Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.03.02 Электроэнергетика и электротехника

Наименование образовательной программы: Электротехника и электрификация

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Микропроцессорные средства в электротехнике

Москва 2024

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

Сведения о владельце ЦЭП МЭИ

Владелец Кулешов А.О.

Идентификатор RC98b17a6-KuleshovAO-26442bbc

СОГЛАСОВАНО:

Руководитель образовательной программы

Разработчик

NOSO POSO	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»			
	Сведения о владельце ЦЭП МЭИ				
NOM	Владелец	Иванов А.С.			
	Идентификатор	R28e5c30d-IvanovAlS-37175ef6			

А.С. Иванов

Заведующий выпускающей кафедрой

a recognitional trade	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»					
	Сведения о владельце ЦЭП МЭИ					
	Владелец	Погребисский М.Я.				
[№] МЭИ «	Идентификатор Р	ccf62952-PogrebisskiyMY-d58a694				

М.Я. Погребисский

А.О. Кулешов

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

1. ПК-3 Способен принимать участие в проектировании объектов профессиональной деятельности в соответствии с техническим заданием и нормативно-технической документацией, соблюдая различные технические и технологические требования ИД-1 Демонстрирует умение разрабатывать проектные решения отдельных частей системы автоматического управления объектом профессиональной деятельности

и включает:

для текущего контроля успеваемости:

Форма реализации: Выполнение задания

1. Расчетное задание (Творческая задача)

Форма реализации: Защита задания

- 1. Защита лабораторной работы № 1 (Отчет)
- 2. Защита лабораторной работы № 2 (Отчет)
- 3. Защита лабораторной работы № 3 (Отчет)
- 4. Защита лабораторной работы № 4 (Отчет)

БРС дисциплины

7 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Защита лабораторной работы № 1 (Отчет)
- КМ-2 Защита лабораторной работы № 2 (Отчет)
- КМ-3 Защита лабораторной работы № 3 (Отчет)
- КМ-4 Защита лабораторной работы № 4 (Отчет)
- КМ-5 Расчетное задание (Творческая задача)

Вид промежуточной аттестации – Экзамен.

	Веса контрольных мероприятий, %						
Роздол диомундиму	Индекс	КМ-	КМ-	КМ-	КМ-	КМ-	
Раздел дисциплины	KM:	1	2	3	4	5	
	Срок КМ:	3	7	10	12	16	
Роль микропроцессорной техники в системах							
автоматизации							
Роль микропроцессорной техники в системах							
автоматизации							

Устройства ввода/вывода и связи микропроцессорных					
систем с объектом					
Устройства ввода/вывода и связи микропроцессорных					
систем с объектом		+	+	+	
Специализированные языки программирования					
стандарта МЭК 61131-3					
Специализированные языки программирования					
стандарта МЭК 61131-3					+
Scada системы					
South off the last					
Scada системы	+				+
Bec KM:	20	20	20	20	20

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор Запланированные		Контрольная точка
компетенции	-	результаты обучения по	•
		дисциплине	
ПК-3	ИД-1 _{ПК-3} Демонстрирует	Знать:	КМ-3 Защита лабораторной работы № 1 (Отчет)
	умение разрабатывать	архитектуру и способы	КМ-4 Защита лабораторной работы № 2 (Отчет)
	проектные решения	построения	КМ-5 Защита лабораторной работы № 3 (Отчет)
	отдельных частей системы	распределенных систем,	КМ-6 Защита лабораторной работы № 4 (Отчет)
	автоматического	автоматизированного	КМ-7 Расчетное задание (Творческая задача)
	управления объектом	управлении, структуру,	
	профессиональной	особенности и сферы	
	деятельности	применения	
		промышленных сетей	
		методы инженерного	
		творчества, позволяющие	
		выбрать оптимальную	
		структуру, режимы работы	
		и принципы	
		функционирования	
		встроенных систем на ПЛК	
		Уметь:	
		интегрировать ПЛК и	
		SCADA-системы для	
		построения иерархической	
		системы управления на	
		основе локальной сети	
		осуществлять поиск и	
		анализировать научно-	
		техническую информацию	

научно-техническую информацию о компьютерных и микропроцессорных средствах и выбирать необходимые материалы производить для конкретного применения и за-данного алгоритма управления программирование ПЛК и отладку программ как в режиме симуляции на компьютере, так и на реальном контроллере отлаживать программы ПЛК в инструментальной системе CoDeSys, разработать компоненты визуализации техпроцессов в инструментальной системе CoDeSys, а также SCADAсистеме Master-SCADA.

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Защита лабораторной работы № 1

Формы реализации: Защита задания Тип контрольного мероприятия: Отчет Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Ответы на контрольные вопросы.

Краткое содержание задания:

Ответить на контрольные вопросы

Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	вопросы задания для проверки
	1 На какиа вини полнавлению
Знать: архитектуру и способы построения	1. На какие виды подразделяют
распределенных систем,	программируемые логические контроллеры
автоматизированного управлении,	по конструктивному исполнению?
структуру, особенности и сферы	2.продолжите фразу "Центральная секция
применения промышленных сетей	программируемого контроллера
	содержит?"
	3.Что такое PLC?
Уметь: интегрировать ПЛК и SCADA-	1.Какова область применения
системы для построения иерархической	программируемых реле?
системы управления на основе локальной	2.Как подключить датчик типа «сухой
сети	контакт» к ПР200?
	3. Какую нагрузку способны коммутировать
	дискретные выходы ПР200?
	4. Каким образом можно изменить размеры
	рабочего поля (холста)?
	5. Какой блок используется в OWEN Logic
	для реализации логической
	функции «И»? Напишите таблицу
	истинности для данного блока.
	6.Какой блок используется в OWEN Logic
	для реализации логической
	функции «Исключающее ИЛИ»? Напишите
	таблицу истинности для данного
	блока.
	7. Какой блок используется в OWEN Logic
	для реализации логической
	функции «НЕ»? Напишите таблицу
	истинности для данного блока.
	8. Каково поведение дискретного входа
	OWEN Logic при подключении к
	соответствующему физическому входу
	устройства замыкающего контакта?
	9. Каково поведение дискретного входа
	OWEN Logic при подключении к
	соответствующему физическому входу
	соответствующему физическому входу

Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	
	устройства размыкающего контакта?
	10.Опишите методику перехода от таблицы
	истинности датчиков и исполнительных
	органов к таблице истинности дискретных
	входов и выходов OWEN Logic?
	11. Какие типы сигналов существуют в
	OWEN Logic?
	12. Каким образом можно преобразовать
	сигнал в требуемый тип?
	13.С какими стандартизированными
	аналоговыми сигналами работает ОВЕН
	ПР200?

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-2. Защита лабораторной работы № 2

Формы реализации: Защита задания Тип контрольного мероприятия: Отчет Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Ответы на контрольные вопросы.

Краткое содержание задания:

Ответить на контрольные вопросы

Запланированные	результаты	обучения	ПО	Вопросы/задания для проверки
дисциплине	F J	y		
Знать: методы инже	нерного творчес	ства, позволя	ощие	1.Как приемник сигнала RS-
выбрать оптимальн	ую структуру,	ты и	232С принимает биты данных?	
принципы функцио	нирования встр	2. Какой тип обмена		
ПЛК				обеспечивает гарантированную
				передачу информации любому
				исполнителю?

Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки
	3.Для чего предназначен интерфейс стандарта RS 232C?
Уметь: осуществлять поиск и анализировать научнотехническую информацию научно-техническую информацию о компьютерных и микропроцессорных средствах и выбирать необходимые материалы	1.Какие типы данных существуют? 2.Что такое локальные и глобальные переменные? 3.Назначение Target-файла. 4.Какова структура LD-программы? 5.Как в LD-программе задают проверку состояния входных дискретных сигналов? 6.Какими командами в LD-программе формируют выходные дискретные сигналы? 7.Как выполнить конфигурацию входных и выходных переменных? 8.Как проверить правильность
	LD-программы?

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-3. Защита лабораторной работы № 3

Формы реализации: Защита задания Тип контрольного мероприятия: Отчет Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Ответы на контрольные вопросы.

Краткое содержание задания:

Ответить на контрольные вопросы

Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки
Уметь: отлаживать программы ПЛК в инструментальной	1.MasterSCADA является
системе CoDeSys, разработать компоненты визуализации	клиентом или сервером?
техпроцессов в инструментальной системе CoDeSys, а	2.Как обеспечивается связь
также SCADA-системе Master-SCADA.	МК110 устройства с
	MasterSCADA?
	3.Как осуществляется
	мониторинг значений
	переменных МК 110?
	4.Может ли сервер работать
	с несколькими клиентами
	одновременно?
	5.Какие объекты мнемосхем
	имеет MasterSCADA?
	6.Как обеспечивается связь
	MasterSCADA c OPC
	сервером?
	7.От чего зависит скорость
	обмена данными между
	клиентом и ОРС сервером?

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-4. Защита лабораторной работы № 4

Формы реализации: Защита задания Тип контрольного мероприятия: Отчет Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Ответы на контрольные вопросы.

Краткое содержание задания:

Ответить на контрольные вопросы

Запланированные	результаты	обучения	ПО	Вопросы/задания для проверки
дисциплине				

Запланированные дисциплине	результаты	обучения	ПО	Вопросы/задания для проверки
Уметь: отлажин инструментальной	системе CoDo зуализации с системе Col	eSys, разраб техпроцессов	в отать в также	1.Для чего предназначен ОРС сервер? 2.Как обеспечивается связь устройств и клиентов с Modbus ОРС DA сервером? 3.Как осуществляется мониторинг значений переменных? 4.Может ли сервер работать с несколькими клиентами одновременно? 5.Какие типы данных поддерживает сервер? 6.Для чего предназначен редактор встроенного сценарного языка SQL сервера? 7.Можно ли связь клиент — сервер MasterSCADA установить на одном компьютере? 8.Можно ли связь клиент — сервер MasterSCADA установить не в локальной сети, а в глобальной сети Интернет? 9.Что необходимо сделать для установки связи клиент — сервер МаsterSCADA в глобальной сети Интернет?

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-5. Расчетное задание

Формы реализации: Выполнение задания

Тип контрольного мероприятия: Творческая задача

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Студенту выдается однотипное индивидуальное задание для составления схемы логики функционирования системы управления.

Краткое содержание задания:

Реализовать схему управления используя программный пакет OWEN Logic.

Контрольные вопросы/задания:

Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки
Уметь: производить для конкретного применения и за-	1.За что отвечает
данного алгоритма управления программирование ПЛК	функциональный блок TON?
и отладку программ как в режиме симуляции на	2.Какие типы триггеров
компьютере, так и на реальном контроллере	использованы при
	реализации алгоритма
	управления?

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

7 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

- 1. Системное и прикладное программное обеспечение ПЛК.
- 2. Возможности, состав и технические требования интегрированной среды разработки ПО ПЛК CoDeSys.
- 3. Выбор порядка разработки системы в MasterSCADA.

Процедура проведения

Экзамен проводится в устной форме по билетам. Время на подготовку 60 минут.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД- $1_{\Pi K-3}$ Демонстрирует умение разрабатывать проектные решения отдельных частей системы автоматического управления объектом профессиональной деятельности

Вопросы, задания

- 1.Структура систем управления. Объект управления. Взаимосвязь системы управления и объекта управления.
- 2.Основные понятия о ПЛК. Классификация ПЛК.
- 3. Системное и прикладное программное обеспечение ПЛК.
- 4.Языки программирования ПЛК (стандарт IEC 61131-3).Проблемы программирования ПЛК.
- 5.Язык релейных диаграмм (LD). Элементы LD цепь, контакт, реле. Моделирование конечных автоматов и сетей Петри на языке LD.
- 6.Язык программирования ПЛК «Структурированный текст» (ST). Основные конструкции языка.
- 7. Язык программирования ПЛК «Список инструкций» (IL). Формат инструкций.
- 8.Язык программирования ПЛК «Диаграммы SFC». Шаги и переходы. Параллельные и альтернативные ветви. Переход на произвольный шаг.
- 9. Язык программирования ПЛК «Функционально-блоковые диаграммы» (FBD). Порядок выполнения FBD.
- 10.Интегрированный комплекс программирования ПЛК CoDeSys.
- 11. Системы оперативного диспетчерского управления и сбора данных (SCADA-системы). Основные функции SCADA-систем.
- 12.SCADA-системы. Отображение объектов и анимация. Обработка особых состояний. Протоколирование и графики.

Материалы для проверки остаточных знаний

1. На какие виды подразделяют программируемые логические контроллеры по конструктивному исполнению?

Ответы:

- 1) Моноблочные
- 2) Объективные

- 3) Модульные
- 4) Многоблочные

Верный ответ: 1) Моноблочные 3) Модульные

2. Центральная секция программируемого контроллера содержит...

Ответы:

- 1) Центральный процессор
- 2) Память
- 3) Систему коммуникаций
- 4) Блок питания
- 5) Датчики

Верный ответ: 1) Центральный процессор 2) Память 3) Систему коммуникаций

3. Расставьте этапы цикла рабочего режима ПЛК в верном порядке

Ответы:

__ Последовательный анализ рабочей программы с использованием данных о текущем состоянии датчиков и с формированием управляющих воздействий, которые записываются в буферные регистры

__ Одновременное обновление контроллером состояния всех своих выходов и начало очередного этапа опроса датчиков

Опрос всех датчиков с регистрацией их состояния в оперативной памяти
 Верный ответ: 2 3 1

4. Что такое PLC?

Ответы:

- 1) Программный контроль логистики
- 2) Контроль логистики
- 3) Специальная разновидность ЭВМ
- 4) Особым образом спроектированная цифровая система управления на основе процессоров разной мощности и с различной функциональной оснащенностью, в зависимости от предназначения
- 5) Программируемый логический контроллер
- 6) Programmable logic controller

Верный ответ: 3) Специальная разновидность ЭВМ 4) Особым образом спроектированная цифровая система управления на основе процессоров разной мощности и с различной функциональной оснащенностью, в зависимости от предназначения 5) Программируемый логический контроллер 6) Programmable logic controller

5. Установите истинность или ложность приведённых высказываний.

Ответы:

Укажите истинность или ложность вариантов ответа:

- __ Программируемые логические контроллеры ориентированы на работу с машинами __ Режим работы ПЛК длительное автономное использование, зачастую в неблагоприятных условиях окружающей среды
- ПЛК требуется постоянное обслуживание человеком
- ___ В корпусе модульного ПЛК наряду с ЦП, памятью и блоком питания размещается фиксированный набор входов/выходов
- _ Источник питания может быть встроенным в основной блок ПЛК
- __ Выходная секция ПЛК обеспечивает ввод в центральную секцию состояния переключателей, датчиков и смарт-устройств

Верный ответ: да да нет нет да нет

6. Как приемник сигнала RS-232C принимает биты данных?

Ответы:

- 1. по фронту специального стробирующего сигнала
- 2. по уровню специального стробирующего сигнала

- 3. в момент поступления стартового бита
- 4. с временной привязкой к стоповому биту
- 5. через равные промежутки времени, начиная от стартового бита

Верный ответ: 5.через равные промежутки времени, начиная от стартового бита 7.Какой тип обмена обеспечивает гарантированную передачу информации любому исполнителю?

Ответы:

- 1. синхронный и асинхронный
- 2. ни синхронный, ни асинхронный
- 3. асинхронный
- 4. синхронный

Верный ответ: 3. асинхронный

8.Интерфейс стандарта RS 232C предназначен для

Ответы:

- 1. соединения внешнего оборудования и ПК
- 2. соединения датчиков с ПЛК (программируемым логическим контроллером) или ПР (программируемым реле)
- 3. сервисного обслуживания
- 4. сброса до заводских настроек

Верный ответ: 1.соединения внешнего оборудования и ПК

9.Перечислите последовательные интерфейсы

Ответы:

- 1) RS-232
- 2) RS-485
- 3) Ethernet
- 4) ВОЛС

Верный ответ: 1) RS-232 2) RS-485

10. Какие протоколы поддерживает интерфейс RS – 485

Ответы:

- 1. Modbus (ASCII, RTU)
- 2. DCON
- 3. OBEH
- 4. FTP File Transfer Protocol
- 5. DNS Domain Name System
- 6. NTP Network Time Protocol

Верный ответ: 1. Modbus (ASCII, RTU) 2. DCON 3. OBEH

11. Физический процесс, несущий информацию

Ответы:

- 1. Импульс
- 2. Сигнал
- 3. Толчок
- 4. Фронт импульса

Верный ответ: 2. Сигнал

12.Сигнал данных, у которого каждый из представляющих параметров описывается функцией времени и непрерывным множеством возможных значений

Ответы:

- 1. Аналоговый
- 2. Цифровой
- 3. Буквенный

Верный ответ: 1.Аналоговый

13. Сигнал, который можно представить в виде последовательности дискретных значений Ответы:

- 1. Альтернативный сигнал
- 2. Аналоговый сигнал
- 3. Цифровой сигнал

Верный ответ: 3. Цифровой сигнал

14. Укажите назначение ЦАП

Ответы:

- 1. Для преобразования информации в аналоговой форме в цифровые коды
- 2. Для преобразования цифрового кода N в пропорциональное аналоговое значение напряжения u(N)
- 3. Для деления числа или частоты повторения импульсов на заданный коэффициент К
- 4. Для преобразования информации из последовательной во времени формы представления в параллельную форму

Верный ответ: 2. Для преобразования цифрового кода N в пропорциональное аналоговое значение напряжения u(N)

15. Цифро-аналоговый преобразователь предназначен для

Ответы:

- 1. Подсчета числа поступивших импульсов
- 2. Осуществления функции приема, хранения и передачи информации в виде двоичных числовых последовательностей
- 3. Прямого преобразования входного двоичного кода в аналоговый эквивалент
- 4. Записи и хранения информации.

Верный ответ: 3.Прямого преобразования входного двоичного кода в аналоговый эквивалент

16.1. Характерными свойствами контроллера являются:

Ответы:

- а) связь с устройствами сопряжения
- б) одновременное выполнение нескольких задач на различных обрабатывающих устройствах
- в) обработка данных в реальном режиме времени
- г) взаимодействие со смежными процессами

Верный ответ: а) связь с устройствами сопряжения в) обработка данных в реальном режиме времени г) взаимодействие со смежными процессами

17. Признаком, классифицирующим контроллеры по числу входов/выходов, является

Ответы:

- а) тип архитектуры
- б) РС-совместимость
- в) мощность
- г) конструктивное исполнение

Верный ответ: в) мощность

18. Контроллеры, рассчитанные на 50 входов/выходов являются

Ответы:

- а) наноконтроллерами
- б) малыми контроллерами
- в) средними контроллерами
- г) большими контроллерами

Верный ответ: б) малыми контроллерами

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.