН-1 в режиме непрерывных токов дросселя: уравнения регулировочной и внешней характеристик, осциллограммы работы. Величина пульсации и максимальное значение тока в индуктивности. Напряжение на конденсаторе фильтра (осциллограммы и вывод уравнения для величины пульсаций). Выбор ёмкости выходного конденсатора. Основные свойства ИРН-1

Процедура проведения

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и зачетной составляющих

- I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины
- **1. Компетенция/Индикатор:** ИД-3_{ПК-4} Демонстрирует понимание принципов построения и функционирования систем силовой электроники

Вопросы, задания

- 1.Влияние сопротивлений на характеристики ИРН-3. Схемы замещения ИРН-3 на этапах накопления и отдачи энергии. Внешняя и регулировочная характеристики и КПД ИРН-3 при реальных параметрах элементов (вывод формул). Внутреннее сопротивление регулятора. Области работы ИРН-3
- 2.Импульсные регуляторы напряжения, как преобразователи сопротивления. Эквивалентное сопротивление ИРН1, ИРН2 и ИРН3. Использование ИРН при для обеспечения работы солнечных батарей в точке максимума отдаваемой мощности при изменениях сопротивления нагрузки
- 3.Полевые транзисторы. Классификация, принципы работы, назначения и функции электродов. Полевые транзисторы с изолированным затвором, их разновидности, структуры и принципы работы. Входные и выходные статические характеристики МОП ПТ со встроенным и индуцированным каналами. Области работы МОП ПТ, основные соотношения для токов в этих областях. Основные свойства ПТ
- 4. Активные полупроводниковые компоненты. Классификация и типы транзисторов, их обозначения и основные свойства
- 5. Биполярные транзисторы с изолированным затвором, структура, эквивалентная схема, обозначение, достоинства и недостатки. Статическая характеристика, области работы. Осциллограммы работы БТИЗ при коммутации активно-индуктивной нагрузки в составе транзисторно-диодных модулей. Эффект Миллера

Материалы для проверки остаточных знаний

1. Режимы работы импульсных регуляторов напряжения Ответы:

Письменный ответ

Верный ответ: Непрерывный, граничный и прерывистый

2. Что такое КПД

Ответы:

Письменный ответ

Верный ответ: Коэффициент полезного действия (КПД) — характеристика эффективности устройства в отношении преобразования или передачи энергии.

Определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой

3. Какой выпрямитель работает с пульсностью 6

Ответы:

Письменный ответ

Верный ответ: Трехфазный двухполупериодный или трехфазный мостовой

4.Типы транзисторов

Ответы:

Письменный ответ

Верный ответ: Биполярные, полевые и биполярные с изолированным затвором

5. Режимы работы биполярного транзистора

Ответы:

Письменный ответ

Верный ответ: Усилительный и ключевой

2. Компетенция/Индикатор: ИД-6_{ПК-4} Выполняет анализ систем силовой электроники

Вопросы, задания

- 1.Понятие КПД электронных устройств, ключевой режим работы полупроводниковых приборов, как способ повышения КПД. Характеристики «идеального» ключа. Сравнение параметрического и импульсного стабилизаторов напряжения
- 2. Работа ИРН-1 в граничном режиме и режиме прерывистых токов дросселя: граничное значение коэффициента заполнения импульсов, осциллограммы работы, внешняя характеристика. Выбор величины индуктивности для обеспечения режима непрерывных токов. Основные свойства ИРН-1
- 3. Работа ИРН-2 в режиме непрерывных токов: регулировочная и внешняя характеристики, осциллограммы. Напряжение на конденсаторе фильтра (осциллограммы и вывод уравнения для величины пульсаций). Выбор ёмкости выходного конденсатора. Основные свойства ИРН-2
- 4. Динамические характеристики полупроводниковых диодов. Время прямого и обратного восстановления, осциллограммы процессов включения и выключения диодов 5. Схемы трёхфазных выпрямителей (однополупериодные и двухполупериодные). Понятие пульсности схем. Величины средневыпрямленного напряжения и пульсаций выпрямленного напряжения. Осциллограммы работы выпрямителя без ёмкостного фильтра и при его наличии

Материалы для проверки остаточных знаний

1. Какие Вы знаете регуляторы напряжения

Ответы:

Письменный ответ

Верный ответ: Понижающий, повышающий и инвертирующий

2. Что значит граничный режим импульсного регулятора напряжения

Ответы:

Письменный ответ

Верный ответ: Ток дросселя падает до 0 и сразу начинает возрастать

3. Что такое диод

Ответы:

Письменный ответ

Верный ответ: Диод электронный компонент, обладающий различной электрической проводимостью в зависимости от полярности приложенного напряжения

4. Чем определяются динамические характеристики диода

Ответы:

Письменный ответ

Верный ответ: Время обратного восстановления

5.Сколько диодов в однофазном мостовом выпрямителе

Ответы:

Письменный ответ Верный ответ: 4

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

ІІІ. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.

