Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.03.02 Электроэнергетика и электротехника

Наименование образовательной программы: Электромеханика

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Анализ неустановившихся процессов в электрических машинах и трансформаторах

Москва 2022

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

New Mem Преподаватель

	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»					
	Сведен	Сведения о владельце ЦЭП МЭИ				
	Владелец	Иванов А.С.				
	Идентификатор	R28e5c30d-IvanovAlS-37175ef6				
_	(подпись)					

А.С. Иванов

(расшифровка подписи)

СОГЛАСОВАНО:

(должность)

Руководитель образовательной программы

(должность, ученая степень, ученое звание)

Заведующий выпускающей кафедры (должность, ученая степень,

ученое звание)

NASO TO THE TANK OF THE PARTY O	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»					
	Сведения о владельце ЦЭП МЭИ					
	Владелец	Ширинский С.В.				
» <u>МЭИ</u> «	Идентификатор	Rac9f4bfa-ShirinskiiSV-a85b725f				

(подпись)

NOSO NOSO	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»			
	Сведения о владельце ЦЭП МЭИ				
	Владелец	Киселев М.Г.			
» <u>МЭИ</u> »	Идентификатор	R572ca413-KiselevMG-f37ee096			

(подпись)

C.B. Ширинский

(расшифровка подписи)

М.Г. Киселев

(расшифровка подписи)

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-5 Способен проводить работы по обработке технической информации и результатов исследований, ее анализу и применению для проектирования объектов профессиональной деятельности
 - ИД-3 Применяет приближенные методы расчета и выбора основных элементов электрических машин и аппаратов
- 2. ПК-7 Способен участвовать в планировании, подготовке и выполнении типовых экспериментальных исследований по заданной методике и анализировать полученные результаты
 - ИД-1 Применяет основные методы, способы и средства получения, хранения, переработки информации, использует компьютер для обработки информации ИД-3 Разрабатывает упрощенные модели электромеханических преобразователей энергии и протекающих в них процессов

и включает:

для текущего контроля успеваемости:

Форма реализации: Защита задания

1. КМ-1 Изучение инструментальных средств моделирования переходных процессов в программном комплексе Matlab-Simulink (Лабораторная работа)

Форма реализации: Компьютерное задание

- 1. КМ-2 Моделирование переходных процессов в трансформаторах (Лабораторная работа)
- 2. КМ-3 Исследование переходных процессов в асинхронном двигателе (Лабораторная работа)
- 3. КМ-6 Исследование переходных процессов в двигателе постоянного тока. (Лабораторная работа)

Форма реализации: Проверка задания

- 1. КМ-4 Влияние параметров асинхронного двигателя на ход переходного процесса» (Расчетно-графическая работа)
- 2. КМ-5 Переходные процессы в синхронных машинах (Тестирование)

БРС дисциплины

8 семестр

	Beca	Веса контрольных мероприятий, %							
Раздел дисциплины	Индекс	КМ-	КМ-	КМ-	КМ-	КМ-	КМ-		
	KM:	1	2	3	4	5	6		
	Срок КМ:	4	6	8	10	12	14		

Виды переходных процессов в трансформаторах и электрических машинах. Математическое описание переходных процессов. Тепловые переходные процессы.					
Виды переходных процессов в трансформаторах и электрических машинах. Обыкновенные дифференциальные уравнения для математического описания переходных процессов. Тепловые переходные процессы. Режимы работы электрических машин по условиям нагрева.	+				
Переходные процессы в трансформаторах					
Дифференциальные уравнения трансформатора и их связь с комплексными уравнениями установившихся режимов. Физический смысл параметров в дифференциальных уравнениях. Переходный процесс при включении в сеть ненагруженного трансформатора, влияние насыщения. Внезапное короткое замыкание вторичной обмотки трансформатора, ударный ток короткого замыкания. Воздействие токов короткого замыкания на трансформатор. Включение трансформатора на постоянное напряжение. Волновые переходные процессы и перенапряжения в трансформаторах.		+			
Математическая модель обобщенной электрической машины					
История создания обобщенной теории электрических машин. Методы анализа переходных процессов в электрических машинах. Допущения, применяемые при анализе. Пространственные векторы переменных в различных системах координат. Преобразование многофазных обмоток в эквивалентные двухфазные. Этапы и инварианты преобразования. Формулы обратного преобразования переменных. Матричные преобразования. Дифференциальные уравнения электрической машины в фазовых координатах. Переход к ортогональным координатам. Неподвижная и вращающиеся системы координат. Дифференциальные уравнения обобщенной машины в различных системах координат. Преобразования Кларк и преобразования Парка. Матричная форма записи системы дифференциальных уравнений. Использование относительных единиц в обобщенной теории электрических машин. Электромагнитный момент в обобщенной теории электрических машин. Формулы электромагнитного момента. Дифференциальные уравнения баланса моментов (движения ротора) для генератора и электродвигателя. Математическая модель однофазного асинхронного двигателя.			+		

