Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.03.02 Электроэнергетика и электротехника

Наименование образовательной программы: Электромеханика

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Анализ процессов в электрических машинах и трансформаторах в неноминальных и аварийных режимах работы

Москва 2023

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

 Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

 Сведения о владельце ЦЭП МЭИ

 Владелец
 Иванов А.С.

 Идентификатор
 R28e5c30d-IvanovAlS-37175ef6

Разработчик

А.С. Иванов

СОГЛАСОВАНО:

Руководитель образовательной программы

Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»
Сведен	ия о владельце ЦЭП МЭИ
Владелец	Ширинский С.В.
Идентификатор	Rac9f4bfa-ShirinskiiSV-a85b725f

С.В. Ширинский

Заведующий выпускающей кафедрой

NGC BENDRATES	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»
Sale Company and	Сведен	ия о владельце ЦЭП МЭИ
	Владелец	Киселев М.Г.
» Mon	Идентификатор	R572ca413-KiselevMG-f37ee096

М.Г. Киселев

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-3 Способен проводить работы по обработке технической информации и результатов исследований, ее анализу и применению для проектирования объектов профессиональной деятельности
 - ИД-3 Применяет приближенные методы расчета и выбора основных элементов электрических машин и аппаратов
- 2. ПК-5 Способен участвовать в планировании, подготовке и выполнении типовых экспериментальных исследований по заданной методике и анализировать полученные результаты
 - ИД-1 Применяет основные методы, способы и средства получения, хранения, переработки информации, использует компьютер для обработки информации ИД-3 Разрабатывает упрощенные модели электромеханических преобразователей энергии и протекающих в них процессов

и включает:

для текущего контроля успеваемости:

Форма реализации: Защита задания

- 1. КМ-3 Защита лабораторной работы «Исследование несимметричной нагрузки трёхфазного трансформатора» (Лабораторная работа)
- 2. КМ-4 Защита лабораторной работы «Исследование трёхфазного асинхронного двигателя в неноминальных режимах» (Лабораторная работа)
- 3. КМ-5 Защита лабораторной работы «Работа трёхфазного асинхронного двигателя в неполнофазных режимах» (Лабораторная работа)
- 4. КМ-6 Защита лабораторной работы «Асинхронный генератор» (Лабораторная работа)

Форма реализации: Проверка задания

- 1. КМ-1 Расчет токов при несимметричной нагрузке трансформаторов (Контрольная работа)
- 2. КМ-2 Высшие гармоники ЭДС обмоток машин переменного тока (Контрольная работа)
- 3. КМ-7 Контрольная работа «Несимметричная нагрузка синхронных генераторов» (Контрольная работа)

БРС дисциплины

7 семестр

	I	Зеса ко	нтроль	ных м	еропри	ятий, %	6	
Ворнон нискупниции	Индекс	КМ-	КМ-	КМ-	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	1	2	3	4	5	6	7
	Срок КМ:	4	6	8	10	12	14	16

D II				1	1	
Введение. Несимметричная нагрузка						
трансформаторов.						
Неноминальные режимы работы						
трансформаторов и электрических машин. Их	+					
виды и причины возникновения. Предмет						
курса.						
Кривая установившегося тока холостого хода						
трансформатора при учете насыщения и						
гистерезиса. Влияние схемы соединения						
обмоток трехфазного трансформатора на						
высшие гармоники в потоке и	+					
намагничивающем токе. Формы кривых						
намагничивающего тока, магнитного потока						
и ЭДС.						
Несимметричная нагрузка трансформаторов.						
Метод симметричных составляющих.						
Нулевая последовательность при различных						
схемах соединения обмоток и конструкциях						
магнитопровода трехфазных						
трансформаторов. Физический смысл и						
способ экспериментального определения						
параметров нулевой последовательности.						
Влияние схемы соединения обмоток и	+		+			
конструкции магнитопровода на	'		'			
распределение токов при несимметричной						
нагрузке и несимметричных коротких						
замыканиях. Расчет токов при						
несимметричной нагрузке и коротких						
замыканиях трансформаторов.						
Несимметричная нагрузка						
автотрансформаторов.						
1 1 1 1						
Высшие временные и пространственные						
гармоники в машинах переменного тока						
Причины возникновения временных и						
пространственных гармоник. ЭДС в обмотке						
при синусоидальном и несинусоидальном						
распределении магнитного поля в воздушном		+				
зазоре. Улучшение формы кривой ЭДС.						
Способы борьбы с высшими гармониками.						
Коэффициент распределения, коэффициент						
укорочения, коэффициент скоса.						
Способы борьбы с высшими гармониками.						
ЭДС в обмотке при несинусоидальном		+				
распределении магнитного поля в воздушном		•				
3a3ope.						
Высшие гармоники МДС обмоток. МДС						
трёхфазной обмотки. Прямовращающиеся и		+				
обратновращающиеся поля.						
Работа асинхронного двигателя в						
несимметричных режимах						
Процесс пуска асинхронного двигателя.						
Виды механических характеристик нагрузки				+		
электродвигателя. Условия устойчивой						
			•	•		

noforty a naverna a universaria						
работы электродвигателя.						
Dangung brighting the experience of						
Влияние высших пространственных гармоник магнитного поля на пуск и работу						
асинхронного двигателя. Асинхронные и			+			
синхронные моменты высших гармоник.						
Работа асинхронного двигателя при						
неноминальных напряжении и частоте.						
Переключение обмоток слабо загруженных						
асинхронных двигателей с треугольника на						
звезду. Допустимые отклонения напряжения						
и частоты при работе асинхронного			+			
двигателя. Работа асинхронного двигателя						
при несинусоидальном питающем						
напряжении. Особенности работы						
асинхронного двигателя при питании от						
преобразователя частоты.			-			
Работа асинхронного двигателя при						
несимметрии питающего напряжения,						
несимметрии сопротивлений цепей статора,			+			
несимметричном соединении фаз						
симметричной обмотки.						
Работа асинхронного двигателя при						
несимметричном сопротивлении фаз ротора.			+			
Виды дефектов короткозамкнутых обмоток						
ротора и причины их появления.						
Работа асинхронного двигателя в						
неполнофазных режимах						
Работа асинхронного двигателя при обрыве				+		
фазы ротора. Эффект Гёргесса.						
Работа асинхронного двигателя при обрыве						
линейного и фазного проводов статора в				+		
схемах «звезда» и «треугольник».						
Защита двигателей от работы в				+		
несимметричных и неполнофазных режимах.						
Принципы определения неисправностей				+		
асинхронных электродвигателей.				,		
Включение трёхфазного асинхронного				+		
двигателя в однофазную сеть.				'		
Генераторный режим асинхронной машины						
Работа асинхронного генератора параллельно						
с сетью большой мощности.					+	
Автономный асинхронный генератор,						
условие самовозбуждения, подбор						
конденсаторов, стабилизация напряжения и					+	
частоты автономного асинхронного						
генератора.						
Несимметричная нагрузка синхронных						
генераторов						
Параллельная работа синхронного генератора						
с электрической системой, напряжения						+
которой несимметричны.						
1		1	1	1		

Работа синхронного генератора на							
автономную несимметричную нагрузку.							T
Режимы несимметричных коротких							
замыканий генераторов. Расчёт токов							
несимметричных коротких замыканий							+
генераторов.							
Bec KM:	10	15	15	15	15	15	15