7 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

- 1. Траектория движения рабочей точки при переключении транзисторно-диодных модулей при работе на активно-индуктивную нагрузку. Требования к формированию процессов переключения транзисторов. Принципы работы снабберов в ТДМ. Расчёт параметров элементов демпфирующих цепей.
- 2. Электрические цепи с магнитными компонентами, основные соотношения, осциллограммы токов и напряжений при различных способах аппроксимации петли гистерезиса

Процедура проведения

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и экзаменационной составляющих

- I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины
- **1. Компетенция/Индикатор:** ИД-3_{ПК-4} Демонстрирует понимание принципов построения и функционирования систем силовой электроники

Вопросы, задания

- 1.Способы передачи тепла в силовой электронике. Понятие теплового сопротивления. Монтаж силовых компонентов на охладителях. Эквивалентная схема тепловых процессов, расчёт перегрева радиатора. Коэффициент теплоотдачи при конвективном теплообмене. Способы отвода тепла от радиаторов в электронных устройствах
- 2.Основные понятия электромагнетизма: закон полного тока, теорема Остроградского-Гаусса, закон электромагнитной индукции, правило Ленца. Характеристики магнитного поля: индукция, магнитный поток, напряжённость, намагниченность
- 3. Цепи с магнитными компонентами. Магнитное сопротивление. Закон Ома для магнитной цепи. Магнитные цепи с зазором. Энергетические соотношения в магнитной цепи с зазором
- 4.Однотактный прямоходовой конвертор с обмоткой размагничивания: схема, принцип работы, связь входного и выходного напряжений, рабочие процессы, осциллограммы работы. Влияние индуктивности рассеяния (основные проблемы). Протекание тока намагничивания. Схемы для облегчения размагничивание сердечника
- 5. Мостовой конвертор: схема, принцип работы, связь входного и выходного напряжений, рабочие процессы, осциллограммы работы. Влияние индуктивности рассеяния (основные проблемы). Соотношение силового тока транзистора и тока нагрузки. Соотношение напряжения на запертом транзисторе и входного напряжения. Возможные способы организации паузы

Материалы для проверки остаточных знаний

1.Способы передачи тепла

Ответы:

Письменный ответ

Верный ответ: Теплопроводность, конвекция и излучение

2.Закон полного тока

Ответы:

Письменный ответ

Верный ответ: Зависимость между напряжённостью магнитного поля и перемещением в этом поле электрических зарядов

3. Классификация магнетиков

Ответы:

Письменный ответ

Верный ответ: Диамагнетики, парамагнетики и ферромагнетики

4. Что такое электромагнитная индукция

Ответы:

Письменный ответ

Верный ответ: Явление возникновения электрического тока, электрического поля или электрической поляризации при изменении магнитного поля во времени или при движении материальной среды в магнитном поле

5. Что такое намагниченность

Ответы:

Письменный ответ

Верный ответ: Векторная физическая величина, характеризующая магнитное состояние макроскопического физического тела

2. Компетенция/Индикатор: ИД-6_{ПК-4} Выполняет анализ систем силовой электроники

Вопросы, задания

- 1. Работа транзисторно-диодного модуля на биполярных транзисторах на активноиндуктивную нагрузку при непрерывном токе в индуктивности: осциллограммы, траектория движения рабочей точки БТ. Область безопасной работы БТ
- 2. Ключевой режим работы полевых транзисторов. Работа ПТ при коммутации активноиндуктивной нагрузки: схемы замещения, осциллограммы процессов включения и выключения. Заряд переключения ПТ, расчёт сопротивления цепи затвора. Мощность потерь в транзисторно-диодных модулях. Эффект Миллера
- 3. Статические и динамические потери в транзисторно-диодных модулях. Упрощённая диаграмма переключения ТДМ. Расчёт динамических потерь в транзисторе и диоде ТДМ. Траектория движения рабочей точки при переключении ТДМ, принципы выбора транзисторов и диодов для работы в ключевых режимах
- 4.Схемы управления транзисторными ключами: назначение, основные функции, функциональная схема СУТК, её параметры. СУТК с оптической развязкой, выходной каскад схем, активное и пассивное запирание. Дополнительные цепи СУТК. Достоинства и недостатки драйверов с оптоэлектронной развязкой
- 5.Схемы управления транзисторными ключами: назначение и основные функции, обобщённая функциональная схема СУТК, её параметры. Драйверы с плавающим потенциалом: достоинства и недостатки. Основная схема, принцип работы, выбор бутстрепной ёмкости

Материалы для проверки остаточных знаний

1.Виды однотактных конверторов

Ответы:

Письменный ответ

Верный ответ: Прямоходовой и обратноходовой

2. Виды потерь в электронных устройствах

Ответы:

Письменный ответ

Верный ответ: Статические и динамические

3. Виды драйверов транзисторов электронных устройств

Ответы:

Письменный ответ

Верный ответ: С оптоэлектронной, трансформаторной развязкой и с плавающим потенциалом

4. Перемагничивание сердечника сопровождается потерями энергии на

Ответы:

Письменный ответ

Верный ответ: Гистерезис и вихревые токи

5. Методы охлаждения электронных устройств

Ответы:

Письменный ответ

Верный ответ: Воздушное и жидкостное

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

ІІІ. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.

Для курсового проекта/работы:

7 семестр

Форма проведения: Защита КП/КР

І. Процедура защиты КП/КР

Проводится в период зачетной недели. Продолжительность контроля составляет не более 20 минут. Опрос проводится комиссией индивидуально

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 40

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

ІІІ. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.