			1	1		
Математическая модель асинхронного						
конденсаторного двигателя. Дифференциальные						
уравнения синхронных двигателей с постоянными						
магнитами и синхронных реактивных двигателей.						
Переходные процессы в асинхронных машинах						
Дифференциальные уравнения асинхронного						
двигателя с короткозамкнутым ротором в						
различных системах координат. Переходные						
процессы в асинхронных двигателях при пуске,						
реверсе и изменении нагрузки на валу. Влияние						
параметров асинхронного двигателя на ход						
переходного процесса. Динамическая механическая						
характеристика. Ударный ток включения и ударный						
момент асинхронного двигателя. Переходный				+		
процесс при пуске двигателя переключением схемы						
«звезда» - «треугольник». Учёт нелинейных						
изменений параметров при математическом						
моделировании электрических машин.						
Моделирование генераторного режима						
асинхронной машины. Математическая модель						
асинхронного генератора с самовозбуждением.						
Переходные процессы в синхронных машинах.						
Дифференциальные уравнения Парка-Горева.						
Дифференциальные уравнения Парка-Горева для						
синхронных машин. Электромагнитный момент						
синхронной явнополюсной машины. Переходный						
процесс при внезапном трёхфазном коротком						
замыкании синхронного генератора. Переходные и						
сверхпереходные индуктивные сопротивления						
обмотки якоря. Электродинамические силы при						
коротком замыкании. Статическая и динамическая					+	
устойчивость синхронной машины. Удельные						
синхронизирующие мощность и момент. Качания						
ротора синхронной машины. Моменты,						
действующие на ротор. Роль демпферной						
(успокоительной) обмотки. Выпадение синхронной						
машины из синхронизма, асинхронный режим						
синхронной машины, ресинхронизация.						
Переходные процессы в машинах постоянного тока.						
Дифференциальные уравнения машин постоянного						
тока.						
Дифференциальные уравнения машин постоянного						
тока и их связь с уравнениями установившихся						
режимов. Переходные процессы при включении						
обмотки возбуждения, пуске и набросе нагрузки						
двигателей с различными типами возбуждения.						+
Динамические режимы пуска, торможения, реверса						
и регулирования частоты вращения двигателей						
постоянного тока. Влияние параметров двигателя						
постоянного тока на ход переходного процесса.						
Bec KM:	10	20	15	30	10	15
\$06yyag yagay /Tug yagayayay agayayay agayayy						

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка	
компетенции		результаты обучения по		
		дисциплине		
ПК-5	ИД-3 _{ПК-5} Применяет приближенные методы расчета и выбора основных элементов электрических машин и аппаратов	Знать: методы математического анализа и моделирования, теоретического и экспериментального исследования переходных процессов в электрических машинах и трансформаторах Уметь: моделировать	КМ-2 Моделирование переходных процессов в трансформаторах (Лабораторная работа) КМ-3 Исследование переходных процессов в асинхронном двигате (Лабораторная работа)	
		электрические машины и трансформаторы		
ПК-7	ИД-1 _{ПК-7} Применяет основные методы, способы и средства получения, хранения, переработки информации, использует компьютер для обработки информации	Знать: технические средства для измерения основных параметров переходных	КМ-4 Влияние параметров асинхронного двигателя на ход переходного процесса» (Расчетно-графическая работа) КМ-6 Исследование переходных процессов в двигателе постоянного тока. (Лабораторная работа)	

ПК-7	ИД-3 _{ПК-7} Разрабатывает	Знать:	КМ-1 Изучение инструментальных средств моделирования
	упрощенные модели	принципы	переходных процессов в программном комплексе Matlab-Simulink
	электромеханических	математического описания	(Лабораторная работа)
	преобразователей энергии	процессов, происходящих	КМ-5 Переходные процессы в синхронных машинах (Тестирование)
	и протекающих в них	в электрических машинах	
	процессов	и трансформаторах	
		Уметь:	
		использовать современные	
		программные средства для	
		расчета переходных	
		процессов в линейных и	
		нелинейных электрических	
		и магнитных цепях	
		электрических машин и	
		трансформаторов	

II. Содержание оценочных средств. Шкала и критерии оценивания

KM-1. KM-1 Изучение инструментальных средств моделирования переходных процессов в программном комплексе Matlab-Simulink

Формы реализации: Защита задания

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Подготовка, оформление и защита

лабораторной работы.

Краткое содержание задания:

Изучение инструментальных средств моделирования переходных процессов в программном комплексе Matlab&Simulink.

Решение диференциальных уравнений в Matlab/

Контрольные вопросы/задания:

Уметь: использовать	1.Напишите дифференциальное уравнение
современные программные	переходного процесса в форме Коши для RL-ветви.
средства для расчета переходных	2.Решите дифференциальное уравнение высшего
процессов в линейных и	порядка с ненулевыми начальными условиями
нелинейных электрических и	исполдьзуя средства Matlab и Matlab&Simulink.
магнитных цепях электрических	
машин и трансформаторов	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-2. КМ-2 Моделирование переходных процессов в трансформаторах

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Выполнение и защита лабораторной

работы

Краткое содержание задания:

Моделирование переходных процессов в трансформаторе

Контрольные вопросы/задания:

Trom pour Burger	iip o ezi, sugui		
Уметь:	моделиров	ать	1.Создать с помощью Simulink блок-схему при
электрические	машины	И	включении трансформатора на холостом ходу.
трансформаторы			Выполнить моделирование $i(t)$ и определить
			максимальное ударное значение тока холостого хода
			I10max и амплитуду установившегося тока холостого
			хода Итах. Занести эти значения в таблицу.
			2.Создать с помощью Simulink блок-схему при
			внезапном коротком замыкании трансформатора.
			Выполнить моделирование $i(t)$ и определить ударное
			значение тока короткого замыкания I1к тах и
			амплитуду установившегося тока короткого
			замыкания 11к тах. Занести эти значения в таблицу.
			Рассчитать по этим значениям ударный коэффициент
			kуд, сравнить с ранее рассчитанным.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-3. КМ-3 Исследование переходных процессов в асинхронном двигателе

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: Выполнение и защита лабораторной

работы

Краткое содержание задания:

Моделирование на ПК дифференциальных уравнений асинхронного двигателя с короткозамкнутым ротором и исследование его основных режимов работы

Контрольные вопросы/задания:

Знать: методы математического	1.В чем заключается преобразование системы ДУ к
анализа и моделирования,	виду, удобному для моделирования на ПК?
теоретического и	2. Какие системы координат использовались для
экспериментального	моделирования электрических машин?
исследования переходных	3. Как перейти от моделирования в системе координат
процессов в электрических	α,β к системе координат u,v ? В каких случаях для
машинах и трансформаторах	исследования переходного процесса в электрической
	машине удобна система координат α,β, а в каких

_
$cuctema = u v^{2}$
$u = u \cdot v \cdot$

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-4. КМ-4 Влияние параметров асинхронного двигателя на ход переходного процесса»

Формы реализации: Проверка задания

Тип контрольного мероприятия: Расчетно-графическая работа

Вес контрольного мероприятия в БРС: 30

Процедура проведения контрольного мероприятия: Проверка выполнения

индивидуального расчётного задания

Краткое содержание задания:

