Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.03.02 Электроэнергетика и электротехника

Наименование образовательной программы: Электрооборудование и электрохозяйство предприятий,

организаций и учреждений

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Переходные процессы в системах электроснабжения

Москва 2025

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Разработчик

Е.Н. Рыжкова

СОГЛАСОВАНО:

Руководитель образовательной программы

A RECEIVED AND SECTION AND SEC	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»		
	Сведения о владельце ЦЭП МЭИ		
-	Владелец	Матюнина Ю.В.	
NOM N	Идентификатор	R01b54b1d-MatiuninaYV-7d5d8f2a	

Ю.В. Матюнина

Заведующий выпускающей кафедрой

MON de	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»	
	Сведения о владельце ЦЭП МЭИ		
	Владелец	Михеев Д.В.	
	Идентификатор	Re17531c2-MikheevDV-e437ec4f	

Д.В. Михеев

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-6 Способен участвовать в обеспечении показателей функционирования оборудования объектов профессиональной деятельности
 - ИД-1 Применяет методы расчета показателей функционирования элементов и систем технологического оборудования объектов профессиональной деятельности
 - ИД-2 Знает методы ведения режимов работы объектов профессиональной деятельности
 - ИД-3 Демонстрирует понимание взаимосвязи задач эксплуатации и обеспечения технологических режимов работы объектов профессиональной деятельности

и включает:

для текущего контроля успеваемости:

Форма реализации: Компьютерное задание

1. параметры схем замещения (Тестирование)

Форма реализации: Письменная работа

- 1. Контрольная работа по несимметричным КЗ (Контрольная работа)
- 2. Контрольная работа по симметричным КЗ (Контрольная работа)
- 3. Контрольная работа по устойчивости (Контрольная работа)

Форма реализации: Устная форма

1. защиты лабораторных работ (Лабораторная работа)

БРС дисциплины

7 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 параметры схем замещения (Тестирование)
- КМ-2 Контрольная работа по симметричным КЗ (Контрольная работа)
- КМ-3 Контрольная работа по несимметричным КЗ (Контрольная работа)
- КМ-4 Контрольная работа по устойчивости (Контрольная работа)
- КМ-5 защиты лабораторных работ (Лабораторная работа)

Вид промежуточной аттестации – Экзамен.

Раздел дисциплины	Веса ко	Веса контрольных мероприятий, %				
	Индекс	КМ-	КМ-	КМ-	КМ-	КМ-
	KM:	1	2	3	4	5
	Срок КМ:	3	8	11	14	15

Понятие о переходных процессах применительно к простейшим цепям					
Понятие о переходных процессах применительно к простейшим цепям Основные допущения. Понятие о расчетных условиях.	+				
Трехфазные короткие замыкания. Несимметричные режимы					
Трехфазное короткое замыкание в неразветвленной цепи		+			
Основные положения в исследовании несимметричных переходных процессов			+		
Расчеты устойчивости простейших систем					
Классификация электромеханических переходных процессов. Основные положения, применяемые при анализе. Понятие о статической и динамической устойчивости. Основные понятия и определения. Статическая устойчивость				+	+
Динамическая устойчивость. Электромеханические переходные процессы при больших возмущениях				+	+
Bec KM:	20	20	20	20	20

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции		результаты обучения по	
		дисциплине	
ПК-6	$ИД-1_{\Pi K-6}$ Применяет	Знать:	КМ-1 параметры схем замещения (Тестирование)
	методы расчета	схемы замещения	КМ-2 Контрольная работа по симметричным КЗ (Контрольная работа)
	показателей	элементов систем	КМ-3 Контрольная работа по несимметричным КЗ (Контрольная
	функционирования	электроснабжения для	работа)
	элементов и систем	расчетов	
	технологического	электромагнитных и	
	оборудования объектов	электромеханических	
	профессиональной	переходных процессов	
	деятельности	Уметь:	
		выполнять расчеты токов	
		несимметричного КЗ,	
		строить векторные	
		диаграммы токов и	
		напряжений, в том числе, и	
		для ветвей и узлов,	
		удаленных от места КЗ	
		выполнять расчеты токов	
		симметричного КЗ;	
ПК-6	ИД-2пк-6 Знает методы	Уметь:	КМ-2 Контрольная работа по симметричным КЗ (Контрольная работа)
	ведения режимов работы	анализировать причины	КМ-4 Контрольная работа по устойчивости (Контрольная работа)
	объектов	возникновения и	
	профессиональной	физическую сущность	
	деятельности	процессов нарушения	
		статической и	
		динамической	

		T	
		устойчивости, а также	
		заранее предотвращать их	
		опасные последствия	
		выполнять расчеты токов	
		коротких замыканий для	
		произвольного момента	
		времени, анализировать	
		влияние специальной	
		автоматики на величину	
		тока КЗ	
ПК-6	ИД-3пк-6 Демонстрирует	Знать:	КМ-2 Контрольная работа по симметричным КЗ (Контрольная работа)
	понимание взаимосвязи	основы теории	КМ-4 Контрольная работа по устойчивости (Контрольная работа)
	задач эксплуатации и	электромагнитных	КМ-5 защиты лабораторных работ (Лабораторная работа)
	обеспечения	переходных процессов для	
	технологических режимов	общих расчетных задач по	
	работы объектов	выбору силового	
	профессиональной	оборудования, устройств	
	деятельности	релейной защиты и	
		автоматики;	
		основы теории	
		электромеханических	
		переходных процессов в	
		современных	
		электроэнергетических	
		системах и системах	
		электроснабжения	
		Уметь:	
		выполнять расчеты	
		устойчивости с учетом	
		регулирования	
		возбуждения	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. параметры схем замещения

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Тестирование проводится в СДО

Прометей во время аудиторных практических занятий, время выполнения 15 минут.

Краткое содержание задания:

Необходимо выполнить тестовые задания по схемам замещения

Контрольные вопросы/задания:

контрольные вопросы/задания.	
Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
Знать: схемы замещения	1.Сверхпереходную ЭДС асинхронных
элементов систем	двигателей в начальный момент времени (в
электроснабжения для расчетов	относительных единицах) следует определять по
электромагнитных и	формуле (U -напряжение на выводах машины в
электромеханических переходных	момент, предшествующий КЗ; І - ток статора в
процессов	момент, предшествующий КЗ; Х" -
	сверхпереходное индуктивное сопротивление
	АД.
	2.При выбранных базисных условиях
	относительные значения будут определяться по
	формулам
	3.Под относительным значением какой-либо
	величины следует понимать

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-2. Контрольная работа по симметричным КЗ

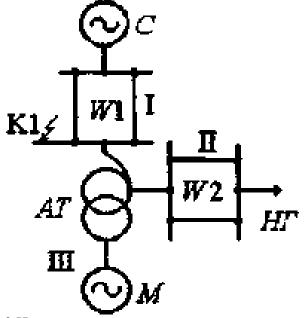
Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

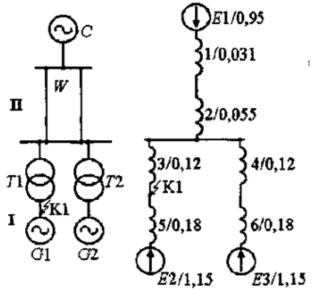
Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Студенты получают индивидуальные задания, включающие 2 теоретических вопроса и задачу, очно или посредством ОСЭП при ДО. Работа проводится во время аудиторных практических занятий, время выполнения 90 минут.

Краткое содержание задания:


Дать развернутые ответы на теоретические вопросы и решить задачу

Контрольные вопросы/задания:


контрольные вопросы/задания:				
Вопросы/задания для проверки				
1.Ударный ток короткого замыкания, алгоритм расчета в				
сложной схеме				
2.Основные допущения при расчетах токов КЗ				
3.Периодическая и апериодическая составляющие тока КЗ				
1. При трехфазном КЗ в точке К1 определить начальное				
значение периодической составляющей тока КЗ. Исходные				
данные:				
система C : S ном = $6000 \text{ MB} \cdot \text{A}$; X с $($ ном $)$ = $0,9$; линия W 1: l =				
80 км; X уд = $0,43$ Ом/км; R уд = $0,13$ Ом/км; линия W 2: l =				
30 км; Xуд = $0,4 Oм/км; R$ уд = $0,11 Oм/км;$				
автотрансформатор AT : S ном = 63 MB·A; n T = 230/115/6,6				
кВ; u к В-С = 11%; u к В-Н = 31%; u к С-Н = 19%;				
асинхронный двигатель M : P ном = 8 MB $_{\rm T}$; $\cos \varphi = 0.91$;				
Uном = 6 кВ; I п / I ном = 5,4; M п / M ном = 0,8; нагрузка:				
$H\Gamma$: Shom = 40 MB·A				

Запланирова	нные	
результаты	обучения	ПО
лисшиплине		

Вопросы/задания для проверки

2.Используя расчетную схему и указанные там исходные данные (вычисленные при базисных условиях S6 = 125 MB·A; U6I = 10 кB; $U6II = U6I \cdot (1/nI) = 10 \cdot (1/(10,5/254)) = 242$ кB; I6I = 7,2кA); , вычислить ударный ток K3 в расчетной точке K1 и апериодическую составляющую тока K3 в момент времени $\tau = 0,1$ с.

3.При трехфазном КЗ в точке К1 определить начальное значение периодической составляющей тока КЗ. Исходные данные: система C: SHOM = 400 MB·A; Xc = 0,95 о.н.е.; линия W: I = 70 км; Xуд = 0,43 Ом/км; Rуд = 0,12 Ом/км; автотрансформатор AT: S HOM = 125 MB·A; nT = 230/115/10,5 кВ; ΔP к = 315 кВт; uкВ-С = 11 %; uкВ-H = 45%; uкС-H = 28 %; генераторы G1 и G2: PHOM = 32 MBT; $\cos \varphi = 0,8$; UHOM = 10,5 кВ; X''d(HOM) = 0,153; X2(HOM) = 0,187; Ta(3) = 0,21 с; трансформатор T: SHOM = 63 MB·A; uк

Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки
	= 11%; nt = 121/10,5 kB; ΔPk = 205kBt; rehepatop G3: Phom = 63 MBt; cosφ = 0,8; Uhom = 10,5 kB; X"d(hom) = 0,155; X2(hom) = 0,189; Ta(3) = 0,241 c. K1 G3 G3 G4 G4 G4 G4 G4 G5 G4 G5 G5 G6 G6 G7 G6 G7 G7 G7 G7 G7 G7
Уметь: выполнять расчеты токов коротких замыканий для произвольного момента времени, анализировать влияние специальной автоматики на величину тока КЗ	1.Определить начальное действующее значение периодической составляющей тока трехфазного КЗ. Параметры элементов схемы: системы <i>C</i> : <i>S</i> ном = 4000 MB·A; <i>X</i> c = 1,1 о.н.е; линии <i>W</i> : <i>l</i> = 120 км; <i>X</i> уд = 0,43 Ом/км; <i>R</i> уд = 0,13 Ом/км; трансформаторов <i>T</i> 1 и <i>T</i> 2: <i>S</i> ном = 125 MB·A; <i>u</i> к = 11%; <i>n</i> т = 254/10,5 кВ; ΔP к = 315кВт; генераторов <i>G</i> 1 и <i>G</i> 2: <i>P</i> ном = 110 MBт; $\cos \varphi = 0.8$; <i>U</i> ном = 10,5 кВ; <i>X</i> 2 = 0,234; <i>X</i> " <i>d</i> = 0,18; <i>T</i> a(3) = 0,41c

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-3. Контрольная работа по несимметричным КЗ

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Студенты получают индивидуальные задания, включающие 2 теоретических вопроса и задачу, очно или посредством ОСЭП при ДО. Работа проводится во время аудиторных практических занятий, время выполнения 90 минут.

Краткое содержание задания:

Дать развернутые ответы на теоретические вопросы и решить задачу

Контрольные вопросы/задания:

Запланированные	Вопросы/задания для проверки
результаты обучения по	
дисциплине	
Уметь: выполнять	1.При двухфазном коротком замыкании на выводах высшего
расчеты токов	напряжения трансформатора, связанного с синхронным
несимметричного КЗ,	генератором по блочной схеме, определить начальное
строить векторные	значение периодической составляющей тока в месте
диаграммы токов и	повреждения. Элементы расчетной схемы имеют следующие
напряжений, в том числе,	параметры: генератор G : P ном = 110 MBт, U ном = 10,5 кB,
и для ветвей и узлов,	\cos фном = 0,8, $X''d$ (ном) = 0,189, $X2$ (ном) = 0,23; до КЗ
удаленных от места КЗ	генератор работал с номинальной нагрузкой,
	трансформатор T : S ном = 160 MB·A, n = 115/10,5 кB, u к =
	10,5%.

Запланированные	Вопросы/задания для проверки
результаты обучения по	
дисциплине	
	(2)
	∠ K (*/
	-
	$-\infty(-)$
	\ - J
	· •
	~ (
	(((√)
	2.1. Определить начальное значение периодической
	составляющей тока двухфазного КЗ при коротком
	замыкании за линейным реактором LR. Элементы расчетной
	схемы характеризуются следующими данными:
	генератор G : P ном = 63 MBT, U ном = 10,5 кB, $\cos \phi$ ном = 0,8, $X''d = 0,136$ о.н.е., $X2 = 0,166$ о.н.е.;
	A = 0.1300.н.е., $A2 = 0.100$ о.н.е., до КЗ генератор работал с номинальной на-грузкой; реактор
	$LR: U_{\text{HOM}} = 10 \text{ kB}, I_{\text{HOM}} = 630 \text{ A}, XLR = 0.2 \text{ Om}.$
	1 1
	1 5 72
	\sim 1.8
	(0.)
	1. 64 VIV
	Y-70(1)
	= VK'''
	(F P
	~ 1
	3.Известно, что при двухфазном КЗ в узловой точке сети 230
	кВ электроэнергетической системы начальное значение
	периодической составляющей тока КЗ составляет 12 кА, а
	при однофазном КЗ в той же точке сети – 14 кА. Чему равно начальное значение периодической составляющей тока
	двухфазного КЗ на землю в той же точке, если при этом в
	узле дополни-тельно подключен ненагруженный
	The Helphon Matter Moduly I of 22 MB: Λ $\mu v = 11.5\%$ $n = 1.0\%$

Описание шкалы оценивания:

трансформатор мощностью 32 MB·A, $u\kappa = 11,5\%$, n = 230/10,5 кВ, схема соединения обмоток $Y0/\Delta - 11$?

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

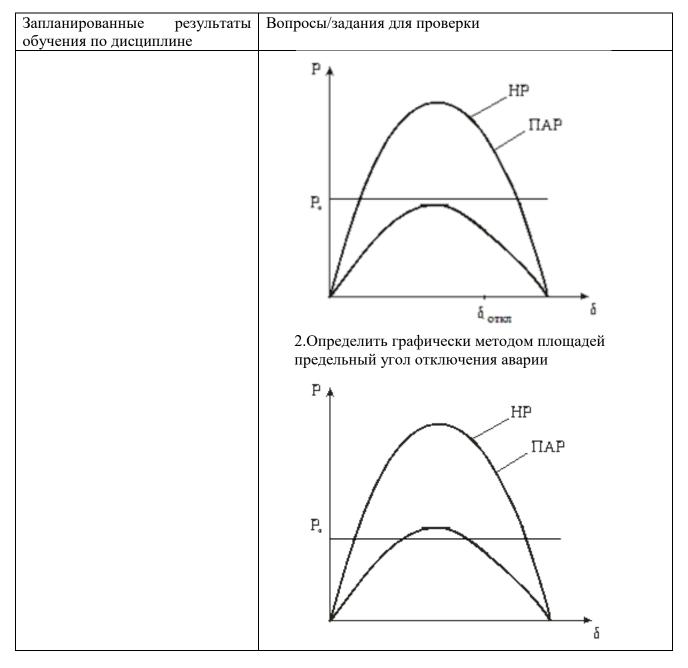
КМ-4. Контрольная работа по устойчивости

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Студенты получают индивидуальные задания, включающие 2 теоретических вопроса и задачу, очно или посредством ОСЭП при ДО. Работа проводится во время аудиторных практических занятий, время выполнения 90 минут.


Краткое содержание задания:

Дать развернутые ответы на теоретические вопросы и решить задачу

Контрольные вопросы/задания:

Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
Знать: основы теории	1.Предельный угол отключения поврежденного
электромеханических	элемента электропередачи
переходных процессов в	2. Действительная характеристика мощности.
современных	Влияние параметров схемы на характеристики
электроэнергетических системах	мощности
и системах электроснабжения	3.Суть метода последовательных интервалов
	4.Влияние АРВ на характеристику мощности
	5.Отключение КЗ как мера повышения устойчивости
Уметь: анализировать причины	1.Определить значение ЭДС генератора без АРВ,
возникновения и физическую	работающего на шины системы бесконечной
сущность процессов нарушения	мощности при которой коэффициент запаса
статической и динамической	статической устойчивости равен 100 %
устойчивости, а также заранее	P0=0,5; Uc=1; Xd=2,0; X"d=0,2; X'd=1,0; Xт=0,15; Хл
предотвращать их опасные	=0,35 Tj=5c; cos f=0,8
последствия	2. Устойчива ли динамически система при заданном
	значении угла отключения. Построить площадки
	ускорения и торможения

Запланированные результаты		
обучения по дисциплине		
	P. HP TIAP	
	P HP MAP	
V	3. Устойчива ли динамически система при заданном значении угла отключения. Построить площадки ускорения и торможения	
Уметь: выполнять расчеты устойчивости с учетом регулирования возбуждения	1.Устойчива ли динамически система при заданном значении угла отключения. Построить площадки ускорения и торможения	

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-5. защиты лабораторных работ

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Выполненные лабораторные работы в ходе устной беседы защищаются студентами в виде ответов на теоретические вопросы.

Краткое содержание задания:

Ответить на вопросы по порядку выполнения работ и теоретические вопросы, поясняющие полученные результаты

Контрольные вопросы/задания:

Rolli posibilbie boli	росы, задания	1		
Запланированные	результаты	обучения	ПО	Вопросы/задания для проверки
дисциплине				
Знать: основы	теории эл	ектромеханич	неских	1.Каким образом изменяется
переходных п	роцессов	в соврем	енных	величина сопротивления обмотки
электроэнергетичес	ских систем	ах и сис	стемах	ротора при разгоне АДК?
электроснабжения				2.Пусковые характеристики СД и
				их представление через
				параметры схемы замещения
				3. Расчетная схема узла
				промышленной комплексной
				нагрузки

Описание шкалы оценивания:

Оценка: «зачтено»

Описание характеристики выполнения знания: Оценка "зачтено" выставляется если задание выполнено правильно или с незначительными недочетами

Оценка: «не зачтено»

Описание характеристики выполнения знания: Оценка "не зачтено" выставляется если задание не выполнено в отведенный срок или результат не соответствует заданию

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

7 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

- 1. Ударный ток короткого замыкания, алгоритм расчета в сложной схеме.
- 2. Способ площадей
- 3. Задача

Процедура проведения

Студенты получают билеты, время на подготовку 60 минут. Ответ устно. Преподавателем могут быть заданы дополнительные вопросы из перечня вопросов к экзамену.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД- $1_{\Pi K-6}$ Применяет методы расчета показателей функционирования элементов и систем технологического оборудования объектов профессиональной деятельности

Вопросы, задания

- 1.Параметры схем замещения нулевой последовательности синхронных генераторов, синхронных и асинхронных двигателей, обобщенной нагрузки
- 2. Приведение параметров схем замещения к одной ступени трансформации по точным и средним значениям коэффициентов трансформации
- 3. Приближенный учет системы при расчетах электромагнитных переходных процессов
- 4.Основные допущения при расчетах токов КЗ
- 5.Интеграл Джоуля от периодической и апериодической составляющих тока КЗ

Материалы для проверки остаточных знаний

1.При приближенном приведении параметров к базисным условиям принимают следующие средние номинальные напряжения

Ответы:

A 515; 230; 115; 37; 10,5; 6,3 кВ Б 525; 220; 115; 37; 10; 6,3 кВ В 515; 250; 115; 37; 10,5; 6,3 кВ Г 515; 230; 110; 35; 10,5; 6,3 кВ Д 515; 230; 115; 37; 11; 6 кВ

Верный ответ: А

2. Какой параметр синхронной машины обозначается Х2

Ответы

А индуктивное сопротивление обратной последовательности

Б сверхпереходное индуктивное сопротивление по поперечной оси

В синхронное индуктивное сопротивление по продольной оси

Г синхронное индуктивное сопротивление по поперечной оси

Д сверхпереходное индуктивное сопротивление по продольной оси

Верный ответ: А

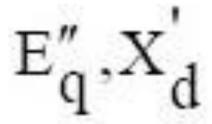
3. При расчете начального значения сверхпереходного тока КЗ асинхронный двигатель включается в схему замещения сопротивлением

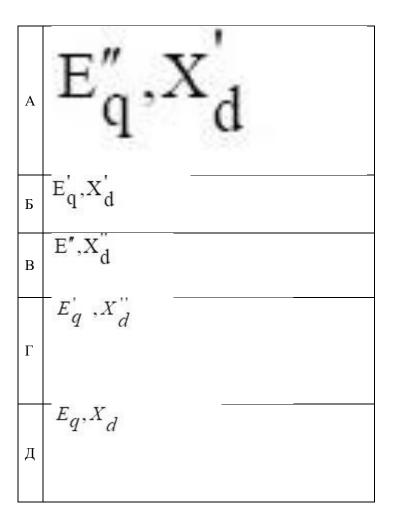
Ответы:

A	$x'' = 1/K_n$
Б	x''d
В	x'd
Γ	x _d
Д	x''q

Верный ответ: А

2. Компетенция/Индикатор: ИД- $2_{\Pi K-6}$ Знает методы ведения режимов работы объектов профессиональной деятельности

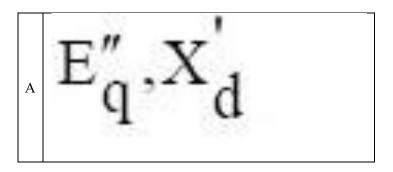

Вопросы, задания


- 1. Условия выбора выключателей, разъединителей, отделителей, выключателей нагрузки и короткозамыкателей
- 2.Определение периодической составляющей тока КЗ от СГ в произвольный момент времени
- 3. Динамическая устойчивость электроэнергетической системы

Материалы для проверки остаточных знаний

1.При расчете сверхпереходного тока короткого замыкания синхронные генераторы вводятся в схему замещения

Ответы:



Верный ответ: В

2. Каким параметрами входят в схему замещения синхронные машины без АРВ при расчете статической устойчивости

Ответы:

Б	E'q,X'd
В	E",X"d
Γ	$E_q^{\prime}, X_d^{\prime\prime}$
Д	E_q, X_d

Верный ответ: Д

3. Сверхпереходную ЭДС асинхронных двигателей в начальный момент времени (в относительных единицах) следует определять по формуле (U -напряжение на выводах машины в момент, предшествующий КЗ; I - ток статора в момент, предшествующий КЗ; X" - сверхпереходное индуктивное сопротивление АД. Ответы:

 $E'' = \sqrt{(U\cos\varphi)^{2} + (U\sin\varphi - Ix')^{2}}$ $E'' = \sqrt{(U\cos\varphi)^{2} + (U\sin\varphi + Ix'')^{2}}$ $E'' = \sqrt{(U)^{2} + (U-Ix'')^{2}}$ E'' = U - Ix'' $X'' = 1/K_{n}$

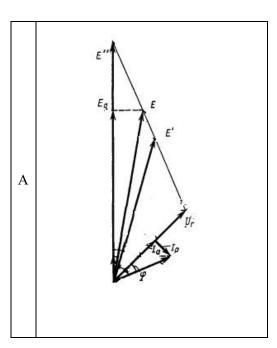
Верный ответ: А

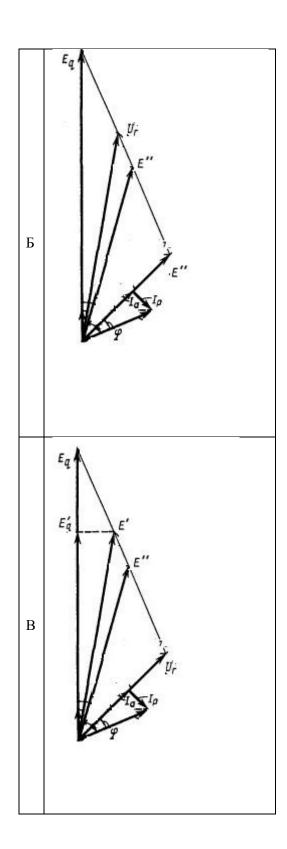
3. Компетенция/Индикатор: ИД- $3_{\Pi K-6}$ Демонстрирует понимание взаимосвязи задач эксплуатации и обеспечения технологических режимов работы объектов профессиональной деятельности

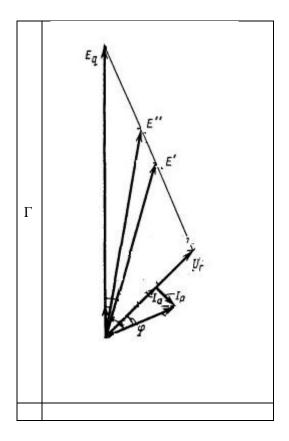
Вопросы, задания

- 1. Мероприятия по ограничению токов КЗ
- 2. Угловые характеристики мощности, учет влияния АРВ, уравнения
- 3. Регулирующий эффект нагрузки
- 4.Особенности расчетов токов КЗ в распределительных сетях ниже 1000 В
- 5.Обоснование метода последовательных интервалов

Материалы для проверки остаточных знаний


1.Замыкание в трехфазной электроэнергетической системе с изолированной нейтралью, при котором с землей соединяется только одна фаза — это Ответы:

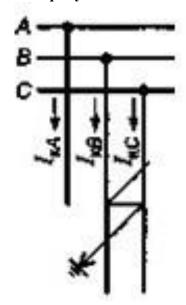

A	простое замыкание
Б	двухфазное КЗ
В	двухфазное КЗ на землю
Γ	однофазное КЗ
Д	двойное КЗ на землю


Верный ответ: А

2.Выберите верную векторную диаграмму для неявнополюсной синхронной машины

Ответы:

Верный ответ: В 3.Каким параметрами входят в схему замещения синхронные машины с APB ПД при расчете статической устойчивости


Ответы:

A	$E_{q}^{\prime\prime},X_{d}^{\prime}$
Б	E'q,X'd
В	E",X"d
Γ	E_q', X_d''

Д	E_q, X_d	

Верный ответ: Б

4. На рисунке схематично показан следующий вид замыкания

Ответы:

А трехфазное КЗ - К(3)

Б двухфазное КЗ - К(2)

В двухфазное КЗ на землю - К(1,1)

Г однофазное КЗ на землю К(1)

Д двойное КЗ на землю - К(1-1)

Верный ответ: В

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

Оценка: 2 («неудовлетворительно») Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

ІІІ. Правила выставления итоговой оценки по курсу

Результирующая оценка формируется БАРС с учетом оценок текущей успеваемости и экзаменационной.