Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.03.02 Электроэнергетика и электротехника Наименование образовательной программы: Электрооборудование летательных аппаратов

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Компьютерное моделирование электромеханических преобразователей

Москва 2023

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

 Преподаватель
 Владелец
 Владелец

 (должность)
 Идентификатор
 R72C

 (подпись)
 (подпись)

Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

Сведения о владельце ЦЭП МЭИ

Владелец СИЗЯКИН А.В.

Идентификатор R72ca4137-SiziakinAV-d27fe096

А.В. Сизякин (расшифровка подписи)

СОГЛАСОВАНО:

Руководитель образовательной программы

(должность, ученая степень, ученое звание)

Заведующий выпускающей кафедры

(должность, ученая степень, ученое звание)

NCM NCM	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»	
	Сведения о владельце ЦЭП МЭИ		
	Владелец	Липай Б.Р.	
	Идентификатор	R8a549539-LipaiBR-275b674e	
(подпись)			

Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

Сведения о владельце ЦЭП МЭИ

Владелец Румянцев М.Ю.

Идентификатор R4b7b75d7-RumyantsevMY-eafe30

(подпись)

Б.Р. Липай

(расшифровка подписи)

М.Ю. Румянцев

(расшифровка подписи)

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

1. ПК-9 Способен проводить расчеты и исследования электронных и электромеханических устройств

ИД-2 Составляет и анализирует модели электромеханических преобразователей методом конечных элементов

и включает:

для текущего контроля успеваемости:

Форма реализации: Защита задания

- 1. Зашита лабораторной работы №3 (Лабораторная работа)
- 2. Защита лабораторной работы №1 (Лабораторная работа)
- 3. Защита лабораторной работы №2 (Лабораторная работа)
- 4. Защита лабораторной работы №4 (Лабораторная работа)

БРС дисциплины

7 семестр

	Веса контрольных мероприятий, %				
Роспол именунгин и	Индекс	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	1	2	3	4
	Срок КМ:	6	8	12	16
Интерфейс программы Cedrat Flux. Построение гео	ометрии				
моделей, сетки, определение физических свойств с	бъекта				
исследования.					
Построение геометрии объекта исследования. Разд	еление на	+			
конечные элементы.					
Параметризация модели. Определение свойств материалов		+			
Разработка сценариев моделирования и получение результатов					
моделирования в статическом режиме					
Моделирование магнитостатического режима			+	+	
Составление схем замещения магнитной цепи			+		+
Разработка сценариев моделирования и получение результатов					
моделирования в динамическом режиме					
Моделирование переходных процессов в магнитных цепях			+	+	+
Моделирование электромеханической системы			+	+	

Анализ результатов моделирования				
Построение внешней характеристики генератора				+
Построение механической характеристики электродвигателя с возбуждением от постоянных магнитов				+
Bec KM:	20	25	25	30

^{\$}Общая часть/Для промежуточной аттестации\$

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	_	результаты обучения по	•
		дисциплине	
ПК-9	ИД-2пк-9 Составляет и	Знать:	Защита лабораторной работы №1 (Лабораторная работа)
	анализирует модели	Пользовательский	Защита лабораторной работы №2 (Лабораторная работа)
	электромеханических	интерфейс программы	Зашита лабораторной работы №3 (Лабораторная работа)
	преобразователей методом	Cedrat Flux	Защита лабораторной работы №4 (Лабораторная работа)
	конечных элементов	Основные принципы	
		построения кончно-	
		элементных моделей	
		цели и задачи поверочного	
		расчёта	
		электромеханического	
		преобразователя	
		Методы моделирования	
		устройств силовой	
		электроники в программе	
		Cedrat Flux	
		Уметь:	
		Строить модель в	
		программе Cedrat Flux и	
		создать сценарии решения	
		Получать характеристики	
		объекта исследования	
		Интерпретировать	
		полученные с помощью	
		моделирования	
		характеристики как	

результаты поверочного	
расчёта	
Создавать модели,	
содержащие	
электромеханический и	
электронный	
преобразователи	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Защита лабораторной работы №1

Формы реализации: Защита задания

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Студент лично или с помощью

технологий дистанционной связи защищает выполненную лабораторную работу

Краткое содержание задания:

Необходимо ответить на вопросы по сделанной работе и внести в проект требуемые преподавателем изменения

Контрольные вопросы/задания:

Знать: Пользовательский	1. Каким образом строится линия в программе Cedrat
интерфейс программы Cedrat	Flux?
Flux	2. Как задаются свойства магнитных материалов в
	программе Cedrat Flux?
	3. Как удалить поверхность в программе Cedrat Flux?
Уметь: Строить модель в	1.Постройте призматический магнит в программе
программе Cedrat Flux и создать	Cedrat flux
сценарии решения	2. Настройте объект таким образом, чтобы его
	размеры зависели от параметров, заданных в разделе
	геометрия
	3.Удалите магнит из модели

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Все задания выполнены с первого раза. Допускаются опечатки и неверные с точки зрения физики названия пользовательских переменных

Оценка: 4

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Задания выполнены не с первого раза, но без сброса проекта. Допускаются опечатки и неверные с точки зрения физики названия пользовательских переменных

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Задание выполнено в течение занятия. Допускаются опечатки и неверные с точки зрения физики названия пользовательских переменных и отсутствие некоторых автоматизированных связей между переменными.

КМ-2. Защита лабораторной работы №2

Формы реализации: Защита задания

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Студент лично или с помощью технологий дистанционной связи защищает выполненную лабораторную работу

Краткое содержание задания:

Необходимо ответить на вопросы по сделанной работе и внести в проект требуемые преподавателем изменения

Контрольные вопросы/задания:

Знать: Основные принципы	1.Как добавляются интервалы времени в сценарий
построения кончно-элементных	моделирования?
моделей	2. Как удаляются интервалы времени в сценарий
	моделирования?
	3. Как задаются геометрические изменения модели в
	сценарий моделирования?
Уметь: Создавать модели,	1. Настройте сценарий на решение задачи в одной
содержащие	точке времени
электромеханический и	2.Постройте в программе Cedrat Flux зависимость
электронный преобразователи	нормальной составляющей индукции на границе
	магнита
	3.Постройте в программе Cedrat Flux зависимость
	касательной составляющей индукции на границе
	магнита

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-3. Зашита лабораторной работы №3

Формы реализации: Защита задания

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Студент лично или с помощью

технологий дистанционной связи защищает выполненную лабораторную работу

Краткое содержание задания:

Необходимо ответить на вопросы по сделанной работе и внести в проект требуемые преподавателем изменения

Контрольные вопросы/задания:

построения кончно-элементных моделей	перемещения магнита через неё? 2.Как влияет на ток обмотки количество витков в ней? 3.Как влияет на ЭДС, наводимую в обмотке полярность магнита, движущегося через неё?
Уметь: Получать характеристики объекта исследования	1.Постройте график зависимости ЭДС в обмотке от времени 2.Постройте график изменения силы тока в обмотке во времени 3.Поясните ход графика силы тока в обмотке

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-4. Защита лабораторной работы №4

Формы реализации: Защита задания

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 30

Процедура проведения контрольного мероприятия: Студент лично или с помощью

технологий дистанционной связи защищает выполненную лабораторную работу

Краткое содержание задания:

Необходимо ответить на вопросы по сделанной работе и внести в проект требуемые преподавателем изменения

Контрольные вопросы/задания:

Знать: Методы моделирования	1.Какие виды полупроводниковых элементов можно
устройств силовой электроники	добавлять в схему модели?
в программе Cedrat Flux	
Знать: цели и задачи	1.Для чего проводится поверочный расчёт
поверочного расчёта	электромеханических преобразователей
электромеханического	2. Какие задачи решаются в ходе проведения
преобразователя	поверочного расчёта
Уметь: Интерпретировать	1.Постройте внешнюю характеристику вентильного
полученные с помощью	генератора
моделирования характеристики	2.Постройте механическую характеристику двигателя
как результаты поверочного	3.Постройте зависимость тока обмотки якоря
расчёта	машины от частоты вращения

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 80 Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 70 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

7 семестр

Форма промежуточной аттестации: Зачет с оценкой

Процедура проведения

Зачет по совокупности полученных в течение семестра оценок

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-2_{ПК-9} Составляет и анализирует модели электромеханических преобразователей методом конечных элементов

Вопросы, задания

1.Оценка выставляется по совокупности полученных в течение семестра оценок

Материалы для проверки остаточных знаний

1. Каким образом организуется взаимосвязь между геометрической областью модели и элементом электрической схемы, который она представляет.

Ответы:

Студент пишет ответ на бумаге и сдаёт на проверку.

Верный ответ: С помощью формирования области Conductor Region и его ассоциации в меню Physics

2. Как наложить сетку на геометрическую модель?

Ответы:

Студент пишет ответ на бумаге и сдаёт на проверку.

Верный ответ: Выбрать пункт Mesh Domain

3.С помощью каких средств строится внешняя характеристика генератора в программе Cedrat Flux?

Ответы:

Студент пишет ответ на бумаге и сдаёт на проверку.

Верный ответ: С помощью многократного построения зависимости тока и напряжения от времени.

4. Как получить зависимость момента двигателя от тока якоря в программе Cedrat Flux? Ответы:

Студент пишет ответ на бумаге и сдаёт на проверку.

Верный ответ: Построить зависимости момента от времени при различных токах.

5. Каким элементом в схеме замещения магнитной цепи имитируется стальной участок? Ответы:

Студент пишет ответ на бумаге и сдаёт на проверку.

Верный ответ: Нелинейным сопротивлением.

6.Для чего используется создание областей в программе Cedrat Flux?

Ответы:

Студент пишет ответ на бумаге и сдаёт на проверку.

Верный ответ: Для привязки к поверхностям различных элементов конструкции с различными свойствами

7. Как в сценарии настроить изменение геометрических параметров модели? Ответы:

Студент пишет ответ на бумаге и сдаёт на проверку.

Верный ответ: Открыть вкладку Control Parameters

8. Как рассчитать потокосцепление катушки на уже решённой модели Ответы:

Студент пишет ответ на бумаге и сдаёт на проверку.

Верный ответ: Выбрать пункт Computation -> on physical entity

9. Как рассчитать магнитный поток через произвольную поверхность? Ответы:

Как рассчитать потокосцепление катушки на уже решённой модели

Верный ответ: Построить вдоль поверхности Compound path, вывести нормальную составляющую магнитной индукции к этому элементу, взять интеграл и помножить на глубину модели.

10. Какой элемент электрической схемы в программе Cedrat Flux используется для отображения обмотки электродвигателя?

Ответы:

Как рассчитать потокосцепление катушки на уже решённой модели Верный ответ: Stranded coil conductor

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 80 Описание характеристики выполнения знания: Средний балл работы выше либо равен 4,5

Оценка: 4

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Средний балл выше либо равен 3,5, но ниже 4.5

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Средний балл выше либо равен 2,5, но ниже 3.5

III. Правила выставления итоговой оценки по курсу

Оценка выставляется по совокупности полученных в течение семестра оценок