Рассчитать параметры схемы замещения асинхронного двигателя по каталожным данным, собрать Т-образную схему замещения асинхронного двигателя в *MATLAB&Simulink*, используя библиотеку физических элементов, построить семйство статических механических характеристик асинхронного двигателя, провести анализ влияния параметров асинхронного двигателя на ход переходного процесса и на вид статической и динамической характеристик

Контрольные вопросы/задания:

Знать: технические средства для	1.Объясните назначение элементов структурной
измерения основных параметров	схемы
переходных процессов в	2.Каким образом определялось время пуска АД?
электрических машинах и	3.По каким графикам и как определить критическое
трансформаторах	скольжение sкp?

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80 Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

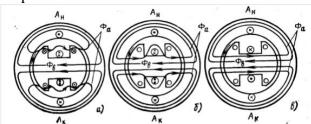
Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-5. КМ-5 Переходные процессы в синхронных машинах

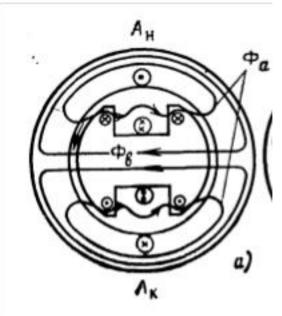
Формы реализации: Проверка задания

Тип контрольного мероприятия: Тестирование **Вес контрольного мероприятия в БРС:** 10

Процедура проведения контрольного мероприятия: Тестирование


Краткое содержание задания:

Выберите правильный вариант ответа


Контрольные вопросы/задания:

Знать: принципы математического описания процессов, происходящих в электрических машинах и трансформаторах

- 1. Какое из перечисленных значений индуктивных сопротивлений в синхронной машине является наибольшим?
- " x"'d
- " xd
- " x'd
- 2. Какая картина распределения магнитного поля соответствует переходному индуктивному сопротивлению?

3. Какому сопротивлению соответствует картина распределения магнитного поля в режиме короткого замыкания синхронного генератора?

- · xd
- " *x 'd*
- 4.В каком случае бросок тока в фазе A обмотки статора синхронного генератора, работающего на холостом ходу, при внезапном симметричном коротком замыкании будет больше?
- " когда в момент возникновения короткого замыкания потокосцепление фазы А было максимальным $\Psi A = \max$
- " когда в момент возникновения короткого замыкания потокосцепление фазы А было минимальным (равным нулю) $\Psi A = 0$
- 5.В каком случае бросок тока в фазе A обмотки статора синхронного генератора, работающего на холостом ходу, при внезапном симметричном коротком замыкании будет меньше?
- " когда в момент возникновения короткого замыкания ЭДС фазы A была максимальна $eA = \max$
- " когда в момент возникновения короткого замыкания ЭДС фазы A было равна нулю eA = 0
- 6. Используя какое соотношение можно определить статическую перегружаемость $(k\Pi)$ синхронного турбогенератора при известной номинальной мошности?
- " $k\Pi \sim 1/\sin\theta$
- " $k\Pi \sim 1/\sin 2\theta$
- " $k_{\rm II} \sim 1/x_{\rm C}$
- " $k\Pi \sim 1/x$ 'c
- 7.В каких машинах ударный ток короткого замыкания будет больше?
- " в машинах с демпферной обмоткой
- " в машинах без демпферной обмотки
- " наличие демпферной обмотки не влияет на ударный ток короткого замыкания
- 8. Какими явлениями сопровождается работа синхронного генератора при выпадении из синхронизма? (перечислить все явления)
- " частота вращения ротора уменьшается
- " токи в обмотке статора увеличиваются
- " токи в обмотке ротора увеличиваются
- появляются дополнительные вибрации из-за возникновения пульсирующего момента
- " увеличивается нагрев крайних пакетов статора "возникают значительные усилия, воздействующие на лобовые части обмотки якоря
- 9. Сохранит ли устойчивость в динамическом режиме синхронный турбогенератор при коротком замыкании в линии электропередачи для случая, изображенном на рисунке? До возникновения короткого замыкания генератор работал в номинальном режиме. Ответ поясните. Число фаз генератора m-3;

Синхронное индуктивное сопротивление xc - 1,5; ЭДС возбуждения E - 1 о.е.; Номинальное напряжение Uном - 1 о.е.; Напряжение в режиме K3 - Uкз - 0,5775 о.е.;

[&]quot; генератор сохранит устойчивость и будет устойчиво работать в новой точке с углом нагрузки 60 градусов " генератор не сохранит устойчивость и выпадет из синхронизма

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80 Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-6. КМ-6 Исследование переходных процессов в двигателе постоянного тока.

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: Выполнение и защита лабораторной работы

Краткое содержание задания:

Провести моделирование двигателя постоянного тока с постоянными магнитами и оценить вляиние параметров двигателя на ход переходных процессов

Контрольные вопросы/задания:

Уметь:	рассчитывать		1. Напишите систему ДУ для переходного
переходные	процессы	В	электромеханического процесса двигателя
электрических	машинах	И	постоянного тока
трансформатора	X		2.Смоделируйте переходной процесс при изменении
			момента инерции двигателя
			3.Смоделируйте переходной процесс при изменении
			потока фозбуждения двигателя

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

8 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

- 1. Переходные процессы в асинхронных двигателях при пуске. Статическая и динамическая характеристики.
- 2. Переходные процессы в асинхронном двигателе при пуске. Влияние параметров на ход переходного процесса.
- 3. Задача

Процедура проведения

Экзамен проводится в устной форме. Студенту выдаётся билет с двумя вопросами. На подготовку ответа отводится 60 минут.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисииплины

1. Компетенция/Индикатор: ИД-3_{ПК-5} Применяет приближенные методы расчета и выбора основных элементов электрических машин и аппаратов

Вопросы, задания

- 1.Переходные процессы при пуске ДПТ НВ. Электромагнитный переходный процесс при включении обмотки возбуждения. Пуск и динамическое торможение при допущении об отсутствии индуктивности якоря.
- 2. Дифференциальные уравнения синхронных двигателей с постоянными магнитами и синхронных реактивных двигателей (в относительных единицах).
- 3.Использование относительных единиц в обобщенной теории электрических машин. Основные базисные величины.
- 4. Качания ротора синхронной машины. Моменты, действующие на ротор. Роль демпферной (успокоительной) обмотки.
- 5. Математическая модель асинхронного генератора с самовозбуждением.
- 6.Виды переходных процессов в трансформаторах и электрических машинах. Тепловые переходные процессы. Режимы работы электрических машин
- 7. Дифференциальные уравнения трансформатора и их связь с комплексными уравнениями установившихся режимов. Физический смысл параметров в дифференциальных уравнениях
- 8.Переходный процесс включения в сеть ненагруженного трансформатора, влияние насыщения
- 9.Внезапное короткое замыкание вторичной обмотки трансформатора, ударный ток. Воздействие токов короткого замыкания на трансформатор
- 10.Пространственные векторы переменных в различных системах координат. Формулы прямого и обратного преобразования переменных
- 11.Переходные процессы в асинхронном двигателе при пуске. Влияние параметров на ход переходного процесса.

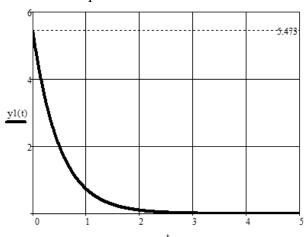
Материалы для проверки остаточных знаний

1.Электрическая машина имеет встроенный на валу вентилятор. Как соотносятся постоянные времени её нагревания и охлаждения?

Ответы:

- а) Тохл > Тнагр
- б) Тохл < Тнагр
- в) Тохл = Тнагр

Верный ответ: а)

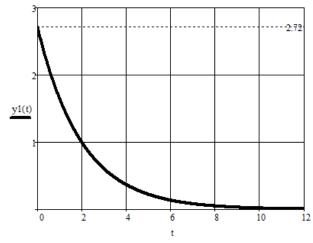

2. Два трансформатора геометрически подобны. Трансформатор номер 1 больше трансформатора номер 2. Как соотносятся постоянные времени нагрева этих двух трансформаторов.

Ответы:

- a) T1 > T2
- б) T1 < T2
- B) T1 = T2

Верный ответ: а)

3. На рисунке изображёна кривая некоторого переходного процесса. Чему равна постоянная времени?



Ответы:

Запишите правильный ответ числом

Верный ответ: 0,5

4.На рисунке изображёна кривая некоторого переходного процесса. Чему равна постоянная времени?

Ответы:

Запишите правильный ответ числом

Верный ответ: 2

2. Компетенция/Индикатор: ИД- $1_{\Pi K-7}$ Применяет основные методы, способы и средства получения, хранения, переработки информации, использует компьютер для обработки информации

Вопросы, задания

- 1.Переходные процессы в асинхронных двигателях при пуске. Статическая и динамическая характеристики.
- 2. Дифференциальные уравнения двигателя постоянного тока с последовательным возбуждением. Связь дифференциальных уравнений с уравнениями установившихся режимов.
- 3. Коммутация в машинах постоянного тока: электромагнитные явления при коммутации, ЭДС в коммутируемой секции, причины искрения.
- 4. Переходный процесс при внезапном трехфазном коротком замыкании синхронного генератора. Переходные и сверхпереходные индуктивные сопротивления обмотки якоря.
- 5. Дифференциальные уравнения Парка-Горева для синхронных машин.
- 6.Волновые переходные процессы и перенапряжения в трансформаторах
- 7. Методы анализа переходных процессов в электрических машинах. Допущения. Идеализированная электрическая машина
- 8. Формулы прямого и обратного преобразования переменных. Матричные преобразования
- 9. Дифференциальные уравнения эквивалентной двухфазной машины в фазовых координатах. Физический смысл параметров. Переход к ортогональным координатам по методу двух реакций
- 10. Электромагнитный момент в обобщенной теории электрических машин. Формулы расчёта электромагнитного момента.
- 11. Причины возникновения и виды переходных процессов в асинхронных машинах. Математическая модель асинхронного двигателя с короткозамкнутым ротором в неподвижной системе координат.

Материалы для проверки остаточных знаний

1.Используя какое соотношение можно определить статическую перегружаемость $(k\Pi)$ синхронного турбогенератора при известной номинальной мощности?

Ответы:

- a) $k\pi \sim 1/\sin\theta$
- θ) kπ ~ $1/\sin 2θ$
- B) $k\Pi \sim 1/xc$
- Γ) $k\Pi \sim 1/x$ 'c

Верный ответ: а

2.В каких машинах ударный ток короткого замыкания будет больше?

Ответы

- а) в машинах с демпферной обмоткой
- б) в машинах без демпферной обмотки
- в) наличие демпферной обмотки не влияет на ударный ток короткого замыкания Верный ответ: а
- 3. Какими явлениями сопровождается работа синхронного генератора при выпадении из синхронизма? (перечислить все явления)

Ответы:

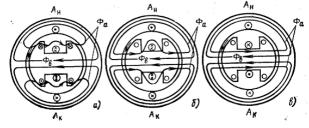
- а) частота вращения ротора уменьшается
- б) токи в обмотке статора увеличиваются
- в) токи в обмотке ротора увеличиваются
- г) появляются дополнительные вибрации из-за возникновения пульсирующего момента
- д) увеличивается нагрев крайних пакетов статора

- е) возникают значительные усилия, воздействующие на лобовые части обмотки якоря Верный ответ: б), в), г)
- **3. Компетенция/Индикатор:** ИД-3_{ПК-7} Разрабатывает упрощенные модели электромеханических преобразователей энергии и протекающих в них процессов

Вопросы, задания

- 1.Способы улучшения коммутации в машинах постоянного тока. Назначение добавочных полюсов и компенсационной обмотки.
- 2. Причины искрения в машинах постоянного тока. Виды коммутации.
- 3. Статическая и динамическая устойчивость синхронной машины. Удельная синхронизирующая мощность и момент.
- 4. Электромагнитный момент синхронной явнополюсной машины.
- 5. Причины возникновения и виды переходных процессов в асинхронных машинах. Математическая модель однофазного асинхронного двигателя с короткозамкнутым ротором.
- 6.Учет нелинейных изменений параметров при математическом моделировании электрических машин (учёт насыщения, вытеснения тока).
- 7. Дифференциальные уравнения двигателя постоянного тока с независимым возбуждением. Переходные процессы при реостатном пуске двигателя с параллельным или независимым возбуждением.
- 8. Переходные процессы в асинхронных двигателях при реверсе. Влияние параметров на ход переходного процесса.
- 9.Переходный процесс при пуске ДПТ НВ с учётом индуктивности якоря.
- 10. Дифференциальные уравнения обобщенной машины в системе координат α , β . Матричная форма записи.
- 11.Преобразование многофазных обмоток в эквивалентные двухфазные, преобразование Кларк. Этапы и инварианты преобразования

Материалы для проверки остаточных знаний

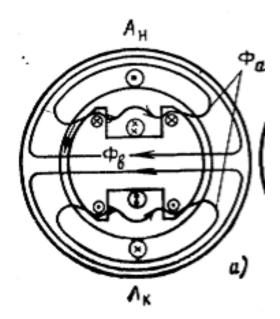

1. Какое из перечисленных значений индуктивных сопротивлений в синхронной машине является наибольшим?

Ответы:

- a) x"d
- б) xd
- в) x'd

Верный ответ: б

2. Какая картина распределения магнитного поля соответствует переходному индуктивному сопротивлению?


Ответы:

а б

R

Верный ответ: б

3. Какому сопротивлению соответствует картина распределения магнитного поля в режиме короткого замыкания синхронного генератора?

Ответы:

- a) x"d
- б) xd
- в) x'd

Верный ответ: а

4.В каком случае бросок тока в фазе A обмотки статора синхронного генератора, работающего на холостом ходу, при внезапном симметричном коротком замыкании будет больше?

Ответы:

- а) когда в момент возникновения короткого замыкания потокосцепление фазы A было максимальным $\Psi A = \max$
- б) когда в момент возникновения короткого замыкания потокосцепление фазы A было минимальным (равным нулю) $\Psi A = 0$

Верный ответ: а

5. B каком случае бросок тока в фазе A обмотки статора синхронного генератора, работающего на холостом ходу, при внезапном симметричном коротком замыкании будет меньше?

Ответы:

- а) когда в момент возникновения короткого замыкания ЭДС фазы A была максимальна $eA = \max$
- б) когда в момент возникновения короткого замыкания ЭДС фазы A было равна нулю eA=0

Верный ответ: а

II. Описание шкалы оценивания

Оценка: 5

Описание характеристики выполнения знания: Оценка «ОТЛИЧНО» выставляется студенту, правильно выполнившему практическое задание, который показал при ответе на вопросы экзаменационного билета и на дополнительные вопросы, что владеет материалом изученной дисциплины, свободно применяет свои знания для объяснения различных явлений и решения задач.

Оценка: 4

Описание характеристики выполнения знания: Оценка «ХОРОШО» выставляется студенту, правильно выполнившему практическое задание и в основном правильно ответившему на

вопросы экзаменационного билета и на дополнительные вопросы, но допустившему при этом непринципиальные ошибки.

Оценка: 3

Описание характеристики выполнения знания: Оценка «УДОВЛЕТВОРИТЕЛЬНО» выставляется студенту, который в ответах на вопросы экзаменационного билета допустил существенные и даже грубые ошибки, но затем исправил их сам, а также не выполнил практическое задание из экзаменационного билета, но либо наметил правильный путь его выполнения, либо по указанию экзаменатора решил другую задачу из того же раздела дисциплины.

III. Правила выставления итоговой оценки по курсу

Оценка за освоение дисциплины определяется в соответствии с Положением о балльнорейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и экзаменационной составляющих.