\$Общая часть/Для промежуточной аттестации\$

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции		результаты обучения по	
		дисциплине	
ПК-3	ИД-3 _{ПК-3} Применяет приближенные методы расчета и выбора основных элементов электрических машин и аппаратов	Знать: методы теоретического и экспериментального исследования несимметричных режимов работы электрических машин и трансформаторов Уметь: рассчитывать режимы работы электрических машин и трансформаторов	КМ-1 Расчет токов при несимметричной нагрузке трансформаторов (Контрольная работа) КМ-3 Защита лабораторной работы «Исследование несимметричной нагрузки трёхфазного трансформатора» (Лабораторная работа)
		и характеризующие их параметры	
ПК-5	ИД-1 _{ПК-5} Применяет основные методы, способы и средства получения, хранения, переработки информации, использует компьютер для обработки информации	Знать: методы определения и устранения неисправностей электрических машин и трансформаторов Уметь: определять причины неисправностей электрических машин и трансформаторов использовать программные	КМ-2 Высшие гармоники ЭДС обмоток машин переменного тока (Контрольная работа) КМ-4 Защита лабораторной работы «Исследование трёхфазного асинхронного двигателя в неноминальных режимах» (Лабораторная работа) КМ-7 Контрольная работа «Несимметричная нагрузка синхронных генераторов» (Контрольная работа)

		средства для анализа	
		несимметричных режимов	
		работы электрических	
		машин	
ПК-5	ИД-3 _{ПК-5} Разрабатывает упрощенные модели электромеханических преобразователей энергии и протекающих в них процессов	анализа и моделирования несимметричных режимов	КМ-5 Защита лабораторной работы «Работа трёхфазного асинхронного двигателя в неполнофазных режимах» (Лабораторная работа) КМ-6 Защита лабораторной работы «Асинхронный генератор» (Лабораторная работа)
		разрабатывать простые модели электромеханических преобразователей энергии и протекающих в них процессов	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. КМ-1 Расчет токов при несимметричной нагрузке трансформаторов

Формы реализации: Проверка задания

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Студенты выдаётся задача по нахождению токов в обмотках трансформатора при заданных линейных токах во торичной цепи в несимметричном режиме. Студент решает задачу и сдаёт её на проверку преподавателю.

Краткое содержание задания:

Найти токи в фазах первичной обмотки трансформатора и смещение нулевой точки при заданных токах вторичной цепи

Контрольные вопросы/задания:

	трол				росы/:																	
У					ать тон																	
ме		TO	чки	звез	зды фа	зных	напря	жени	й в по	ерви	ЧНС	о йо	бмоть	се (дл	я со	еди	нен	КИІ	обі	иот	ок	по
ть:		CX	еме	«ЗВ€	езда»).																	
pa		3a,	дать	лин	нейны	е токи	и втор	ичної	й сети	[:												
cc		Ia=	=IH*	exp	(0)																	
чи		Ib=	=IH*	0,1	*n*exp	(-j*2*	*pi/3)															
ТЫ		Ic=	=IH*	0,5*	exp(-j	*pi/3-	⊦n),															
ва		ГД	е Ін	— но	оминал	тьный	і ток в	тори	чной і	цепи	и тр	анс	форма	атора,	n –	НО	мер	вај	риа	нта	ιпα	0
ТЬ		жу	рна	лу.				_						_			_					
pe		·	-	•																		
жи					даннь																	
M		M	асля	ным	и охлаж	сдение	ем с ал	юмин	иевым	ии (У	© 1−	—18	() и ме,	днымі	1 (N	19-	<u>-32</u>	2) o	бмс	тка	МИ	ĺ
Ы						ı																
pa			Об	щие		~~						Ma	агнитн	ая		_			-	ОЛІ	>	
бо				нные		Обм	отки						стема			Ба	К	ны				
ТЫ							l	1	1	TC	<u> </u>		ı	1	ъ		ı	да	ННЬ	ie	+	TT
эл				C						K					P							Н
ек				x e						а н					a c							а п
тр			M	M						a	В	Д			c							
ИЧ			O	ы						Л	ы	И			Т	M	M					р я
ec		N		И	***					M	c	a			0	a	a					ж
ки		,	Н	Γ	Но		Сеч	Вн	Рад	e	o	M			Я	c	c		П	u		e
X			0	p	мин аль	Чи	ени	ут	иал	ж	T	e		Вы	-	c	c	P	P x	к	I	-
ма		П	С	у	ные	сло	e	ре нн	ьн ые	Д	a	T	Акт	СОТ	Н	a	a	К	Λ		0	Н
Ш		/	ь,	П	нап	вит	вит	ий	раз	У	0	p c	ИВН	a,	И	M		,		,	,	И
ИН		П	S,	П	ряж	ков	ка,	ди	мер	0	б	Т	oe	cM	e	a	б	В	, B			e
И			,	Ы	ени		MM	ам	ы,	б	M	e			M	С	a	T	Т		%	Н
тр			К	c	я, В		2	етр	см	M	0	p			e	Л	K			%		У
ан			В	0						O	T K	ж			ж	a	a					Л
сф				е						K	И	Н			Д V	,	,					В
op			A	И						a	11	Я			y o							0
ма				Н						M					c							й
то				e						И					Я							П

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	a a a T p B A C A C A C A C A C A C A C A C A C A
1 6 Y 3 2 7 4 9 8 11. 3 1 1. 4 1 8 9 4 11. 3 1 1. 4 1 8 9 4 1 2 1 8 9 4 1 2 1 1. 4 1 8 9 4 1 2 1 1. 4 1 8 9 4 1 2 1 1. 4 1 8 9 4 1 2 1 1. 1. 1. 4 1 1. 4 1. 1. 4 1. 1. 4 1. 1. 4 1. 1. 4 1. 1. 4 1. 4 1. 1. 4 1. 1. 4 1. 4 1. 2 1. 8 2 6 2 6 4 5 5 9 8 5 5 5 9 1. 1. 1. 1. 1.	
6 Y 3 2 7 4 9 8 11. 3 1 1. 4 1 0 2 1. 0 <th></th>	
Y 3 2 7 4 9 8 11. 3 1 1. 4 1 8 9 4 1 2 1 8 9 4 1 2 1 8 9 4 1 2 1 8 9 4 1 2 1 8 9 4 1 2 1 8 9 4 1 2 1 8 9 4 1 2 1 8 9 4 1 2 1 8 9 4 1 2 1 8 9 4 1 2 1 8 9 4 1 2 1 8 9 4 1 2 1 8 9 4 1 2 1 8 9 4 1 2 1 8 9 4 1 2 1 8 9 4 1 2 1 8 9 4 1 2 1 8 1 2 2	
3 2 7 4 9 8 11. 3 1 1. 4 1 0	Нийй
A	
1 1	
B H H H H H H H H H H H H H H H H H H H	
B H H H H H H H H H H H H H H H H H H H	
B H B H B H	
H H H H H H H H C M M C M C M C M M C M M M M	
B H B H H H C M M C M C M H H B D D B H D D D D D D D D D D D D D	
H H H H H C H H C M M M M M M M M M M M	
B H 1 H C M H 2 1 C M M C M M M M M M M M M M M M M M M	
D B H 1 1 c g g g g g g g g g g g g g g g g g	В
D B H 1 1	
В Н 1	
H 1 1 т т т т т т т т т т т т т т т т т	
а 1	
1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 2 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 2 1 2 1 3 1 2	
теня е я е я о по п	
т е я е я р р р р м м ж м е о е о е о н н ь ь в п п п п п п п п п п п п п п п п п	М
я е я р р р м ж м о е о м м о е о м м о е о м м о е о м м о е о м м о е о м м о е о м м о е о м о м	С
те я рр уж м е о м м м е о м м м о м м м о м м м о м м м о м м м о м м м м о м	
я р м о м о м о м о м о м о о о о о о о о	С
, , , , , , , , , , , , , , , , , , ,	
M	
K Γ	H
, % ече ме, м2 к г	% че че,

1 2 1 3		1 2		1	1 0	9	8	7	6	
2 5 0 2 5 0 2 5 0		2 5 0		1 6 0	1 6 0	1 6 0	1 6 0	1 0 0	1 0 0	0 0
О Y Y - 0 Д / Y - 1 1 1 1 1 Y	Y / Y - 0 Д / Y - 1	Y / Y -		Y / Y -	Y / Д - 1	Д / Y - 1	Y / Y - 0	Y / Y - 0	Y / Д - 1	/ Y - 0
3 3 0 0 6 6 0 0 0	0 3 0 0 6 6 0	3 3 0		1 0 0 0	6 0 0	3 3 0 0	3 0 0 0	1 0 0 0	6 3 0 0	0 0 0
2 3 0 4 4 4 0 6 9 0	2 3 0		U	4 0 0	6 9 0	6 9 0	2 3 0	4 0 0	4 0 0	4 0
3 5 8 1 2 0 0 0	3 5 8 1 2 0	3 3 5	3	1 2 7	7 7 0	7 3 0	3 9 4	1 8 5 0	1 1 8 0	1 2 5
2	2 5	2		5	1 5 2	8 8	3 0	7 4	1 3 0	2
1 5 3 3 5 1 0 6 5 1 7 8	5 3 3 5 1 0	5 3 3		6	1 0 2 5	1 0 8 5	2 0 7	3 5 2	5 7 5	4 3
6 3 4 8 1 8 1 6 4 4	6 3 4 8	6 3 4		1 3 2	4 4 8	7 7 5	2 3 5	1 1 0	6 3 4	9 6
161616	16		8	14.	14. 7	15	14. 8	12. 3	12. 5	5
9 5 4 5 4	4 . 5	4	5	3	3 . 8 5	3 . 6	3 . 7	3 2 5	3 . 1	
2 . 5 2 . 5 2 . 5	5 2 5	5		2	2 . 5	2 . 8	2 . 7	2 . 1	2 . 3	2
1 1. 1. 2	1		5	0.	1	0. 9	0. 9	1	1	2
. 5 5 5 5 5 5	5 5 5	5	5	4 6	4 7	4 7	4 6 5	5 0	4 9	9
1 5 1 5 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1	1 5	1	4	1	1 4	1 4	1 4	1 1	1 1	1 5
. 2 1 5 5	1 5 5 1 5 5	1 5 5	2	1 3 4	1 3 4	1 3 4	1 3 4	9 0	9 0	0 . 2
1 1 6 8 1 1 6 8 1	1 6 8 1 1 6 8	1 6 8	1	1 4 1	1 4 1	1 4 1	1 4 1	1 0 7	1 0 7	0 7 9
5 9 6 0 5 9	5 9	5	5	5 1	5 1 5	5 2	5 1 5	5 3 5	5 3 5	3
1 4 5 1 4 5	5 1 4 5 1 4	5 1 4	5	1 3	1 3 5	1 3 5	1 3 5	1 1 5	1 1 5	1 5
. 7 3 3 5 5 3 4	7 3 3 5	7 3 3	7	3 0	3	3 1 5	3 0 7	2 6	2 6 5	6 . 5
3 4 0 3 4 0	3 4 0	3 4	5	2 9 5	2 9 5	2 9 5	2 9 5	2 1 0	2 1 0	1 0
5 2 6 0 2 6 0 2 6 0	2 6 0 2 6	2 6	5	2 2 5	2 2 5	2 2 0	2 2 0	1 5 0	1 5 0	5 0
5 0 3 7 0 0 3 7 0 0 0 3 7 0 0	3 7 0 0 3 7	3 7 0	0	2 6	2 6 5 0	2 6 5 0	2 6 5 0	1 9 7 0	1 9 7 0	9 7 0
8 2 0 8 5 0 8 2 0	8 2 0	8 2	5	5 6 5	5 6 5	5 6 5	5 6 5	3 6 5	3 6 5	6 5
4	4 . 5	4		4 . 5	4 . 5	4 . 5	4 . 5	4 . 5	4 . 5	5
2 . 3 2 . 3 2 . 3	2 . 3	2		2 . 4	2 . 4	2 . 4	2 . 4	2 . 6	2 . 6	6
6 0 6	6 0	6		5 0	5 0	5 0	5 0	5 0	5 0	0
									İ	

		0	Y - 0	0 0 0	0	5 0		1	8		5 5	4 5	5			5 . 1	8 1		5		0	0	0	0	5	3	
	1 6	6 3 0	Д / Y - 1 1	6 0 0	4 0 0	6 2 4	2 4	2 9 2	4 6 9	21	5 . 2	3 1 5	0. 9	5 9 3	2 0	2 7 1	2 8 2	6	1 9 5	4 0 5	7 9 0	4 8 0	7 0 0 0	1 4 2 0	5	1 . 5	7 0
	1 7	1 0 0 0	Д / Y - 1	6 0 0	4 0 0	4 4 1	1 7	4 0 7	7 5 4 8	25	4 . 4 5	1 9 5	3. 0 5	6 8	2 4	3 7 1	3 7 2 5	7 8	2 3	4 8	1 5 0 0	9 0 0	1 0 0 0	2 4 0 0	5 . 5	1 . 4	7 0
	1 8	1 6 0 0	Y / Y - 0	1 0 0 0	4 0 0	3 7 6	1 5	6 3	1 4 0 3	29. 4	4 3 5	3 . 6	1. 1	9	2 6	4 3 5	4 4 0 7	1 0 7	2 5	5 2	2 4 0 0	1 1 2 0	1 4 5 0	3 1 0 0	5	1 . 3	7 0
	1 9	2 5	Y / Y - 0	3 3 0 0	2 3 0	1 0 3 2	7 2	2 7 8	2 2 3	9.8	1 . 8	2 . 2	1. 4 5	2 8	9	5 6	5 7 7	3 4	8 . 5	2 1	9 5	6 0	4 9 0	1 2 0	4 . 5	3	4 0
	2 0	2 5	Y / Y - 0	1 1 0 0 0	2 3 0	3 4 4 1	7 2	0 7 8 5	3 2 4	9.8	2 . 7	1 2 5	1. 3 5	2 8 0 5	9	5 6	5 7 7	3 4	8 5	2 1 3	9 5	6 0	4 9 0	1 2 0	4 . 5	3	4 0
	2	4 0	Y / Y - 0	3 0 0 0	2 3 0	9 3 8	7 2	4 0 1	5 4	9.8	2 . 7	1 5 5	1. 0 5	4 3	9	5 6	5 7 7	4 9 5	8 5	2 1 3	1 1 0	7 5	8 5 0	1 4 5	4 . 5	2 . 8	4 0
	2 2	4 0	Y / Y - 0	6 0 0 0	4 0 0	1 8 7 7	1 2 5	2 0 6	2 7 8	9.8	2 7 5	1 6 5	0. 9 5	4 3 1	9	5 6	5 7 7	4 9 5	8 . 5	2 1	1 1 0	7 5	8 5 0	1 4 5	4 . 5	2 . 8	4 0
	2 3	4 0	Y / Y - 0	1 0 0 0 0	4 0 0	3 1 2 8	1 2 5	1 2 3	2 7 8	9.8	2 . 7	1 6 5	0. 9 5	4 3 1	9	5 6	5 7 7	4 9 5	8 5	2 1	1 1 0	7 5	8 5 0	1 4 5	4 . 5	2 . 8	4 0
	2 4	1 6 0	Y / Y - 0	1 1 0 0 0	4 4 0	1 4 5 0	5 8	4 6 8	1 2 0	14. 9	3 . 7	2 . 7	0. 9	4 5 6	1 4	1 3 5	1 3 7	5 2	1 3 5	3 0 7	2 2 5	1 7 5	2 1 0 0	4 6 0	4 . 5	1 7	5 0
	2 5	2 5 0	Y / Y - 0	1 1 0 0 0	4 4 0	1 1 0 0	4 4	7 . 3	1 5 4 8	17	3 6 5	2 . 6	1. 2	4 9 5	1 6	1 6 6	1 7 2	5 5	1 5	3	3 1 5	2 2 5	3 0 0 0	6 5 0	4 . 5	2 . 3	6 0
	2	2	Y	1	1	1	3	7	2	17	3	2	1.	4	1	1	1	5	1	3	3	2	3	6	4	2	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Записан правильный ответ, решение задачи верное и выбран рациональный путь решения. Записан правильный ответ, решение задачи верное, но есть один недочет (негрубые арифметические ошибки, отсутствие пояснений к вводимым обозначениям, используемым формулам и законам, отсутствие обоснований применимости используемых законов, отсутствие на рисунке к решению используемых при решении задачи величин, отсутствие размерности результата).

Оценка: 4

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Задача решена в основном верно, но было допущено несколько негрубых ошибок (отсутствие рисунка, поясняющего решение задачи,

грубые арифметические ошибки, искажающие смысл полученного ответа, неверные единицы измерения используемых величин, отсутствие ответа в общем виде (решение задачи сразу с использованием заданных числовых значений величин), отсутствие численного ответа при полученном ответе в общем виде (если в условии заданы числовые значения), отсутствие записи используемого закона в общем виде).

Оценка: 3

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Задача решена в основном верно, но была допущена одна или две ошибки, приведшие к неправильному ответу.

Оценка: 2

Описание характеристики выполнения знания: В задаче получен неверный ответ, связанный с грубыми ошибками, отражающими непонимание студентом изучаемого раздела, или записано «дано» для данной задачи и (или) приведенные записи не относятся к решению данной задачи, или решение задачи отсутствует полностью.

КМ-2. КМ-2 Высшие гармоники ЭДС обмоток машин переменного тока

Формы реализации: Проверка задания

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: Студенты выдаётся задача по расчёту ЭДС, наведённых в обмотке статора электрической машины от высших гармоник магнитного поля. Студент решает задачу и сдаёт её на проверку преподавателю.

Краткое содержание задания:

Для трёхфазного асинхронного двигателя определить ЭДС, наводимые в одной фазе обмотки статора n-й гармоникой магнитного поля (для n = 5,7,11).

Определить ЭДС, наведённую в обмотке ротора основной гармоникой при неподвижном роторе, при поминальной частоте вращения и при частоте вращения, равной половине номинальной.

Контрольные вопросы/задания:

Контрольные вопросы/задания:	
Уметь: использовать	1.Для трёхфазного асинхронного двигателя
программные средства для	определить ЭДС, наводимые в одной фазе обмотки
анализа несимметричных	статора n-й гармоникой магнитного поля (для n =
режимов работы электрических	5,7,11).
машин	Определить ЭДС, наведённую в обмотке ротора основной гармоникой при неподвижном роторе, при поминальной частоте вращения и при частоте вращения, равной половине номинальной. Номинальные данные двигателя: $P2H = 10 \text{ kBt}$, $U1H = 220/380 \text{ B}$, η hom = 85% , $\cos \varphi$ hom = 0.82 , η hom = $1420 \text{ o}6/\text{mu}$ h, $f1=50 \text{ F}\text{u}$. Данные ротора: $U2 = 160 \text{ B}$, $I2 = 40 \text{ A}$. Обмоточные данные статора: $Z1 = 36$, $Z1 = 3$
	Амплитуды высших гармоник потока $\Phi m v$ принять равными $\Phi m 1 / v$.
	Для этого следует определить амплитуду первой
	14

гармоники магнитного потока $\Phi m1$, пренебрегая падением напряжения на полном сопротивлении обмотки статора.

2.Для трёхфазного асинхронного двигателя определить ЭДС, наводимые в одной фазе обмотки статора n-й гармоникой магнитного поля (для n = 5,7,11).

Определить ЭДС, наведённую в обмотке ротора основной гармоникой при неподвижном роторе, при поминальной частоте вращения и при частоте вращения, равной половине номинальной. Номинальные данные двигателя: P2H = 10 kBT, U1H = 500 B (Y), $\eta \text{ном} = 85\%$, $\cos \varphi \text{ном} = 0.82$, n ном = 1420 об/мин, f1 = 50 Гц. Данные ротора: U2 = 160 B, I2 = 40 A. Обмоточные данные статора: Z1 = 36, w1 = 150, y1 = 1-8. Обмоточные данные ротора: Z2 = 48, y2 = 1-11,

Обмоточные данные ротора: Z2 = 48, y2 = 1-11, w2 = 48.

Амплитуды высших гармоник потока $\Phi m \nu$ принять равными $\Phi m 1 / \nu$.

Для этого следует определить амплитуду первой гармоники магнитного потока $\Phi m1$, пренебрегая падением напряжения на полном сопротивлении обмотки статора.

3.Для трёхфазного асинхронного двигателя определить ЭДС, наводимые в одной фазе обмотки статора n-й гармоникой магнитного поля (для n = 5,7,11).

Определить ЭДС, наведённую в обмотке ротора основной гармоникой при неподвижном роторе, при поминальной частоте вращения и при частоте вращения, равной половине номинальной. Номинальные данные двигателя: P2н = 13 кВт,

U1H = 220/380 B, η Hom = 86%, $\cos \varphi$ Hom = 0.82, η Hom = 1420 o6/мин, f1=50Гц.

Данные ротора: U2 = 198 B, I2 = 46 A.

Обмоточные данные статора: Z1 = 36, w1 = 90, y1 = 1-8.

Обмоточные данные ротора: Z2 = 48, y2 = 1-11, w2 = 48.

Амплитуды высших гармоник потока $\Phi m \nu$ принять равными $\Phi m 1 / \nu$.

Для этого следует определить амплитуду первой гармоники магнитного потока $\Phi m1$, пренебрегая падением напряжения на полном сопротивлении обмотки статора.

4.Для трёхфазного асинхронного двигателя определить ЭДС, наводимые в одной фазе обмотки статора n-й гармоникой магнитного поля (для n =

5,7,11).

Определить ЭДС, наведённую в обмотке ротора основной гармоникой при неподвижном роторе, при поминальной частоте вращения и при частоте вращения, равной половине номинальной. Номинальные данные двигателя: P2H = 13 kBT, U1H = 500 B (Y), $\eta \text{ном} = 86\%$, $\cos \varphi \text{ном} = 0.82$, n ном = 1420 об/мин, f1 = 50 Гц. Данные ротора: U2 = 198 B, I2 = 46 A. Обмоточные данные статора: Z1 = 36, W1 = 114, W1 = 1-8. Обмоточные данные ротора: Z2 = 48, Z2 = 48.

Амплитуды высших гармоник потока $\Phi m v$ принять равными $\Phi m 1 / v$.

Для этого следует определить амплитуду первой гармоники магнитного потока $\Phi m1$, пренебрегая падением напряжения на полном сопротивлении обмотки статора.

5.Для трёхфазного асинхронного двигателя определить ЭДС, наводимые в одной фазе обмотки статора n-й гармоникой магнитного поля (для n = 5,7,11).

Определить ЭДС, наведённую в обмотке ротора основной гармоникой при неподвижном роторе, при поминальной частоте вращения и при частоте вращения, равной половине номинальной. Номинальные данные двигателя: P2H = 7.5 kBt, U1H = 220/380 B, η hom = 84%, $\cos \varphi$ hom = 0.82, η hom = 960 об/мин, f1=50 Гц. Данные ротора: U2 = 140 B, I2 = 35 A. Обмоточные данные статора: Z1 = 54, Z1 = 162, Z1 = 162, Z1 = 162. Обмоточные данные ротора: Z1 = 36, Z1 = 162, Z1 = 16.

Амплитуды высших гармоник потока $\Phi m \nu$ принять равными $\Phi m 1 / \nu$.

Для этого следует определить амплитуду первой гармоники магнитного потока $\Phi m1$, пренебрегая падением напряжения на полном сопротивлении обмотки статора.

6.Для трёхфазного асинхронного двигателя определить ЭДС, наводимые в одной фазе обмотки статора n-й гармоникой магнитного поля (для n = 5,7,11).

Определить ЭДС, наведённую в обмотке ротора основной гармоникой при неподвижном роторе, при поминальной частоте вращения и при частоте вращения, равной половине номинальной. Номинальные данные двигателя: P2н = 7,5 кВт,

 $U1H = 500 \ B \ (Y), \eta HOM = 84\%, \cos \phi HOM = 0,82,$ $nHOM = 960 \ o G/MUH, f1=50 \ \Gamma Ц.$ Данные ротора: $U2 = 140 \ B, I2 = 35 \ A.$ Обмоточные данные статора: Z1 = 54, w1 = 216, y1 = 1-8. Обмоточные данные ротора: Z2 = 36, y2 = 1-6, w2 = 60.

Амплитуды высших гармоник потока $\Phi m \nu$ принять равными $\Phi m 1 / \nu$.

Для этого следует определить амплитуду первой гармоники магнитного потока $\Phi m1$, пренебрегая падением напряжения на полном сопротивлении обмотки статора.

7.Для трёхфазного асинхронного двигателя определить ЭДС, наводимые в одной фазе обмотки статора n-й гармоникой магнитного поля (для n = 5,7,11).

Определить ЭДС, наведённую в обмотке ротора основной гармоникой при неподвижном роторе, при поминальной частоте вращения и при частоте вращения, равной половине номинальной. Номинальные данные двигателя: P2H = 10 kBT, U1H = 220/380 B, $\eta \text{ном} = 85\%$, $\cos \varphi \text{ном} = 0.83$, n ном = 960 об/мин, f1 = 50 Гц. Данные ротора: U2 = 100 B, I2 = 36 A. Обмоточные данные статора: Z1 = 54, W1 = 126, Y1 = 1-8. Обмоточные данные potopa: Z2 = 36, Y2 = 1-6, Y3 = 60.

Амплитуды высших гармоник потока $\Phi m \nu$ принять равными $\Phi m 1 / \nu$.

Для этого следует определить амплитуду первой гармоники магнитного потока $\Phi m1$, пренебрегая падением напряжения на полном сопротивлении обмотки статора.

8.Для трёхфазного асинхронного двигателя определить ЭДС, наводимые в одной фазе обмотки статора n-й гармоникой магнитного поля (для n = 5,7,11).

Определить ЭДС, наведённую в обмотке ротора основной гармоникой при неподвижном роторе, при поминальной частоте вращения и при частоте вращения, равной половине номинальной. Номинальные данные двигателя: P2H = 10 kBT, U1H = 500 B (Y), η hom = 85%, \cos hom = 0.83, θ hom = $960 \text{ o}\theta$ hm, θ hhie potopa: θ hie θ hie

 $w^2 = 60$.

Амплитуды высших гармоник потока $\Phi m \nu$ принять равными $\Phi m 1 / \nu$.

Для этого следует определить амплитуду первой гармоники магнитного потока $\Phi m1$, пренебрегая падением напряжения на полном сопротивлении обмотки статора.

9.Для трёхфазного асинхронного двигателя определить ЭДС, наводимые в одной фазе обмотки статора n-й гармоникой магнитного поля (для n = 5,7,11).

Определить ЭДС, наведённую в обмотке ротора основной гармоникой при неподвижном роторе, при поминальной частоте вращения и при частоте вращения, равной половине номинальной.

Номинальные данные двигателя: P2H = 5,5 кBT, U1H = 220/380 B, $\eta \text{ ном} = 82\%$, $\cos \varphi \text{ ном} = 0,72$, n ном = 710 об/мин, f1 = 50 Гц.

Данные ротора: U2 = 115 B, I2 = 32 A.

Обмоточные данные статора: Z1 = 56, w1 = 190, y1 = 1-7.

Обмоточные данные ротора: Z2 = 36, y2 = 1-5, w2 = 60.

Амплитуды высших гармоник потока $\Phi m \nu$ принять равными $\Phi m 1 / \nu$.

Для этого следует определить амплитуду первой гармоники магнитного потока $\Phi m1$, пренебрегая падением напряжения на полном сопротивлении обмотки статора.

10.Для трёхфазного асинхронного двигателя определить ЭДС, наводимые в одной фазе обмотки статора n-й гармоникой магнитного поля (для n=5,7,11).

Определить ЭДС, наведённую в обмотке ротора основной гармоникой при неподвижном роторе, при поминальной частоте вращения и при частоте вращения, равной половине номинальной.

Номинальные данные двигателя: P2H = 5.5 кВт,

 $U1_H = 500 B (Y)$, η ном = 82%, $\cos \varphi$ ном = 0,72, π ном = 710 π 0 об/мин, π 1=50 π 1.

Данные ротора: U2 = 115 B, I2 = 32 A.

Обмоточные данные статора: Z1 = 56, w1 = 250, v1 = 1-7.

Обмоточные данные ротора: Z2 = 36, y2 = 1-5, w2 = 60.

Амплитуды высших гармоник потока $\Phi m \nu$ принять равными $\Phi m 1 / \nu$.

Для этого следует определить амплитуду первой гармоники магнитного потока $\Phi m1$, пренебрегая

падением напряжения на полном сопротивлении
обмотки статора.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Записан правильный ответ, решение задачи верное и выбран рациональный путь решения. Записан правильный ответ, решение задачи верное, но есть один недочет (негрубые арифметические ошибки, отсутствие пояснений к вводимым обозначениям, используемым формулам и законам, отсутствие обоснований применимости используемых законов, отсутствие на рисунке к решению используемых при решении задачи величин, отсутствие размерности результата).

Оценка: 4

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Задача решена в основном верно, но было допущено несколько негрубых ошибок (отсутствие рисунка, поясняющего решение задачи, грубые арифметические ошибки, искажающие смысл полученного ответа, неверные единицы измерения используемых величин, отсутствие ответа в общем виде (решение задачи сразу с использованием заданных числовых значений величин), отсутствие численного ответа при полученном ответе в общем виде (если в условии заданы числовые значения), отсутствие записи используемого закона в общем виде).

Оценка: 3

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Задача решена в основном верно, но была допущена одна или две ошибки, приведшие к неправильному ответу.

Оценка: 2

Описание характеристики выполнения знания: В задаче получен неверный ответ, связанный с грубыми ошибками, отражающими непонимание студентом изучаемого раздела, или записано «дано» для данной задачи и (или) приведенные записи не относятся к решению данной задачи, или решение задачи отсутствует полностью.

КМ-3. КМ-3 Защита лабораторной работы «Исследование несимметричной нагрузки трёхфазного трансформатора»

Формы реализации: Защита задания

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: Защита отчёта по лабораторной работе. Проверяется качество и полнота отчёта, студенту задаются дополнительные вопросы

Краткое содержание задания:

- 1. Для схем соединения обмоток У/Ун-О, У/Д/Ун-11-0, Д/Ун-11, У/Zн-11 при однофазной и двухфазной нагрузках (У/Zн-11 выполняется по указанию преподавателя):
- а) определить расчетным путем и сравнить с опытными данными первичные линейные и фазные токи;
- б) измерить вторичные линейные и фазные напряжения.
- 2. Опытным путем определить сопротивление доп схемы замещения для токов нулевой последовательности трансформатора, имеющего схему соединения обмоток У/Ун-0.

Контрольные вопросы/задания:

Знать: методы теоретического и экспериментального исследования несимметричных режимов работы электрических машин и трансформаторов

- 1. Приведите примеры несимметричной нагрузки трансформаторов.
- 2.К чему приводит несимметричная нагрузка трансформаторов?
- 3.К каким неприятным последствиям в эксплуатации приводит несимметрия фазных напряжений?
- 4.В каких случаях при несимметричной нагрузке появляется ток нулевой последовательности?
- 5.По каким путям замыкаются индукционные линии потока нулевой последовательности в трехстержневом трансформаторе, в групповом трансформаторе?
- 6. Каково влияние обмотки, соединенной в треугольник на смещение нулевой точки звезды фазных напряжений из центра тяжести треугольника линейных напряжений?
- 7. Объясните определение из опыта п. 2 сопротивления нулевой последовательности трансформатора?
- 8.В каких случаях ток нулевой последовательности, протекающий по вторичной обмотке, является намагничивающим током, создающим магнитный поток нулевой последовательности?

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 80 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-4. КМ-4 Защита лабораторной работы «Исследование трёхфазного асинхронного двигателя в неноминальных режимах»

Формы реализации: Защита задания

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: Защита отчёта по лабораторной работе. Проверяется качество и полнота отчёта, студенту задаются дополнительные вопросы

Краткое содержание задания:

Исследовать трёхфазный асинхронный двигатель при работе с неноминальным питающим напряжением, при обрыве фазы ротора, исследовать синхронный режим работы асинхронного двигателя (синхронизированного асинхронного двигателя).

Контрольные вопросы/задания:

Знать:	методы	определения	И
устране	ения	неисправност	ей
электри	ических	машин	И
трансф	орматоро	В	

- 1. Как изменяются потери в стали и электрические потери в зависимости от приложенного напряжения U1?
- 2. Как изменяются механические потери, потери в стали и электрические потери при изменении нагрузки на валу двигателя?
- 3.Объясните изменение тока статора I1, соѕ ϕ в зависимости от приложенного напряжения U1 при различных моментах нагрузки на валу двигателя.
- 4. Как влияет изменение напряжения на перегрузочную способность двигателя?
- 5.В каком случае средняя наработка до отказа двигателя больше: при работе на максимальном КПД или максимальном соѕф?
- 6.Объясните, почему при s=2 момент двигателя от обратной последовательности M2=0.
- 7. Чем объяснить разницу энергетических показателей асинхронного двигателя при симметричном и несимметричном напряжениях питания?
- 8.От каких факторов зависит снижение перегрузочной способности двигателя при несимметричном напряжении питания? Может ли увеличиваться перегрузочная способность двигателя в этих условиях?
- 9. Объясните работу двигателя при обрыве фазы ротора.
- 10. Какое влияние на пуск двигателя оказывает включение добавочного сопротивления в цепь ротора с оборванной одной фазой ротора?
- 11. Объясните работу двигателя при включённых в цепь ротора выпрямителях.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-5. КМ-5 Защита лабораторной работы «Работа трёхфазного асинхронного двигателя в неполнофазных режимах»

Формы реализации: Защита задания

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: Защита отчёта по лабораторной работе. Проверяется качество и полнота отчёта, студенту задаются дополнительные вопросы

Краткое содержание задания:

Исследовать работу трёхфазного асинхронного двигателя при обрыве фазы статора при схемах соединения обмотки статора «звезда» и «треугольник», пуск трёхфазного асинхронного двигателя от однофазной сети

Контрольные вопросы/задания:

Знать:	методы	матема	тическог	O
анализ	а и	модел	пировани	RI
несими	иетричны	IX	режимс	Β
работы	электри	ических	машин	И
трансф	орматоро	ОВ		

- 1. Как поведёт себя трёхфазный асинхронный двигатель, обмотка которого соединена по схеме «звезда», при обрыве фазы статора?
- 2. Как поведёт себя трёхфазный асинхронный двигатель, обмотка которого соединена по схеме «треугольник», при обрыве линейного провода статора?
- 3. Как поведёт себя трёхфазный асинхронный двигатель, обмотка которого соединена по схеме «треугольник», при обрыве фазного провода обмотки статора?
- 4.Почему ухудшаются КПД и соѕф однофазного двигателя по сравнению с трёхфазным?
- 5.Запустится ли трёхфазный асинхронный двигатель при обрыве фазы статора? Ответ объясните

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-6. КМ-6 Защита лабораторной работы «Асинхронный генератор»

Формы реализации: Защита задания

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: Защита отчёта по лабораторной работе. Проверяется качество и полнота отчёта, студенту задаются дополнительные вопросы

Краткое содержание задания:

Исследовать асинхронный генератор при работе на автономную нагрузку и параллельно с сетью бесконечно большой мощности

Контрольные вопросы/задания:

Viceri nonofortinori unostilo	1 Про поможения и и поможения структ
Уметь: разрабатывать простые	1.Продемонстрируйте, как осуществить
модели электромеханических	генераторный режим асинхронной машины,
преобразователей энергии и	подключенной к сети переменного тока
протекающих в них процессов	2. Рассчитайте требуемую ёмкость конденсаторов для
	автономного асинхронного генератора
	3. Объясните характер зависимостей токов статора и
	ротора в функции скольжения.
	4. Нарисуйте схему, по которой к асинхронному
	генератору целесообразней подключать
	конденсаторы

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оиенка: 4

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-7. КМ-7 Контрольная работа «Несимметричная нагрузка синхронных генераторов»

Формы реализации: Проверка задания

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: Студенты выдаётся задача по нахождению токов в обмотке статора синхронного генератора при несимметричной нагрузке. Студент решает задачу и сдаёт её на проверку преподавателю.

Краткое содержание задания:

Определить токи обратной последовательности, сопротивление обратной последовательности и напряжение обратной последовательности при заданных токах нагрузки

Контрольные вопросы/задания:

Уметь: определять причины неисправностей электрических машин и трансформаторов

1. Фазное напряжение обратной последовательности турбогенерато-ра, работающего параллельно с электрической системой, напряжения кото-рой несимметричны, UC2 = 15 - j100 B. Полная номинальная мощность генератора SH = 7.5 MBA, номинальное линейное напряжение $U_{\rm H.J} = 10.5~{\rm kB}$, сопротивление обмотки якоря для токов обратной последовательности Z2 = j2,1 Ом. Возможна ли длительная работа генератора при заданной несимметрии напряжения систем, если токи в фазах не превышают номинальные значения? 2. Турбогенератор работает параллельно с электрической системой, фазные напряжения которой UcA = -0.23 кВ, UcB = 0.01 + i0.173 кВ, UcC= 0.09 - j0.156 кВ. Определить допустимость длительной работы генератора параллельно с такой системой, если сопротивление обмотки якоря для токов обратной последовательности Z2 = j0,0225 Ом, номинальный ток генератора I1н = 1,8 кA. Токи в фазах не превышают номинальные значения. 3. Определить ЭДС возбуждения, токи обратной и нулевой последовательности турбогенератора при его работе параллельно с электрической системой, фазные напряжения которой UcC = -3,64 кВ; UcB =1,75 + j3,03 кВ; UcC = 1,8 - j3,12 кВ. Ток прямой последовательности в фазе А генератора ІАн = 825 А, угол между напряжением UA1 и этим током $\phi = 37^{\circ}$. Сопротивления обмотки якоря для токов прямой, обратной и нулевой последовательности Z1 = j15,4 Om, Z2 = j0,18 Om, Z0 = j0,53 Om.4. Найти установившиеся значения токов однофазного, двухфазного и двойного однофазного короткого замыкания синхронного генератора, имеющего сопротивления обмотки якоря для токов прямой, обратной и нулевой последовательности: Z1 = j230 Ом, Z2 = j2,1 Ом, Z0 = j0,97 Ом. ЭДСвозбуждения Ef = 7030 B.5. Чему равны токи однофазного, двухфазного и трехфазного короткого замыкания синхронного генератора, если сопротивления обмот-ки якоря для токов прямой, обратной и нулевой последовательности: Z*1=j2,19, Z*2=j0,24, Z*0

Описание шкалы оценивания:

=j0,096?

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 80 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

7 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

- 1. Виды неноминальных и несимметричных режимов работы трансформаторов и электрических машин и причины их возникновения.
- 2. Кривая установившегося тока холостого хода трансформатора при учёте насыщения и гистерезиса
- 3. Задача

Процедура проведения

Экзамен проводится в устной форме. Студенту выдаётся билет с двумя вопросами. На подготовку ответа отводится 60 минут.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД- $3_{\Pi K-3}$ Применяет приближенные методы расчета и выбора основных элементов электрических машин и аппаратов

Вопросы, задания

- 1.Влияние схемы соединения обмоток трёхфазного трансформатора на высшие гармоники в магнитном потоке и намагничивающем токе (трансформаторы со схемой соединения Y/Y и Δ/Y).
- 2. Несимметричная нагрузка трансформаторов. Причины и последствия. Суть метода симметричных составляющих.
- 3. Экспериментальное определение параметров схемы замещения для токов нулевой последовательности трансформатора. Влияние конструкции магнитопровода трансформатора на смещение нулевой точки при несимметричной нагрузке (трансформатор в стальном баке и без бака, трёхстержневой, броневой и групповой трансформаторы).
- 4. Расчёт токов при несимметричных нагрузках и коротких замыканиях трансформаторов на примере подключения однофазной нагрузки к трансформатору со схемой соединения Y/Y0 при известном токе нагрузки.
- 5. Причины возникновения временных и пространственных гармоник в электрических машинах переменного тока. Влияние высших гармоник на работу электрических машин. Способы борьбы с высшими гармониками.
- 6. Процесс пуска и условия устойчивой работы асинхронного двигателя. Влияние высших гармоник магнитного поля на процесс пуска асинхронного двигателя.
- 7. Процесс пуска и условия устойчивой работы асинхронного двигателя. Критерий устойчивости. Виды механических характеристик нагрузочных устройств и производственных механизмов.
- 8. Асинхронный генератор в режиме работы параллельно с сетью бесконечной мощности: принцип действия, векторная и энергетическая диаграммы. Достоинства и недостатки по сравнению с синхронным генератором.
- 9. Работа трёхфазного асинхронного двигателя при напряжении, отличном от номинального.
- 10. Работа трёхфазного асинхронного двигателя при частоте, отличной от номинальной.

11. Работа трёхфазного асинхронного двигателя при несимметрии сопротивлений обмоток ротора. Эффект Гёргесса. Виды и причины дефектов обмотки ротора. 12. Работа трёхфазного асинхронного двигателя в однофазной сети. Схемы подключения. Пуск двигателя. Соотношение между мощностями асинхронного двигателя при его работе в трёхфазном и однофазном режимах.

Материалы для проверки остаточных знаний

1.	Скольжение $s, \%$ асинхронного двигателя при частоте вращения магнитного поля
30	000 об/мин и частоте вращения ротора 2940 об/мин:
	Ответы:
	\Box 2; \Box 5; \Box 2,2.
	Верный ответ: 2
2.	Как изменится ток фазы A трёхфазного асинхронного двигателя при обрыве фазы C
	Ответы:
	не изменится; □ увеличится в 2 - 2.5 раза;
	увеличится в 1,5 - 2 раза; правильного ответа.
	Верный ответ: увеличится в 1,5 - 2 раза;
3.	Частота напряжения питания асинхронного двигателя несколько увеличена. Каким
0	разом можно обеспечить работу асинхронного двигателя в режиме, близком к
Н	оминальному?
	Ответы:
	уменьшить напряжение питания;
	уменьшить механическую нагрузку на валу;
	увеличить механическую нагрузку на валу;
	увеличить напряжение питания.
	Верный ответ: увеличить напряжение питания.
4.	Что произойдёт, если конденсатор автономного асинхронного генератора заменить
Ка	тушками индуктивности?
	Ответы:
	напряжение генератора резко увеличится;
	напряжение генератора уменьшится до нуля;
	скольжение резко увеличится;
	уменьшится cos ф.
	Верный ответ: пряжение генератора уменьшится до нуля;

2. Компетенция/Индикатор: ИД- $1_{\Pi K-5}$ Применяет основные методы, способы и средства получения, хранения, переработки информации, использует компьютер для обработки информации

Вопросы, задания

- 1.Виды неноминальных и несимметричных режимов работы трансформаторов и электрических машин и причины их возникновения.
- 2.Учёт потерь в стали трансформатора. Влияние гистерезиса на форму кривой тока холостого хода трансформатора
- 3. Токи и потоки нулевой последовательности в трансформаторе. Схемы замещения и их параметры для токов нулевой последовательности при различных схемах соединения обмоток трёхфазных трансформаторов (Y/Y0 и $\Delta/Y0)$.
- 4. Расчёт токов при несимметричных нагрузках и коротких замыканиях трансформаторов на примере подключения однофазной нагрузки к трансформатору со схемой соединения Y/Y при известном токе нагрузки.
- 5.Высшие гармоники МДС обмоток электрических машин. МДС трёхфазной обмотки.

- 6. Работа трёхфазного асинхронного двигателя при обрыве фазы статора в схеме соединения «звезда»: изменение тока, мощности, скорости, энергетических показателей. Защита двигателя.
- 7. Работа трёхфазного асинхронного двигателя при обрыве фазного провода статора в схеме соединения «треугольник»: изменение тока, мощности, скорости, энергетических показателей. Защита двигателя.
- 8. Работа трёхфазного асинхронного двигателя при обрыве линейного провода в схеме соединения «звезда»: изменение тока, мощности, скорости, энергетических показателей. Защита двигателя.
- 9. Несимметричная нагрузка синхронного генератора. Влияние токов обратной последовательности на работу синхронного генератора.
- 10. Режимы несимметричных коротких замыканий синхронных генераторов.

Материалы для проверки остаточных знаний

1.Снижение начального пускового тока в питающей сети при пуске переключением
«звезда - треугольник»:
Ответы:
□ в 3 раза; □ в 1,73 раз;
□ 9 раз; □ в 5 - 7 раз.
Верный ответ: в 3 раза
2. Какими явлениями сопровождается неправильное соединение выводов обмоток
асинхронного двигателя (одна фаза «перевернута»)?
Ответы:
□ двигатель гудит; □ двигатель плохо запускается;
□ наблюдается несимметрия токов; □ всеми явлениями, указанными выше.
Верный ответ: всеми явлениями, указанными выше.
3. Асинхронный генератор с возбуждением от сети:
Ответы:
□ потребляет реактивную мощность из сети;
□ отдает в сеть большую реактивную мощность;
□ в возбуждении от сети генератор не нуждается.
Верный ответ: потребляет реактивную мощность из сети;
4. Укажите основной недостаток асинхронного генератора.
Ответы:
□ непостоянство частоты вырабатываемого напряжения;
□ потребление реактивной мощности;
□ непостоянство величины вырабатываемого напряжения;
Верный ответ: потребление реактивной мощности;
5. Как изменится напряжение на зажимах автономного асинхронного генератора при
подключении индуктивной нагрузки?
Ответы:
□ уменьшится; □ не изменится;
□ увеличится; □ увеличится незначительно.
Верный ответ:

3. Компетенция/Индикатор: ИД-3_{ПК-5} Разрабатывает упрощенные модели электромеханических преобразователей энергии и протекающих в них процессов

Вопросы, задания

1. Кривая установившегося тока холостого хода трансформатора при учёте насыщения и гистерезиса

- 2.Влияние конструкции магнитопровода трансформатора со схемой соединения Y/Y на формы кривых намагничивающего тока, магнитного потока и ЭДС (трёхстержневой, броневой, групповой трансформаторы, трансформатор в баке и без бака).
- 3.Схема соединения обмоток трансформатора по схеме «зигзаг». Принцип, назначение. Компенсационная обмотка трансформатора.
- 4. Расчёт токов при несимметричных нагрузках и коротких замыканиях трансформаторов на примере подключения однофазной нагрузки к трансформаторам со схемами соединения $\Delta/Y0$ -11 и Δ/Y -11 при известном токе нагрузки.
- 5.ЭДС в обмотке при несинусоидальном распределении магнитного поля в воздушном зазоре. Обмоточный коэффициент для высших гармоник.
- 6. Асинхронные и синхронные моменты высших гармоник магнитного поля в асинхронном двигателе.
- 7. Автономный асинхронный генератор: принцип действия, условие самовозбуждения, расчёт конденсаторов возбуждения.
- 8. Автономный асинхронный генератор: принцип действия, внешние характеристики при изменении скорости вращения, характера нагрузки и ёмкости конденсаторов возбуждения.
- 9. Работа трёхфазного асинхронного двигателя при несимметрии питающего напряжения. Метод симметричных составляющих.
- 10. Работа трёхфазного асинхронного двигателя при несимметрии сопротивлений обмоток статора, несимметричном соединении фаз обмотки статора.

Материалы для проверки остаточных знаний

сриалы для проверки остаточных	эпании
1. Намагничивающая сила обмоток м	ашин переменного тока на два магнитных зазора
равна	
Ответы:	
$\Box F = 2 \cdot w \cdot i; \qquad \Box F = w \cdot i;$	$\Box F = w \cdot i/2$
Верный ответ: $F = w \cdot i$;	
2.Как изменится пусковой момент ас	инхронного двигателя при пуске переключением
«звезда - треугольник» по сравненик	о с прямым пуском:
Ответы:	
□ уменьшится в 1,73 раза; □ умень	ьшится в 3 раза; □ увеличится в 1,73 раза; □
увеличится в 3 раза.	
Верный ответ: уменьшится в 3 ра	аза
3. Какие явления возникают в асинхр	онном двигателе, включенном на напряжение,
превышающее номинальное?	
Ответы:	
•	□ увеличение вращающего момента;
•	сти; □ все явления, указанные выше.
Верный ответ: все явления, указа	
-	ке статора асинхронного двигателя, увеличилось в 2
раза. Как изменится вращающий мом	лент?
Ответы:	
	□ увеличится в 2 раза;
• •	□ не изменится.
Верный ответ: увеличится в 4 ра	за;

II. Описание шкалы оценивания

Оценка: 5

Описание характеристики выполнения знания: Оценка «ОТЛИЧНО» выставляется студенту, правильно выполнившему практическое задание, который показал при ответе на вопросы экзаменационного билета и на дополнительные вопросы, что владеет материалом изученной

дисциплины, свободно применяет свои знания для объяснения различных явлений и решения задач.

Оценка: 4

Описание характеристики выполнения знания: Оценка «ХОРОШО» выставляется студенту, правильно выполнившему практическое задание и в основном правильно ответившему на вопросы экзаменационного билета и на дополнительные вопросы, но допустившему при этом непринципиальные ошибки.

Оценка: 3

Описание характеристики выполнения знания: Оценка «УДОВЛЕТВОРИТЕЛЬНО» выставляется студенту, который в ответах на вопросы экзаменационного билета допустил существенные и даже грубые ошибки, но затем исправил их сам, а также не выполнил практическое задание из экзаменационного билета, но либо наметил правильный путь его выполнения, либо по указанию экзаменатора решил другую зада-чу из того же раздела дисциплины.

Оценка: 2

Описание характеристики выполнения знания: Оценка «НЕУДОВЛЕТВОРИТЕЛЬНО» выставляется студенту, который: а) не ответил на вопросы экзаменационного билета и не смог решить, либо наметить правильный путь решения задачи из билета; б) не смог решить, либо наметить правильный путь решения задачи из экзаменационного билета и другой задачи на тот же раздел дисциплины, выданной взамен нее; в) при ответе на дополнительные вопросы обнаружил незнание большого раздела экзаменационной программы.

III. Правила выставления итоговой оценки по курсу

Оценка определяется по совокупности результатов текущего контроля успеваемости в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ»