# Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.03.02 Электроэнергетика и электротехника

Наименование образовательной программы: Электрооборудование и электрохозяйство предприятий,

организаций и учреждений

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очно-заочная

Оценочные материалы по дисциплине Физика

> Москва 2024

# ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

Сведения о владельце ЦЭП МЭИ

Владелец Бирюкова О.В.

Идентификатор R2a730924-BiriukovaOV-50585360

# СОГЛАСОВАНО:

Руководитель образовательной программы

Разработчик

| MOM A | Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ» |                                |  |
|-------|----------------------------------------------------|--------------------------------|--|
|       | Сведения о владельце ЦЭП МЭИ                       |                                |  |
|       | Владелец                                           | Матюнина Ю.В.                  |  |
|       | Идентификатор                                      | R01b54b1d-MatiuninaYV-7d5d8f2a |  |

Ю.В. Матюнина

Бирюкова

O.B.

Заведующий выпускающей кафедрой

| 1930<br>1930   | Подписано электронн          | ой подписью ФГБОУ ВО «НИУ «МЭИ» |  |
|----------------|------------------------------|---------------------------------|--|
|                | Сведения о владельце ЦЭП МЭИ |                                 |  |
|                | Владелец                     | Михеев Д.В.                     |  |
| » <u>М≎И</u> « | Идентификатор                | Re17531c2-MikheevDV-e437ec4f    |  |

Д.В. Михеев

## ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ОПК-4 Способен применять методы анализа и моделирования, теоретического и экспериментального исследования при решении практических задач
  - ИД-1 Демонстрирует понимание физических явлений и применяет законы механики, термодинамики, электричества и магнетизма
  - ИД-2 Демонстрирует знание элементарных основ оптики, квантовой механики и атомной физики

#### и включает:

#### для текущего контроля успеваемости:

#### Форма реализации: Письменная работа

- 1. Динамика твердого тела (Контрольная работа)
- 2. Законы сохранения в механике (Контрольная работа)
- 3. Магнитное поле в вакууме (Контрольная работа)
- 4. Магнитный поток. Индуктивность (Контрольная работа)
- 5. Механика материальной точки (Тестирование)
- 6. Момент инерции (Тестирование)
- 7. Расчет характеристик электростатического поля (Контрольная работа)
- 8. Силовое действие магнитного поля (Контрольная работа)
- 9. Электромагнитные колебания (Контрольная работа)
- 10. Энергия магнитного поля (Контрольная работа)
- 11. Энергия электростатического поля (Контрольная работа)

#### Форма реализации: Устная форма

- 1. Законы постоянного тока (Лабораторная работа)
- 2. Электростатика (Лабораторная работа)

#### БРС дисциплины

#### 1 семестр

# Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Механика материальной точки (Тестирование)
- КМ-2 Момент инерции (Тестирование)
- КМ-3 Динамика твердого тела (Контрольная работа)
- КМ-4 Законы сохранения в механике (Контрольная работа)

## Вид промежуточной аттестации – Экзамен.

|                                                  | Веса контрольных мероприятий, % |      |      |      |      |
|--------------------------------------------------|---------------------------------|------|------|------|------|
| Роспол писминации и                              | Индекс                          | KM-1 | KM-2 | KM-3 | KM-4 |
| Раздел дисциплины                                | KM:                             |      |      |      |      |
|                                                  | Срок КМ:                        | 8    | 10   | 13   | 16   |
| Механика материальной точки. Основы молекуля     | ярной                           |      |      |      |      |
| физики и термодинамики                           |                                 |      |      |      |      |
| Механика материальной точки. Основы молекулярной |                                 |      |      |      |      |
| физики и термодинамики                           |                                 | +    |      |      |      |
| Механика вращательного движения твердого тела    |                                 |      |      |      |      |
| Механика вращательного движения твердого тела    |                                 |      | +    | +    | +    |
|                                                  | Bec KM:                         | 25   | 25   | 25   | 25   |

# 2 семестр

# Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Законы постоянного тока (Лабораторная работа)
- КМ-2 Расчет характеристик электростатического поля (Контрольная работа)
- КМ-3 Электростатика (Лабораторная работа)
- КМ-4 Энергия электростатического поля (Контрольная работа)

# Вид промежуточной аттестации – Экзамен.

|                                    | В        | веса контрол | іьных мероі | приятий, % |      |
|------------------------------------|----------|--------------|-------------|------------|------|
| Раздел дисциплины                  | Индекс   | KM-1         | KM-2        | KM-3       | KM-4 |
| т аздел дисциплины                 | KM:      |              |             |            |      |
|                                    | Срок КМ: | 10           | 14          | 15         | 16   |
| Электростатическое поле в вакууме  |          |              |             |            |      |
| Электростатическое поле в вакууме  |          | +            | +           | +          | +    |
| Электростатическое поле в веществе |          |              |             |            |      |
| Электростатическое поле в веществе |          |              | +           | +          | +    |
| Законы постоянного тока            |          |              |             |            |      |
| Законы постоянного тока            |          | +            |             |            |      |
| Bec KM                             |          | 20           | 30          | 20         | 30   |

# 3 семестр

# Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Магнитное поле в вакууме (Контрольная работа)
- КМ-2 Силовое действие магнитного поля (Контрольная работа)
- КМ-3 Магнитный поток. Индуктивность (Контрольная работа)
- КМ-4 Энергия магнитного поля (Контрольная работа)
- КМ-5 Электромагнитные колебания (Контрольная работа)

# Вид промежуточной аттестации – Зачет с оценкой.

|                                                                                | Beca     | Веса контрольных мероприятий, % |     |     |     |     |  |
|--------------------------------------------------------------------------------|----------|---------------------------------|-----|-----|-----|-----|--|
| Dogwor wygyymawyy                                                              | Индекс   | КМ-                             | КМ- | КМ- | КМ- | КМ- |  |
| Раздел дисциплины                                                              | KM:      | 1                               | 2   | 3   | 4   | 5   |  |
|                                                                                | Срок КМ: | 4                               | 8   | 12  | 16  | 16  |  |
| Электромагнетизм                                                               |          |                                 |     |     |     |     |  |
| Электромагнетизм                                                               |          |                                 | +   | +   | +   |     |  |
| Колебания и волны, волновая оптика. Элементы квантовой оптики и атомной физики |          |                                 |     |     |     |     |  |
| Колебания и волны, волновая оптика. Элементы квантовой оптики и атомной физики |          |                                 |     |     |     | +   |  |
| Вес КМ:                                                                        |          |                                 | 20  | 20  | 20  | 10  |  |

# СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

# I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

| Индекс      | Индикатор               | Запланированные          | Контрольная точка                                               |
|-------------|-------------------------|--------------------------|-----------------------------------------------------------------|
| компетенции |                         | результаты обучения по   |                                                                 |
|             |                         | дисциплине               |                                                                 |
| ОПК-4       | ИД-10ПК-4 Демонстрирует | Знать:                   | КМ-1 Механика материальной точки (Тестирование)                 |
|             | понимание физических    | законы механики,         | КМ-2 Момент инерции (Тестирование)                              |
|             | явлений и применяет     | молекулярной физики и    | КМ-3 Динамика твердого тела (Контрольная работа)                |
|             | законы механики,        | термодинамики и их       | КМ-4 Законы сохранения в механике (Контрольная работа)          |
|             | термодинамики,          | математическое описание  | КМ-5 Законы постоянного тока (Лабораторная работа)              |
|             | электричества и         | законы электростатики и  | КМ-6 Расчет характеристик электростатического поля (Контрольная |
|             | магнетизма              | постоянного тока и их    | работа)                                                         |
|             |                         | математическое описание  | КМ-7 Электростатика (Лабораторная работа)                       |
|             |                         | Уметь:                   | КМ-8 Энергия электростатического поля (Контрольная работа)      |
|             |                         | применять основные       |                                                                 |
|             |                         | физические явления,      |                                                                 |
|             |                         | законы механики и их     |                                                                 |
|             |                         | математическое описание  |                                                                 |
|             |                         | к решению задач          |                                                                 |
|             |                         | применять основные       |                                                                 |
|             |                         | физические явления,      |                                                                 |
|             |                         | законы электростатики и  |                                                                 |
|             |                         | их математическое        |                                                                 |
|             |                         | описание к решению задач |                                                                 |
| ОПК-4       | ИД-20ПК-4 Демонстрирует | Знать:                   | КМ-9 Магнитное поле в вакууме (Контрольная работа)              |
|             | знание элементарных     |                          | КМ-10 Силовое действие магнитного поля (Контрольная работа)     |
|             | основ оптики, квантовой | -                        | КМ-11 Магнитный поток. Индуктивность (Контрольная работа)       |
|             | механики и атомной      | и атомной физики их      | КМ-12 Энергия магнитного поля (Контрольная работа)              |
|             | физики                  | математическое описание  | КМ-13 Электромагнитные колебания (Контрольная работа)           |
|             |                         | Уметь:                   |                                                                 |

|   | применять основные       |  |
|---|--------------------------|--|
|   | физические явления,      |  |
| 3 | законы электромагнетизма |  |
| 1 | и их математическое      |  |
|   | описание к решению задач |  |

# II. Содержание оценочных средств. Шкала и критерии оценивания

# 1 семестр

# КМ-1. Механика материальной точки

Формы реализации: Письменная работа

**Тип контрольного мероприятия:** Тестирование **Вес контрольного мероприятия в БРС:** 25

Процедура проведения контрольного мероприятия: Письменная работа на 20 минут.

#### Краткое содержание задания:

Вопросы с выбором вариантов ответа

Контрольные вопросы/задания:

| контрольные вопросы/задания. |                                                                                |  |  |
|------------------------------|--------------------------------------------------------------------------------|--|--|
| Запланированные результаты   | Вопросы/задания для проверки                                                   |  |  |
| обучения по дисциплине       |                                                                                |  |  |
| Знать: законы механики,      | 1. Численное значение мгновенной скорости                                      |  |  |
| молекулярной физики и        | движущегося тела в данный момент времени равно:                                |  |  |
| термодинамики и их           | 1) Отношению пути, пройденному материальной                                    |  |  |
| математическое описание      | точкой, ко времени, за которое этот участок пути был                           |  |  |
|                              | преодолен                                                                      |  |  |
|                              | 2) Отношению вектора перемещения материальной                                  |  |  |
|                              | точки ко времени, за которое это смещение произошло                            |  |  |
|                              | 3) Производной от пути, пройденному материальной                               |  |  |
|                              | точкой, по времени (верный)                                                    |  |  |
|                              | 4) Алгебраической сумме производных от координат                               |  |  |
|                              | по времени                                                                     |  |  |
|                              | 2.Тело движется по траектории произвольной формы.                              |  |  |
|                              | Вектор скорости направлен в данной точке траектории:                           |  |  |
|                              | 1) перпендикулярно к траектории в сторону вогнутости                           |  |  |
|                              | 2) перпендикулярно к траектории в сторону                                      |  |  |
|                              | выпуклости                                                                     |  |  |
|                              | 3) по касательной к траектории (верный)                                        |  |  |
|                              | 4) под любым углом к траектории, в зависимости от                              |  |  |
|                              | характера движения                                                             |  |  |
|                              | 3. Кинетическая энергия вращательного движения всех                            |  |  |
|                              | молекул азота $(N_2)$ находящихся в баллоне емкостью                           |  |  |
|                              | $0.02 \mathrm{m}^3$ , равна $5\cdot 10^3 \mathrm{Дж}$ , а средняя квадратичная |  |  |
|                              | скорость молекул равна $8 \cdot 10^2$ м/с. Найти массу азота                   |  |  |
|                              | и его давление.                                                                |  |  |

#### Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто, выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

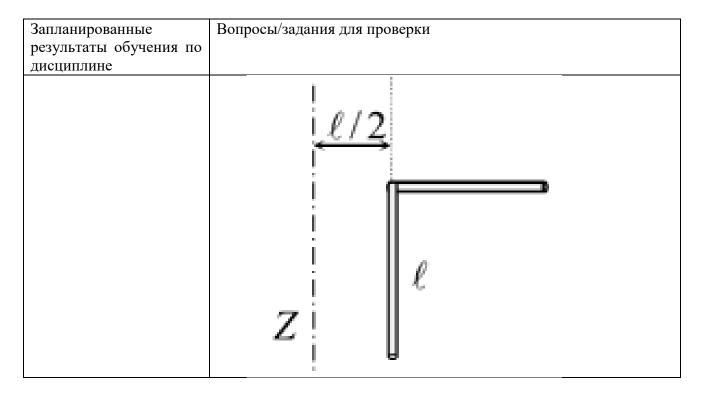
*Описание характеристики выполнения знания:* Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если задание выполнено неверно или преимущественно не выполнено

# КМ-2. Момент инерции

Формы реализации: Письменная работа


**Тип контрольного мероприятия:** Тестирование **Вес контрольного мероприятия в БРС:** 25

Процедура проведения контрольного мероприятия: Письменная работа на 20 минут.

# Краткое содержание задания:

Получение численного ответа

| Контрольные вопросы/за |                                                                                                                                                                                |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Запланированные        | Вопросы/задания для проверки                                                                                                                                                   |
| результаты обучения по |                                                                                                                                                                                |
| дисциплине             |                                                                                                                                                                                |
| Уметь: применять       | $1$ .Два одинаковых стержня (массой $\emph{M}$ и длиной $\emph{l}$ каждый)                                                                                                     |
| основные физические    | жестко соединены между собой так, как показано на рисунке.                                                                                                                     |
| явления, законы        | Определите момент инерции системы относительно оси Z,                                                                                                                          |
| механики и их          | проходящей через середину одного из стержней                                                                                                                                   |
| математическое         | перпендикулярно плоскости рисунка.                                                                                                                                             |
| описание к решению     | 1                                                                                                                                                                              |
| задач                  | !                                                                                                                                                                              |
|                        | 2. Два одинаковых стержня (массой $M$ и длиной $l$ каждый) жестко соединены между собой так, как показано на рисунке. Определите момент инерции системы относительно оси $Z$ . |



Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто, выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если задание выполнено неверно или преимущественно не выполнено

# КМ-3. Динамика твердого тела

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Выполнение задания на 45 минут.

## Краткое содержание задания:

Получение результата решения задачи

| Заплаг | нированные   | результаты | Вопросы/задания для проверки |
|--------|--------------|------------|------------------------------|
| обуче  | ния по дисци | плине      |                              |

| Запланированные результаты   | Вопросы/задания для проверки                                         |
|------------------------------|----------------------------------------------------------------------|
| обучения по дисциплине       |                                                                      |
| Уметь: применять основные    | 1. На ступенчатый блок (момент инерции <i>I</i> , радиусы <i>R</i> и |
| физические явления, законы   | r которого известны), намотана невесомая и                           |
| механики и их математическое | нерастяжимая нить, к одному концу которой                            |
| описание к решению задач     | прикреплен груз массой т, а ко второму приложена                     |
|                              | постоянная сила F. Найдите угловое ускорение                         |
|                              | ступенчатого блока                                                   |
|                              | 2.С наклонной плоскости с углом                                      |
|                              | наклона α скатывается без проскальзывания диск.                      |
|                              | Масса тела $m$ , радиус $R$ . Определите момент силы                 |
|                              | трения относительно оси вращения, проходящей через                   |
|                              | центр масс                                                           |

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто, выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если задание выполнено неверно или преимущественно не выполнено

#### КМ-4. Законы сохранения в механике

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Выполнение задания на 45 минут.

# Краткое содержание задания:

Получение результата решения задачи

| Запланированные результаты   | Вопросы/задания для проверки                            |
|------------------------------|---------------------------------------------------------|
| обучения по дисциплине       |                                                         |
| Уметь: применять основные    | 1.С наклонной плоскости с углом                         |
| физические явления, законы   | наклона α скатывается без проскальзывания шар           |
| механики и их математическое | массой $m$ , радиусом $R$ . Считая начальную скорость   |
| описание к решению задач     | равной нулю, определите кинетическую энергию шара       |
|                              | после прохождения пути $S$                              |
|                              | $2.$ Однородный стержень массой $m$ длиной $m{l}$ может |
|                              | вращаться вокруг горизонтальной оси, походящей          |

| Запланированные        | результаты | Вопросы/задания для проверки                  |
|------------------------|------------|-----------------------------------------------|
| обучения по дисциплине |            |                                               |
|                        |            | через один из его концов. Стержень отводят на |
|                        |            | угол β и отпускают. Найдите импульс стержня в |
|                        |            | момент прохождения им положения равновесия    |

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто, выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

*Описание характеристики выполнения знания:* Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если задание выполнено неверно или преимущественно не выполнено

# 2 семестр

#### КМ-1. Законы постоянного тока

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Выполнение задания с последующим

устным ответом.

## Краткое содержание задания:

Сформулировать один из законов постоянного тока

#### Контрольные вопросы/задания:

| Запланированные результаты обучения по | Вопросы/задания для проверки         |
|----------------------------------------|--------------------------------------|
| дисциплине                             |                                      |
| Знать: законы электростатики и         | 1.Сформулируйте закон Ома для        |
| постоянного тока и их математическое   | однородного и неоднородного участков |
| описание                               | цепи                                 |
|                                        | 2.Сформулируйте закон Ома в          |
|                                        | дифференциальной форме               |

#### Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно

# Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто, выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если задание выполнено неверно или преимущественно не выполнено

#### КМ-2. Расчет характеристик электростатического поля

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 30

Процедура проведения контрольного мероприятия: Выполнение задания на 45 минут.

# Краткое содержание задания:

Получение результата решения задачи

#### Контрольные вопросы/задания:

| топтрольные вопросы/задания: |                                                                |  |
|------------------------------|----------------------------------------------------------------|--|
| Запланированные результаты   | Вопросы/задания для проверки                                   |  |
| обучения по дисциплине       |                                                                |  |
| Уметь: применять основные    | 1.Две концентричные проводящие сферы с                         |  |
| физические явления, законы   | радиусами $R_1$ и $R_2$ заряжены зарядами $Q$ и $-2Q$          |  |
| электростатики и их          | соответственно. Найти зависимость напряженности от             |  |
| математическое описание к    | расстояния до центра системы и построить                       |  |
| решению задач                | график $E_r r$ $(r)$ .                                         |  |
|                              | 2.Длинный металлический цилиндр радиусом <i>R</i> окружен      |  |
|                              | примыкающим вплотную слоем незаряженного                       |  |
|                              | диэлектрика ( $\varepsilon = 2$ ) толщиной $b$ . Поверхностная |  |
|                              | плотность заряда цилиндра $\sigma < 0$ . Определите разность   |  |
|                              | потенциалов между внутренней и внешней                         |  |
|                              | поверхностями диэлектрика.                                     |  |

#### Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто, выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено

#### Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если задание выполнено неверно или преимущественно не выполнено

# КМ-3. Электростатика

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Выполнение задания с последующим

устным ответом.

# Краткое содержание задания:

Дать ответ на вопрос об основном явлении или законе электростатики

Контрольные вопросы/задания:

| Запланированные результаты обучения | Вопросы/задания для проверки                 |
|-------------------------------------|----------------------------------------------|
| по дисциплине                       |                                              |
| Уметь: применять основные           | 1. Электрическое поле в диэлектриках, вектор |
| физические явления, законы          | смещения. Теорема Остроградского-Гаусса для  |
| электростатики и их математическое  | диэлектрика (вывод).                         |
| описание к решению задач            | 2.Проводники в электростатическом поле.      |
|                                     | Напряженность поля внутри проводника.        |
|                                     | Разность потенциалов между произвольными     |
|                                     | точками проводника.                          |

#### Описание шкалы оценивания:

Оиенка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто, выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если задание выполнено неверно или преимущественно не выполнено

# КМ-4. Энергия электростатического поля

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 30

Процедура проведения контрольного мероприятия: Выполнение задания на 45 минут.

## Краткое содержание задания:

Контрольные вопросы/задания:

| Запланированные                                                                                                                                    | Вопросы/задания для проверки                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ±                                                                                                                                                  | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 * '                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| результаты обучения по дисциплине Уметь: применять основные физические явления, законы электростатики и их математическое описание к решению задач | 1.Металлический шар радиусом $R_1 = 2.0$ см с зарядом $Q_1 = 1$ нКл окружен тонкой концентрической проводящей сферой, несущей заряд $Q_2 = 500$ пКл. Радиус сферы $R_2 = 5.0$ см. Вплотную к сфере примыкает незаряженный слой диэлектрика ( $\varepsilon = 2$ ) с внешним радиусом $R_3 = 6.0$ см. Рассчитайте энергию электростатического поля, локализованную внутри диэлектрика.  2.Плоские конденсаторы, емкости которых известны и равны $C_1 = C$ , $C_2 = 2C$ и $C_3 = 3C$ соответственно, соединены так, как показано на рисунке. Напряжение на участке $AB$ равно $U$ . Определите энергию, запасенную в первом конденсаторе. |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

#### Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто, выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

*Описание характеристики выполнения знания:* Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если задание выполнено неверно или преимущественно не выполнено

3 семестр

КМ-1. Магнитное поле в вакууме

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 30

Процедура проведения контрольного мероприятия: Выполнение задания на 20 минут.

# Краткое содержание задания:

Получение конечного результата при выполнении задания

Контрольные вопросы/задания:

| тонгроивные вопросы, задания |                                                         |
|------------------------------|---------------------------------------------------------|
| Запланированные результаты   | Вопросы/задания для проверки                            |
| обучения по дисциплине       |                                                         |
| Уметь: применять основные    | 1. Два плоских круглых витка радиусом $R = 10$ см       |
| физические явления, законы   | каждый, обтекаемые одинаковыми по величине и            |
| электромагнетизма и их       | направлению токами $I_1 = I_2 = 3.0$ A, расположены     |
| математическое описание к    | параллельно друг другу на расстоянии $b = 20$ см.       |
| решению задач                | Найдите проекцию вектора магнитной индукции на          |
|                              | ось $X$ в точке с координатой $(-1)n \cdot (n+0.5)$ см. |
|                              | 2.Расстояние между проводами длинной                    |
|                              | двухпроводной линии $b = 10$ см. По проводам течет      |
|                              | ток $I = 1,2$ A. Определить индукцию магнитного         |
|                              | поля в точке, с координатой х, лежащей в одной          |
|                              | плоскости с проводниками. $x=(-1)n \cdot (n+0.5)$ см.   |

#### Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто, выбрано верное направление для решения задач

Оиенка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если задание выполнено неверно или преимущественно не выполнено

#### КМ-2. Силовое действие магнитного поля

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Выполнение задания на 20 минут.

# Краткое содержание задания:

Получение результата решения задачи

| Запланированные результаты | Вопросы/задания для проверки                      |
|----------------------------|---------------------------------------------------|
| обучения по дисциплине     |                                                   |
| Уметь: применять основные  | 1.В однородном магнитном поле с индукцией В       |
| физические явления, законы | находится рамка в форме прямоугольного            |
| электромагнетизма и их     | треугольника с катетами $a$ и $b$ . Сторона $a$   |
| математическое описание к  | параллельна линиям магнитной индукции. Ток в      |
| решению задач              | рамке і. Определить силы, действующие на каждую   |
|                            | сторону рамки.                                    |
|                            | 2.Протон влетает в однородное магнитное поле с    |
|                            | четко выраженной границей под углом α к границе и |
|                            | перпендикулярно вектору магнитной индукции $B=$   |
|                            | 1,44 мТл. С какой скоростью движется протон, если |
|                            | расстояние между точками влета и вылета в поле    |
|                            | равно $b$ ?                                       |

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто, выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

*Описание характеристики выполнения знания:* Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если задание выполнено неверно или преимущественно не выполнено

## КМ-3. Магнитный поток. Индуктивность

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Выполнение задания на 20 минут.

# Краткое содержание задания:

Получение результата решения задачи

| Запланированные результаты | Вопросы/задания для проверки                             |
|----------------------------|----------------------------------------------------------|
| обучения по дисциплине     |                                                          |
| Уметь: применять основные  | $1. 	ext{B}$ однородном магнитном поле с индукцией $B$   |
| физические явления, законы | находится рамка в форме прямоугольного                   |
| электромагнетизма и их     | треугольника с катетами $a$ и $b$ . Сторона $a$          |
| математическое описание к  | параллельна линиям магнитной индукции. Ток в             |
| решению задач              | рамке і. Определить работу силы Ампера по                |
|                            | повороту рамки на угол $90^{\circ}$ вокруг стороны $b$ . |

| Запланированные     | результаты | Вопросы/задания для проверки                             |
|---------------------|------------|----------------------------------------------------------|
| обучения по дисципл | ине        |                                                          |
|                     |            | 2.В однородном магнитном поле с индукцией В              |
|                     |            | находится рамка в форме прямоугольного                   |
|                     |            | треугольника с катетами $a$ и $b$ . Сторона $b$          |
|                     |            | параллельна линиям магнитной индукции. Ток в             |
|                     |            | рамке і. Определить работу силы Ампера по                |
|                     |            | повороту рамки на угол $60^{\circ}$ вокруг стороны $a$ . |

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто, выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

*Описание характеристики выполнения знания:* Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

*Описание характеристики выполнения знания:* Оценка "неудовлетворительно" выставляется, если задание выполнено неверно или преимущественно не выполнено

## КМ-4. Энергия магнитного поля

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Выполнение задания на 20 минут.

## Краткое содержание задания:

Получение результата решения задачи

| Запланированные результаты | Вопросы/задания для проверки                            |
|----------------------------|---------------------------------------------------------|
| обучения по дисциплине     |                                                         |
| Уметь: применять основные  | 1.Ток течет по коаксиальному кабелю. Радиус             |
| физические явления, законы | внутренней жилы 4 мм, внутренний радиус оболочки        |
| электромагнетизма и их     | кабеля 16 мм. Энергия магнитного поля на единицу        |
| математическое описание к  | длины кабеля, локализованная между жилой и              |
| решению задач              | оболочкой, равна $1,4\cdot 10^{-5}$ Дж/м. Считая, что   |
|                            | относительная магнитная проницаемость среды равна       |
|                            | 1, определить ток в кабеле.                             |
|                            | 2.Определить индукцию магнитного поля на                |
|                            | расстоянии 10 см от бесконечно длинного                 |
|                            | прямолинейного проводника с током. Диаметр              |
|                            | проводника 0,5 мм, плотность тока в проводнике 1        |
|                            | А/мм <sup>2</sup> . Определить энергию, приходящуюся на |

| Запланированные результаты | Вопросы/задания для проверки |
|----------------------------|------------------------------|
| обучения по дисциплине     |                              |
|                            | единицу длины проводника.    |

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто, выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

*Описание характеристики выполнения знания:* Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если задание выполнено неверно или преимущественно не выполнено

# КМ-5. Электромагнитные колебания

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Выполнение задания на 20 минут.

#### Краткое содержание задания:

Получение результата решения задачи (по вариантам)

| контрольные вопросы/задания. |                                                              |  |
|------------------------------|--------------------------------------------------------------|--|
| Запланированные              | Вопросы/задания для проверки                                 |  |
| результаты обучения по       |                                                              |  |
| дисциплине                   |                                                              |  |
| Знать: законы                | 1.В колебательном контуре, представляющем собой <i>R-L</i> - |  |
| электромагнитных             | C цепочку, возбуждены затухающие колебания так, что в        |  |
| колебаний и волн, оптики и   | начальный момент времени $t_0 = 0$ напряжение на             |  |
| атомной физики их            | резисторе $U_{R0}$ =0,3·номер варианта (B), а напряжение на  |  |
| математическое описание      | конденсаторе $U_{C0}$ =5 В. Параметры контура: $R$ = номер   |  |
|                              | варианта (Ом), $L = 0.15$ (номер варианта - 0.5) (Гн), $C =$ |  |
|                              | 0,47 мкФ.                                                    |  |
|                              | Найдите:                                                     |  |
|                              | 1) Коэффициент затухания.                                    |  |
|                              | 2) Частоту затухающих колебаний                              |  |
|                              | 3) Время уменьшения амплитуды в е раз (время                 |  |
|                              | релаксации)                                                  |  |
|                              | 4) Амплитуду и начальную фазу колебаний.                     |  |
|                              | 5) Зависимости от времени заряда конденсатора и тока в       |  |
|                              | цепи. Постройте графики полученных зависимостей.             |  |
|                              | 6) Амплитуду колебаний в момент времени τ= номер             |  |

| Запланированные |          |    | Вопросы/задания для проверки            |
|-----------------|----------|----|-----------------------------------------|
| результаты      | обучения | ПО |                                         |
| дисциплине      |          |    |                                         |
|                 |          |    | варианта (с).                           |
|                 |          |    | 7) Логарифмический декремент затухания. |
|                 |          |    | 8) Добротность колебательного контура.  |

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто, выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если задание выполнено неверно или преимущественно не выполнено

# СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

#### 1 семестр

Форма промежуточной аттестации: Экзамен

# Пример билета

- 1. Механическое движение материальной точки. Система отсчета. Кинематические характеристики движения. Закон движения материальной точки. Примеры.
- 2. Однородный шар начинает скатываться без скольжения по плоскости, наклоненной под углом 30° к горизонту. За сколько времени он пройдет путь l=98 см? (Момент инерции шара относительно оси, проходящей через его центр  $I=\frac{2}{5}mR^2$ )

## Процедура проведения

Устная форма

- I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины
- **1. Компетенция/Индикатор:** ИД- $1_{\rm OIIK-4}$  Демонстрирует понимание физических явлений и применяет законы механики, термодинамики, электричества и магнетизма

## Вопросы, задания

- 1. Механическое движение материальной точки. Система отсчета. Кинематические характеристики движения. Закон движения материальной точки. Примеры
- 2. Динамика материальной точки. Законы Ньютона
- 3. Момент силы относительно оси. Основное уравнение динамики вращательного движения
- 4. Механическая энергия системы тел. Закон изменения механической энергии системы тел. Консервативные и неконсервативные системы. Закон сохранения механической энергии
- 5.Идеальный газ. Равновесное состояние газа, температура и концентрация. Давление идеального газа. Уравнение состояния
- $6.\Gamma$ руз массой 500 кг падает с высоты H=2 м на сваю массы 100 кг. При этом свая уйдет в грунт на глубину S=10 см. Определите среднюю силу сопротивления грунта. Удар груза и сваи считать неупругим
- 7.Однородный шар начинает скатываться без скольжения по плоскости, наклоненной под углом 30° к горизонту. За сколько времени он пройдет путь l=98 см? (Момент инерции шара относительно оси, проходящей через его центр  $I=\frac{2}{5}mR^2$ )
- 8.Пуля массой 10 г, летящая горизонтально со скоростью 200 м/с, ударяется в подвешенный на веревке ящик с песком и застревает в нем. Определите массу ящика, если он после удара поднялся на высоту 10 см. Чему равно натяжение веревки в положении максимального отклонения от вертикали?
- 9. Найти среднеквадратичную скорость, среднюю кинетическую энергию поступательного движения и полную среднюю кинетическую энергию молекулы гелия и молекулы азота при температуре 27°C. Какова будет полная энергия всех молекул 56 граммов каждого из этих газов?
- 10.На наклонной плоскости, составляющей угол  $\alpha$  с горизонтом, неподвижно лежит брусок массы m. Чему равна сила трения, действующая на брусок со стороны наклонной плоскости?

#### Материалы для проверки остаточных знаний

1.Тело движется по траектории произвольной формы. Вектор скорости направлен в данной точке траектории:

Ответы:

1) перпендикулярно к траектории в сторону вогнутости 2) перпендикулярно к траектории в сторону выпуклости 3) по касательной к траектории 4) под любым углом к траектории, в зависимости от характера движения

Верный ответ: 3

2. Что такое сила?

Ответы:

1) это мера инертности тела 2) это произведение массы на ускорение 3) это мера взаимодействия данного тела с другими телами, с полями 4) это мера, характеризующая способность тела сохранять свою скорость движения

Верный ответ: 3

3. Что такое момент инерции твердого тела?

Ответы:

1) Это инертность тела в данный момент времени 2) Это мера взаимодействия тела с другими телами 3) Это мера инертности тела во вращательном движении 4) Это мгновенный отклик тела на внешнее взаимодействие, то есть это момент начала поворота тела после взаимодействия

Верный ответ: 3

4. Тело находится в поле консервативной силы. Положению устойчивого равновесия тела отвечает

Ответы:

1) минимум потенциальной энергии 2) максимум потенциальной энергии 3) минимум кинетической энергии 4) максимум кинетической энергии

Верный ответ: 1

5. Пушка, стоящая на рельсах, стреляет под углом к горизонту. Применим ли закон сохранения импульса для системы снаряд-пушка?

Ответы:

1) да, применим, т.к. система замкнута 2) нет, не применим, но сохраняется проекция импульса системы тел, на горизонтальное направление 3) да, применим, если выстрел производится под углом  $<30^{\circ}$  4) нет, не применим, т.к. нет третьего тела, которому система могла бы отдать избыток импульса

Верный ответ: 2

6. Численное значение мгновенной скорости движущегося тела в данный момент времени равно:

Ответы:

- 1) Отношению пути, пройденному материальной точкой, ко времени, за которое этот участок пути был преодолен;
- 2) Отношению вектора перемещения материальной точки ко времени, за которое это смещение произошло;
- 3) Производной от пути, пройденному материальной точкой, по времени;
- 4) Алгебраической сумме производных от координат по времени

Верный ответ: 3

7. На наклонной плоскости, составляющей угол  $\alpha$  с горизонтом, неподвижно лежит брусок массы m. Чему равна сила трения, действующая на брусок со стороны наклонной плоскости?

Ответы:

- 1) mg;
- 2) mg sina;
- 3) mg cosα;

4) mg  $\sin\alpha$  -  $\mu$ mg  $\cos\alpha$ 

Верный ответ: 2

8. Вектор средней скорости движущегося тела равен

Ответы

- 1) Отношению пути, пройденному телом, ко времени, за которое этот участок пути был преодолен;
- 2) Отношению вектора перемещения тела ко времени, за которое это смещение произошло;
- 3) Производной от пути по времени;
- 4) Алгебраической сумме производных от координат по времени Верный ответ: 2
- 9.Тело движется в пространстве произвольным образом. При этом вектор его ускорения может быть направлен:

Ответы:

- 1) только по касательной к траектории движения;
- 2) только перпендикулярно к траектории движения в сторону выпуклости;
- 3) только перпендикулярно к траектории движения в сторону вогнутости;
- 4) под любым углом к траектории движения в зависимости от характера этого движения Верный ответ: 4
- 10. При изотермическом процессе объем газа возрос в три раза. Что произошло с давлением и температурой?

Ответы:

1) давление уменьшилось в три раза, температура не изменилась 2) давление осталось прежним, температура возросла в три раза 3) давление увеличилось в три раза, температура не изменилась 4) давление не изменилось, температура уменьшилась в три раза

Верный ответ: 1

#### II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Выставляется студенту, правильно выполнившему практическое задание, который показал при ответе на вопросы экзаменационного билета и на дополнительные вопросы, что владеет материалом изученной дисциплины, свободно применяет свои знания для объяснения различных явлений и решения задач

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Выставляется студенту, правильно выполнившему практическое задание и в основном правильно ответившему на вопросы экзаменационного билета и на дополнительные вопросы, но допустившему при этом непринципиальные ошибки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Выставляется студенту, который в ответах на вопросы экзаменационного билета допустил существенные и даже грубые ошибки, но затем исправил их сам, а также не выполнил практическое задание из экзаменационного билета, но либо наметил правильный путь его выполнения, либо по указанию экзаменатора решил другую задачу из того же раздела дисциплины

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Выставляется студенту, который: а) не ответил на вопросы экзаменационного билета и не смог решить, либо наметить правильный путь решения задачи из билета; б) не смог решить, либо наметить правильный путь решения задачи из экзаменационного билета и другой задачи на тот же раздел дисциплины, выданной взамен нее; в) при ответе на дополнительные вопросы обнаружил незнание большого раздела экзаменационной программы

# III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.

## 2 семестр

### Форма промежуточной аттестации: Экзамен

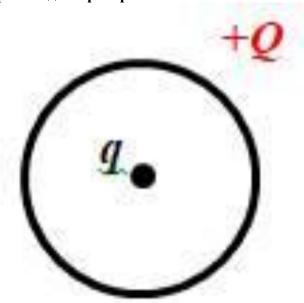
# Пример билета

- 1. Напряженность электростатического поля, напряженность поля точечного заряда, принцип суперпозиции для напряженности, силовые линии
- 2. Шар из диэлектрика радиусом  $R_1$  с диэлектрической проницаемостью  $\varepsilon>1$  заряжен по объему с плотностью  $\rho>0$ . Найти зависимости  $D_r(r)$ ,  $E_r(r)$  и  $\varphi(r)$ , если  $\varphi(\infty)=0$ . Построить графики.

# Процедура проведения

Устная форма

# I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины


**1. Компетенция/Индикатор:** ИД-1<sub>ОПК-4</sub> Демонстрирует понимание физических явлений и применяет законы механики, термодинамики, электричества и магнетизма

#### Вопросы, задания

- 1.Потенциал электростатического поля, потенциал поля точечного заряда, принцип суперпозиции для потенциала, эквипотенциальные поверхности
- 2. Теорема Гаусса для электростатического поля в вакууме
- 3. Теорема Гаусса для электростатического поля в диэлектрике
- 4. Напряженность электростатического поля, напряженность поля точечного заряда, принцип суперпозиции для напряженности, силовые линии
- 5.Связь между напряженностью и потенциалом электростатического поля
- 6.Потенциал на поверхности равномерно заряженного по объему диэлектрического шара ( $\epsilon = 3$ ) равен 650 В. Определить потенциал в центре шара, считая потенциал в бесконечно удаленной точке равным нулю
- 7.Сферический конденсатор, радиусы обкладок которого равны 6 см и 12 см ( $\epsilon$  = 2) подключен к источнику 1000 В. Найти энергию электростатического поля в сферическом слое, ограниченном сферами, радиусы которых равны 4 см и 10 см
- 8.На оси кольца радиусом R, заряженного с линейной плотностью заряда  $\tau > 0$ , находится точечный заряд Q>0. Определить силу, действующую на точечный заряд.
- 9.Шар из диэлектрика радиусом  $R_1$  с диэлектрической проницаемостью  $\varepsilon > 1$  заряжен по объему с плотностью  $\rho > 0$ . Найти зависимости  $D_r(r)$ ,  $E_r(r)$  и  $\varphi(r)$ , если  $\varphi(\infty) = 0$ . Построить графики.

10.Металлический шар радиусом  $R_1$  имеет заряд Q>0. Шар окружён концентричным ему проводящим сферическим шаровым слоем внутренним радиусом  $R_2$  и внешним радиусом  $R_3$ , имеющим заряд -2Q. Найти зависимости  $E_r(r)$  и  $\varphi(r)$ , если  $\varphi(\infty)=0$ . Построить графики.

# Материалы для проверки остаточных знаний



1. В центре тонкого кольца, равномерно заряженного зарядом +Q, в равновесии находится точечный заряд q. Определите величину и знак заряда q.

Ответы:

1) только q=+2Q 2) только q = -3Q 3) только q = 0 4) любой Верный ответ: 4



Положительный точечный заряд q находится в точке A. Работа сил электростатического поля при перемещении заряда q из точки A в точку B:

Ответы:

- 1) больше нуля 2) меньше нуля 3) равна нулю Верный ответ: 1
- 3.Положительный точечный заряд q находится в центре сферической поверхности. Если за пределы сферы поместить такой же заряд, то поток вектора напряженности электростатического поля через сферическую поверхность:

Ответы:

- 1) не изменится 2) увеличится в 2 раза 3) уменьшится в 2 раза 4) станет равным нулю Верный ответ: 1
- 4.Связанными называют заряды:

Ответы:

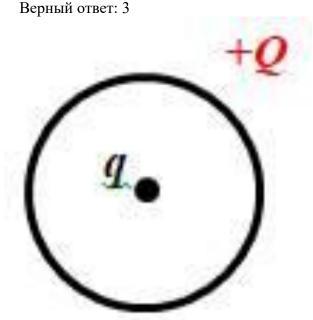
1) нарушающие электрическую нейтральность диэлектрика 2) способные перемещаться под действием сил поля на любые расстояния 3) входящие в состав молекул диэлектрика 4) нет правильного утверждения

Верный ответ: 3

5. Как ведут себя силовые линии электростатического поля вблизи поверхности проводника?

Ответы:

1) Огибают поверхность проводника, не пересекая её 2) Входят в поверхность проводника под прямым углом и заканчиваются (или начинаются) 3) Входят в


поверхность проводника под прямым углом и проходят её насквозь 4) Входят в поверхность проводника под разными углами, в зависимости от формы проводника

Верный ответ: 2

6. Как изменится ёмкость металлического уединенного шара, если его поместить в безграничный однородный изотропный диэлектрик?

Ответы

1) уменьшится 2) не изменится 3) увеличится



В центре тонкого кольца, равномерно заряженного зарядом +Q, в равновесии находится точечный заряд q. Определите величину и знак заряда q.

# Ответы:

- 1) только q=+2Q;
- 2) только q = -3Q;
- 3) только q = 0;
- 4) любой

Верный ответ: 4

8.Положительный точечный заряд q находится в центре сферической поверхности. Если за пределы сферы поместить такой же заряд, то поток вектора напряженности электростатического поля через сферическую поверхность:

# Ответы:

- 1) не изменится;
- 2) увеличится в 2 раза;
- 3) уменьшится в 2 раза;
- 4) станет равным нулю

Верный ответ: 1

9. Как ведут себя силовые линии электростатического поля вблизи поверхности проводника?

#### Ответы:

- 1) Огибают поверхность проводника, не пересекая её;
- 2) Входят в поверхность проводника под прямым углом и заканчиваются (или начинаются);
- 3) Входят в поверхность проводника под прямым углом и проходят её насквозь;
- 4) Входят в поверхность проводника под разными углами, в зависимости от формы проводника;

Верный ответ: 2

10.Связанными называют заряды:

Ответы:

- 1) нарушающие электрическую нейтральность диэлектрика;
- 2) способные перемещаться под действием сил поля на любые расстояния№
- 3) входящие в состав молекул диэлектрика (верный) Верный ответ: 3

#### II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Выставляется студенту, правильно выполнившему практическое задание, который показал при ответе на вопросы экзаменационного билета и на дополнительные вопросы, что владеет материалом изученной дисциплины, свободно применяет свои знания для объяснения различных явлений и решения задач

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Выставляется студенту, правильно выполнившему практическое задание и в основном правильно ответившему на вопросы экзаменационного билета и на дополнительные вопросы, но допустившему при этом непринципиальные ошибки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Выставляется студенту, который в ответах на вопросы экзаменационного билета допустил существенные и даже грубые ошибки, но затем исправил их сам, а также не выполнил практическое задание из экзаменационного билета, но либо наметил правильный путь его выполнения, либо по указанию экзаменатора решил другую задачу из того же раздела дисциплины

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Выставляется студенту, который: а) не ответил на вопросы экзаменационного билета и не смог решить, либо наметить правильный путь решения задачи из билета; б) не смог решить, либо наметить правильный путь решения задачи из экзаменационного билета и другой задачи на тот же раздел дисциплины, выданной взамен нее; в) при ответе на дополнительные вопросы обнаружил незнание большого раздела экзаменационной программы

#### III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.

3 семестр

Форма промежуточной аттестации: Зачет с оценкой

## Пример билета

Оценка за зачет выставляется по совокупности результатов текущего контроля успеваемости

# Процедура проведения

Оценка за зачет выставляется по совокупности результатов текущего контроля успеваемости

- I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины
- **1. Компетенция/Индикатор:** ИД-2<sub>ОПК-4</sub> Демонстрирует знание элементарных основ оптики, квантовой механики и атомной физики

#### Вопросы, задания

1.Оценка за зачет выставляется по совокупности результатов текущего контроля успеваемости

# Материалы для проверки остаточных знаний







1.

Два параллельных прямых бесконечных проводника с током расположены перпендикулярно плоскости рисунка, направления токов в них показаны на рисунке. Укажите направление вектора магнитной индукции в точке A.

Ответы:

1) влево 2) вправо 3) вверх 4) вниз

Верный ответ: 4

2. Электрон и протон влетают в однородное магнитное поле перпендикулярно вектору магнитной индукции на некотором расстоянии друг от друга с одинаковыми скоростями. Отношение модулей сил, с которыми магнитное поле действует на частицы, в этот момент времени равно:

Ответы:

1) 0 2) 1 3)  $\approx$ 2000 4)  $\approx$ 1/2000

Верный ответ: 2

3.От чего зависит индуктивность коаксиального кабеля?

Ответы:

1) от диэлектрической проницаемости вещества, заполняющего пространство между жилой и оплеткой 2) кабель не обладает индуктивностью, т.к. это не соленоид 3) от удельного сопротивления проводника (жилы и оплетки) 4) от длины кабеля и от соотношения между радиусами жилы и оплетки

Верный ответ: 4

4. Стержень вращается в однородном магнитном поле вокруг одного из своих концов в плоскости, перпендикулярной силовым линиям. Между концами стрежня возникает разность потенциалов. Она создается...

Ответы:

1) силой Лоренца, разделяющей заряды; 2) вихревым электрическим полем, возникающим при вращении стержня; 3) силой Ампера, действующей на стержень; 4) сторонними силами, действующими на заряды, входящие в состав молекул вещества

Верный ответ: 1

5.В каких единицах измеряются указанные величины?

Ответы

- 1) Магнитная индукция;
- 2) Магнитный поток;
- 3) Сила Ампера;
- 4) Магнитный момент

Верный ответ: 1-4, 2-2, 3-3, 4-1

6. Чему равен поток вектора магнитной индукции сквозь произвольную замкнутую поверхность?

Ответы:

- 1) Нулю;
- 2) Сумме электрических зарядов, охваченных этой поверхностью;
- 3) Сумме токов, пронизывающих эту поверхность;
- 4) Сумме токов, сцепленных с этой поверхностью, умноженной на магнитную постоянную

Верный ответ: 1

7. Что Вы можете сказать о линиях индукции магнитного поля?

Ответы:

- 1) Они всегда замкнуты;
- 2) Они незамкнуты;
- 3) Они замкнуты только в вакууме;
- 4) Они незамкнуты только в среде

Верный ответ: 1

8. Круговой виток с током, расположенный горизонтально, помещён в однородное магнитное поле так, что вектор магнитного момента составляет с вектором магнитной индукции угол 180°. Под действием магнитного поля виток:

Ответы:

- 1) перемещается вверх;
- 2) сжимается:
- 3) растягивается;
- 4) перемещается вниз

Верный ответ: 2

9.ЭДС самоиндукции может возникнуть:

Ответы:

- 1) только при изменении тока в контуре;
- 2) только при деформации контура, так как это приводит к изменению индуктивности контура;
- 3) только при изменении собственного магнитного потока, пронизывающего контур, чем бы это изменение ни было вызвано;
- 4) как при изменении тока в контуре, так и при деформации контура, но при условии, что собственный магнитный поток при этом остается неизменным

Верный ответ: 3

10.Заряженная частица влетает в неоднородное магнитное поле под некоторым углом к линиям магнитной индукции. Выберите правильное утверждение, описывающее дальнейшее движение частицы.

Ответы:

- 1) Частица продолжит движение в первоначальном направлении;
- 2) Скорость частицы будет увеличиваться;
- 3) Скорость частицы будет уменьшаться;
- 4) Скорость частицы будет изменяться только по направлению Верный ответ: 4

#### II. Описание шкалы оценивания

Оценка: 5 («отлично») Нижний порог выполнения задания в процентах: 0 Описание характеристики выполнения знания: Оценка определяется по совокупности результатов текущего контроля успеваемости в соответствии с Положением о балльнорейтинговой системе для студентов НИУ «МЭИ»

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 0

Описание характеристики выполнения знания: Оценка определяется по совокупности результатов текущего контроля успеваемости в соответствии с Положением о балльнорейтинговой системе для студентов НИУ «МЭИ»

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 0

Описание характеристики выполнения знания: Оценка определяется по совокупности результатов текущего контроля успеваемости в соответствии с Положением о балльнорейтинговой системе для студентов НИУ «МЭИ»

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка определяется по совокупности результатов текущего контроля успеваемости в соответствии с Положением о балльнорейтинговой системе для студентов НИУ «МЭИ»

# ІІІ. Правила выставления итоговой оценки по курсу

Оценка определяется по совокупности результатов текущего контроля успеваемости в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ».