Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.03.02 Электроэнергетика и электротехника

Наименование образовательной программы: Электротехника и электрификация

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Регулирование координат электропривода

Москва 2024

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Разработчик

Ю.М. Сафонов

СОГЛАСОВАНО:

Руководитель образовательной программы

NOSO SE	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»		
Sale Company and S	Сведения о владельце ЦЭП МЭИ			
	Владелец	Иванов А.С.		
* <u>MON</u> *	Идентификатор	R28e5c30d-IvanovAlS-37175ef6		

А.С. Иванов

Заведующий выпускающей кафедрой

CENTROPOSE	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»		
	Сведения о владельце ЦЭП МЭИ			
Владелец Погребисски		Погребисский М.Я.		
» <u>МэИ</u> »	Идентификатор R	ccf62952-PogrebisskiyMY-d58a694		

М.Я. Погребисский

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-3 Способен принимать участие в проектировании объектов профессиональной деятельности в соответствии с техническим заданием и нормативно-технической документацией, соблюдая различные технические и технологические требования ИД-1 Демонстрирует умение разрабатывать проектные решения отдельных частей системы автоматического управления объектом профессиональной деятельности ИД-4 Выбирает и обосновывает конкурентоспособные варианты электрооборудования и проектных технических решений при разработке систем электроснабжения и управления объектами профессиональной деятельности
- 2. ПК-4 Способен участвовать в планировании, подготовке и выполнении типовых исследований по заданной методике, выбирать методы исследований, интерпретировать и представлять полученные результаты
 - ИД-1 Знает основные этапы исследования и проектирования электротехнических устройств, электромеханических и электротехнологических систем ИД-2 Выбирает и применяет методы анализа и расчета электромеханических устройств, электротехнологического оборудования и систем на их основе

и включает:

для текущего контроля успеваемости:

Форма реализации: Письменная работа

- 1. Разомкнутые ЭМС (Тестирование)
- 2. Регулирование скорости электропривода (Контрольная работа)
- 3. Регулирование тока (момента) электропривода (Контрольная работа)

Форма реализации: Устная форма

1. Лабораторные работы (Коллоквиум)

БРС дисциплины

7 семестр

	Веса контрольных мероприятий, %				
Роспол нискиналии	Индекс	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	1	2	3	4
	Срок КМ:	4	8	12	14
Способы регулирования переменных и их основные показатели					
Обобщенная система управляемый преобразователь - двигатель.		+			
Инженерные оценки точности и качества регулирования		+			
координат как основа синтеза контуров регулирования					

Последовательная коррекция с подчиненным регулированием координат, стандартные настройки динамики регулируемого электропривода	+			
Регулирование момента (тока) электропривода				
Система источник тока - двигатель (ИТ-Д)		+		
Регулирование момента в системе УП-Д по отклонению и возмущению		+		+
Свойства электропривода при настройке контура регулирования момента (тока) на технический оптимум		+		
Частотное регулирование момента асинхронного электропривода.		+		+
Регулирование скорости электропривода				
Параметрические способы регулирования скорости электроприводов			+	
Регулирование скорости в системе УП-Д по отклонению и возмущению			+	+
Свойства электропривода при настройке контура регулирования скорости на технический и симметричный оптимум			+	
Понятие двухзонного регулирования скорости			+	
Частотное регулирование скорости асинхронного электропривода			+	+
Регулирование положения				
Автоматическое регулирование положения в системе УП-Д				+
Ошибки позиционирования по управлению и возмущению				+
Добротность следящего электропривода по скорости и ускорению				+
Bec KM:	25	25	25	25

\$Общая часть/Для промежуточной аттестации\$

БРС курсовой работы/проекта

7 семестр

	Веса контрольных мероприятий, %				
Раздел дисциплины	Индекс	KM-1	KM-2		
газдел дисциплины	KM:				
	Срок КМ:	7	14		
Выбор двигателя		+			
Расчет разомкнутой системы		+			
Расчет замкнутой системы			+		
Расчет энергетических показателей			+		
	Вес КМ:	50	50		

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	_	результаты обучения по	
		дисциплине	
ПК-3	ИД-1 _{ПК-3} Демонстрирует	Уметь:	Регулирование скорости электропривода (Контрольная работа)
	умение разрабатывать	Рассчитывать основные	
	проектные решения	параметры систем	
	отдельных частей системы	управления	
	автоматического	электроприводов	
	управления объектом		
	профессиональной		
	деятельности		
ПК-3	ИД-4 _{ПК-3} Выбирает и	Знать:	Разомкнутые ЭМС (Тестирование)
	обосновывает	Основные способы и	
	конкурентоспособные	показатели регулирования	
	варианты	электроприводов	
	электрооборудования и		
	проектных технических		
	решений при разработке		
	систем электроснабжения		
	и управления объектами		
	профессиональной		
	деятельности		
ПК-4	ИД-1пк-4 Знает основные	Знать:	Лабораторные работы (Коллоквиум)
	этапы исследования и	1 1	
	проектирования	функциональные	
	электротехнических	возможности	
	устройств,	электрических машин и	
	электромеханических и	силовых преобразователей	

	электротехнологических		
	систем		
ПК-4	ИД-2 _{ПК-4} Выбирает и	Уметь:	Регулирование тока (момента) электропривода (Контрольная работа)
	применяет методы анализа	Анализировать основные	
	и расчета	показатели регулирования	
	электромеханических	электроприводов	
	устройств,		
	электротехнологического		
	оборудования и систем на		
	их основе		

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Разомкнутые ЭМС

Формы реализации: Письменная работа

Тип контрольного мероприятия: Тестирование **Вес контрольного мероприятия в БРС:** 25

Процедура проведения контрольного мероприятия: Письменный тест с вариантами

ответов

Краткое содержание задания:

Письменный тест с вариантами ответов по теме "Разомкнутые ЭМС"

Контрольные вопросы/задания:

Знать: Основные способы и показатели регулирования электроприводов

- 1.Понятие «регулирование скорости электропривода» подразумевает
- а) принудтельное изменение скорости электропривода путем электрического воздействия на механическую характеристику двигателя
- б) принудтельное изменение скорости электропривода путем изменения нагрузки на валу двигателя
- в) принудительное изменение момента инерции механической части электропривода
- 2.При какой жесткости механической характеристики работа двигателя становится статически неустойчивой?
- а) положительная жесткость
- б) отрицательная жесткость
- в) жесткость равна бесконечности
- 3.С чем связано ограничение пускового тока ДПТ НВ на уровне 2,5-3 от номинального значения
- а) с условиями насыщения магнитопровода двигателя
- б) с условиями коммутации тока на коллекторе
- в) с ограничением динамических ударов в механической части привода в момент пуска
- 4.При реостатном ступенчатом пуске ДПТ НВ в момент коммутации резисторов в цепи якоря происходит следующее
- а) скачкообразное изменение скорости двигателя
- б) скачкообразное изменение тока (момента) двигателя
- в) скачкообразное изменение потока возбуждения двигателя
- 5. Для получения искусственных характеристик при регулировании потока возбуждения ДПТ НВ допускается
- а) только уменьшать поток возбуждения
- б) только увеличивать поток возбуждения

- в) как уменьшать, так и увеличивать поток возбуждения
- 6.Как соотносится количество способов регулирования скорости для асинхронного двигателя с короткозамкнутым и фазным ротором
- а) больше способов для асинхронного двигателя с короткозамкнутым ротором
- б) больше способов для асинхронного двигателя с фазным ротором
- в) количество способов одинаково
- 7. При частотном регулировании скорости асинхронного двигателя возможна ли его работа при частоте питающего напряжения на статоре большей, чем номинальная частота
- а) да
- б) нет
- 8. Сравните КПД систем электропривода постоянного тока по схеме «тиристорный преобразовательдвигатель» ТП-Д и «генератор-двигатель» Г-Д
- а) КПД выше в системе ТП-Д
- б) КПД выше в системе Г-Д
- в) КПД отличаются незначительно
- 9.Соотношение между какими постоянными времени оказывает существенное влияние на характер переходных процессов в разомкнутой системе регулирования
- а) между электрической постоянной двигателя Тэ и постоянной преобразователя Тп
- б) между механической Тм и электрической постоянной двигателя Тэ
- в) между механической Тм и постоянной преобразователя Тп
- 10.B разомкнутой системе ПЧ-АД с частотным законом U/f=const рабочие скорости на статических механических характеристиках по отношению к естественной
- а) увеличиваются
- б) уменьшаются
- в) как увеличиваются, так и уменьшаются
- г) не изменяются

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-2. Регулирование тока (момента) электропривода

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Письменная контрольная работа с

теоретическими вопросами и расчётными задачами

Краткое содержание задания:

Контрольная работа с теоретическими вопросами и расчётными задачами по теме "Регулирование тока (момента) электропривода"

Контрольные вопросы/задания:

Уметь: Анализир	овать основные
показатели	регулирования
электроприводов	

- 1.В контуре регулирования тока (момента), настроенном на технический оптимум, перерегулирование тока (момента) составляет
- a) 3,4%
- б) 6,4%
- в) 4,3%
- г) 4,8%
- д) 8,4%
- 2.В контуре регулирования тока (момента), настроенном на технический оптимум, быстродействие отработки задания тока момента) составляет
- а) 4,3*Тмю
- б) 3,6*Тмю
- в) 6,4*Тмю
- **г) 4,7*Тмю**
- д) 7,4*Тмю
- 3.В контуре регулирования тока (момента) при настройке на технический оптимум какая постоянная времени компенсируется, если получился регулятор тока (момента) с передаточной функцией ПИ типа
- a) TM
- б) Тэ
- в) Тп
- 4.При настройке контура регулирования тока (момента) чем пренебрегают
- а) обратной связью по току (моменту)
- б) внутренней обратной связью по ЭДС двигателя
- в) постоянной времени преобразователя Тп
- г) электрической постоянной времени Тэ
- д) коэффициентом передачи преобразователя Кп

Поясните ответ.

- 5. Контур регулирования момента верно настроен на технический оптимум исходная настройка. Как изменится переходный процесс момента при увеличении пропорциональной составляющей регулятора момента
- а) быстродействие отработки задания момента уменьшится

б) быстродействие отработки задания момента увеличится

в) перерегулирование момента уменьшится

Поясните ответ.

6.Контур регулирования момента верно настроен на технический оптимум - исходная настройка. Как изменится переходный процесс момента при увеличении коэффициента усиления преобразователя

а) увеличится перерегулирование

- б) уменьшится перерегулирование
- в) уменьшится стопорный момент
- г) увеличится стопорный момент

Поясните ответ.

- 7. Контур регулирования момента верно настроен на технический оптимум исходная настройка. Как изменится значение стопорного момента Мстоп при уменьшении коэффициента обратной связи по моменту
- а) Мстоп уменьшится
- б) Мстоп увеличится
- в) Мстоп не изменится

Поясните ответ.

- 8.В настроенном контуре регулирования тока (момента) динамическая ошибка по току (моменту) с увеличением статической нагрузки на валу Мс
- а) увеличивается
- б) уменьшается
- в) не изменяется

Поясните ответ.

- 9.Чем ограничивается значение стопорного момента Мстоп при настройке контура регулирования момента в системе ПЧ-АД
- а) пусковым моментом асинхронного двигателя
- б) номинальным моментом асинхронного двигателя
- в) критическим моментом асинхронного двигателя
- г) током намагничивания

Поясните ответ.

10. Какие обратные связи НЕ подходят для

регулирования тока электропривода

- а) отрицательная обратная связь по скорости
- б) положительная обратная связь по скорости
- в) отрицательная обратная связь по моменту
- г) отрицательная обратная связь по току

Поясните ответ.

11.В системе электропривода имеется один настроенный на технический оптимум контур регулирования момента. До какой скорости разгонится электропривод, если на входе системы подать задание 0,5*Uзад.макс

- а) W0.макс
- б) 0,5*W0.макс
- в) 2*W0.макс

Приведите соответствующие расчёты. 12.В системе электропривода имеется один настроенный на технический оптимум контур регулирования момента. После подачи на вход системы электропривода сигнала задания и разгона привода до установившейся скорости произошел обрыв обратной связи по моменту, как после этого изменится скорость электропривода

- а) скорость упадет до нуля
- б) электропривод начнет реверсироваться в противоположную сторону вращения
- в) скорость не изменится
- г) начнутся неустановившиеся колебания скорости

Поясните ответ.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-3. Регулирование скорости электропривода

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Письменная контрольная работа с

теоретическими вопросами и расчётными задачами

Краткое содержание задания:

Контрольная работа с теоретическими вопросами и расчётными задачами по теме "Регулирование тока (момента) электропривода"

Контрольные вопросы/задания:

Уметь: Рассчитывать основные параметры систем управления электроприводов

- 1. Двухконтурная система регулирования, контуры момента и скорости настроены на технический оптимум. При каком условии жесткость механической характеристики в замкнутой системе будет больше, чем в разомкнутой?
- a) $T_M > 4T_9$
- б) Тэ >4Тмю
- в) **Тм >4Тмю**
- Γ) $4T_9=T_M$

Обоснуйте ответ. Приведите соответствующие расчёты.

- 2. Двухконтурная система регулирования, контуры момента и скорости настроены на технический оптимум. Как соотносится жесткость механической характеристики в замкнутой системе по сравнению с разомкнутой?
- а) Жесткость механической характеристики в замкнутой системе всегда больше, чем в разомкнутой
- б) Жесткость механической характеристики в замкнутой системе зависит от сочетания постоянных времени Тэ и Тм
- в) Жесткость механической характеристики в замкнутой системе зависит от сочетания постоянных времени Тэ и Тмю
- г) Жесткость механической характеристики в замкнутой системе зависит от сочетания постоянных времени Тм и Тмю
- 3. Двухконтурная система регулирования, контуры момента и скорости настроены на технический оптимум. Какую постоянную времени системы компенсирует контур момента?
- а) постоянную времени электрического преобразователя Тп
- б) электромеханическую Тм
- в) электрическую Тэ
- г) никакую
- д) электрическую Тэ и электромеханическую Тм

Поясните ответ.

- 4. Двухконтурная система регулирования, контуры момента и скорости настроены на технический оптимум. Какую постоянную времени системы компенсирует контур скорости?
- а) электрическую Тэ и электромеханическую Тм
- б) электромеханическую Тм
- в) электрическую Тэ
- г) постоянную времени электрического преобразователя Тп
- д) никакую

Поясните ответ.

- 5. Какие обратные связи НЕ подходят для регулирования скорости электропривода
- а) отрицательная обратная связь по напряжению преобразователя
- б) отрицательная обратная связь по току
- в) положительная обратная связь по моменту
- г) положительная обратная связь по току

Обоснуйте ответ.

- 6. Двухконтурная система регулирования, контуры момента и скорости настроены на технический оптимум. Как соотносится время пуска при скачке задания Uз.с. макс и плавном задании?
- а) время пуска не зависит от формы сигнала задания
- б) время пуска больше при скачке задания Из.с.макс
- в) время пуска больше при плавном задании

Обоснуйте ответ. Приведите соответствующие расчёты.

- 7. Двухконтурная система регулирования, контуры момента и скорости настроены на технический оптимум. Что определяет коэффициент обратной связи по скорости Кос?
- а) статическую ошибку регулирования скорости
- б) жесткость статической характеристики электропривода в замкнутой системе
- в) ускорение в процессе пуска

г) скорость холостого хода на статической характеристике

- 8. Двухконтурная система регулирования, контуры момента и скорости настроены на технический оптимум. Чему равно желаемое значение перерегулирования скорости?
- a) 4,7 %
- б) 3,6%
- в) 9,4%
- г) 4,3%
- д) 8,6%
- 9. Двухконтурная система регулирования, контуры

момента и скорости настроены на технический оптимум. Чему равно быстродействие контура скорости при отработке скачка задания Uзс.макс

- а) 4,3Тмю
- б) 8,6Тмю
- в) 3,6Тмю
- г) 9,4Тмю
- д) 4,7Тмю

Поясните ответ

10. Двухконтурная система регулирования, контуры момента и скорости настроены на технический оптимум. Чему равно быстродействие контура момента при скачке задания Uзс.макс

- а) 9,4Тмю
- б) 3,6Тмю
- в) 4,3Тмю
- г) 7,2Тмю

д) 4,7Тмю

- 11. Двухконтурная система регулирования, контуры момента и скорости настроены на технический оптимум. Зачем нужен запас по выходной ЭДС преобразователя, выше номинального напряжение двигателя?
- а) для регулирования скорости много выше номинальных значений
- б) для получения больших пусковых моментов
- в) для увеличения жесткости статических характеристик

г) для обеспечения динамических свойств контура скорости во всем диапазоне регулирования

- д) для поддержания постоянного пускового момента 12. Двухконтурная система регулирования, контуры момента и скорости настроены на технический оптимум. Какой параметр контура момента влияет на желаемую настройку контура скорости на технический оптимум?
- а) пропорциональная составляющая регулятора момента
- б) интегральная составляющая регулятора момента
- в) коэффициент обратной связи по моменту
- г) электрическая постоянная Тэ
- д) никакой
- 13. Двухконтурная система регулирования, контуры момента и скорости настроены на технический оптимум. До какой скорости разгонится электропривод, если на вход системы подать задание 0,5*Uз.с.макс
- а) Wo.макс
- б) 2Wo.макс
- в) 0,5Wo.макс
- г) не произойдет пуска электропривода

Приведите соответствующие расчтёы. 14. Двухконтурная система регулирования, контуры момента и скорости настроены на технический оптимум. Управляемый преобразователь выбран с ошибкой и выдает только 50% от номинального напряжения двигателя. Как это отразится на характеристиках электропривода?

- а) снизится быстродействие контура момента
- б) снизится диапазон регулирования скорости
- в) уменьшится жесткость статических характеристик во всем диапазоне регулирования скорости г) не будет скомпенсирована электрическая

постоянная времени Тэ

Поясните ответ.

15. Двухконтурная система регулирования, контуры момента и скорости настроены на технический оптимум. Произошел пуск электропривода вхолостую с заданием 0,5*Uз.с.макс. и далее обрыв обратной связи по скорости. До какой конечной установившейся скорости разгонится электропривод?

- a) 0,5*Wo.макс
- б) -0,5*Wо.макс
- в) Wо.макс
- г) Wo.макс
- д) затормозится до 0

Поясните ответ. Приведите соответствующие расчёты.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-4. Лабораторные работы

Формы реализации: Устная форма

Тип контрольного мероприятия: Коллоквиум **Вес контрольного мероприятия в БРС:** 25

Процедура проведения контрольного мероприятия: Устный опрос по вопросам к

коллоквиумуму по лабораторным работам

Краткое содержание задания:

Устный опрос по вопросам к коллоквиумуму по лабораторным работам

Контрольные вопросы/задания:

Знать: Характеристики и функциональные возможности электрических машин и силовых преобразователей

- 1.Определите, как в системе ПЧ-АД называется частотный закон U/f=const
- а) статической характеристикой
- б) переходной характеристикой

в) регулировочной характеристикой

- г) частотной характеристикой
- 2.Определите, какое соотношение между постоянными времени (Тп, Тэ, Тм) определяет апериодический характер переходных процессов в разомкнутой системе
- а) Тэ больше 4*Тм
- б) Тэ больше 4*Тп

в) Тм больше 4*Тэ

- г) Тм больше 4*Тп
- д) Тп больше 4*Тм
- 3.Определите, как с увеличением индуктивности якорной цепи в системе ТП-Д изменяется область прерывистого тока
- а) увеличивается
- б) уменьшается
- в) не изменяется
- 4.Определите, как в системе ТП-Д называется характеристика En=f(Uv)
- а) статической характеристикой системы ТП-Д
- б) переходной характеристикой

в) регулировочной характеристикой

- г) динамической характеристикой системы ТП-Д
- 5.Определите, за счет чего обеспечивается в системе постоянного тока "генератор-двигатель" регулирование скорости двигателя
- а) изменения сопротивления двигателя
- б) изменения потока двигателя

в) изменения потока генератора

- г) изменения сопротивления генератора
- д) изменения нагрузки на генераторе
- 6.Сравните в системе постоянного тока "тиристорный возбудитель генератор двигатель" (ТВ-Г-Д) значения постоянных времени Ттв, Тг, Тя

а) Тг больше Ттв

- б) Ттв больше Тг
- в) Ттв больше Тя
- г) Тя больше Тг
- 7. Двухконтурная система регулирования, контуры

момента и скорости настроены на технический оптимум. Определите, как влияет на быстродействие контура момента электромеханическая постоянная времени Тм?

- а) прямо пропорционально
- б) обратно пропорционально
- в) квадратичная зависимость

г) не влияет

8. Двухконтурная система регулирования, контуры момента и скорости настроены на технический оптимум. Определите, как влияет на быстродействие контура скорости электрическая постоянная времени Тэ?

- а) прямо пропорционально
- б) обратно пропорционально

в) не влияет

- г) квадратичная зависимость
- 9. Двухконтурная система регулирования, контуры момента и скорости настроены на технический оптимум. Определите, как влияет на статическую жесткость механической характеристики замкнутой системы электромеханическая постоянная времени Тм?

а) прямо пропорционально

- б) обратно пропорционально
- в) не влияет
- г) квадратичная зависимость
- 10. Двухконтурная система регулирования, контуры момента и скорости настроены на технический оптимум. Определите, как влияет на статическую жесткость механической характеристики замкнутой системы электрическая постоянная времени Тэ?
- а) прямо пропорционально
- б) обратно пропорционально

в) не влияет

- г) квадратичная зависимость
- 11. Двухконтурная система регулирования, контуры момента и скорости настроены на технический оптимум. Определите, как влияет на динамическую ошибку по моменту электрическая постоянная времени Тэ?

а) не влияет

- б) обратно пропорционально
- в) прямо пропорционально
- г) квадратичная зависимость
- 12. Двухконтурная система регулирования, контуры момента и скорости настроены на технический оптимум. Определите, что в большей степени определяет суммарное время пуска электропривода при плавном задании Uз.c. ?
- а) величина максимального стопорного момента
- б) быстродействие контура скорости

в) быстродействие контура момента
г) динамический момент электропривода
д) электромеханическая постоянная времени Тм

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

7 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

Система Г-Д: принципиальная схема, регулировочная характеристика, статические характеристики, структурная схема

Разомкнутая система электропривода «тиристорный преобразователь-двигатель» (ТП-Д) ТП: Кп=22, Тп=0,01 c, Rп=0,6 Ом; Uу.ном= Uy.max =10 B; Еп.max =220 В Двигатель ДПТ НВ: Uh=220 B; wh =100 рад/с ; Rя.S=0,4 Ом; Ih=100 A; Тя=0,02 c; JS=0,8 кг*м2

- изобразить структурную схему ТП-Д в передаточных функциях;

Процедура проведения

Устный экзамен с предварительной подготовкой по билету

- I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины
- **1. Компетенция/Индикатор:** ИД- $1_{\Pi K-3}$ Демонстрирует умение разрабатывать проектные решения отдельных частей системы автоматического управления объектом профессиональной деятельности

Вопросы, задания

- 1.Система Г-Д: принципиальная схема, регулировочная характеристика, статические характеристики, структурная схема
- 2.Система ТП-Д: классификация ТП, принципиальная схема, регулировочная характеристика, статические характеристики, структурная схема
- 3.Система ПЧ-АД: виды ПЧ, принципиальная схема, регулировочная характеристика, статические характеристики, структурная схема

Материалы для проверки остаточных знаний

1. Для получения искусственных характеристик при регулировании потока возбуждения ДПТ НВ допускается

Ответы:

- а) только уменьшать поток возбуждения
- б) только увеличивать поток возбуждения
- в) как уменьшать, так и увеличивать поток возбуждения Верный ответ: а) только уменьшать поток возбуждения
- 2. Двухконтурная система регулирования, контуры момента и скорости настроены на технический оптимум. Чему равно быстродействие контура скорости при отработке скачка задания Uзc.макс

Ответы:

- а) 4,3Тмю
- б) 8,6Тмю
- в) 3,6Тмю
- г) 9,4Тмю
- д) 4,7Тмю

Верный ответ: г) 9,4Тмю

2. Компетенция/Индикатор: ИД-4_{ПК-3} Выбирает и обосновывает конкурентоспособные варианты электрооборудования и проектных технических решений при разработке систем электроснабжения и управления объектами профессиональной деятельности

Вопросы, задания

- 1.Способы регулирования скорости электропривода с двигателем постоянного тока.
- 2.Способы регулирования скорости асинхронного электропривода: особенности частотного регулирования скорости асинхронного электропривода
- 3. Точная остановка электропривода. (Привести пример).
- 4. Автоматическое регулирование положения по отклонению. (Привести пример).

Материалы для проверки остаточных знаний

1.В контуре регулирования тока (момента), настроенном на технический оптимум, перерегулирование тока (момента) составляет

Ответы:

- a) 3,4%
- б) 6,4%
- B) 4,3%
- г) 4,8%
- д) 8,4%

Верный ответ: в) 4,3%

2.В контуре регулирования тока (момента), настроенном на технический оптимум, быстродействие отработки задания тока момента) составляет

Ответы:

- а) 4,3*Тмю
- б) 3,6*Тмю
- в) 6,4*Тмю
- д) 7,4*Тмю

Верный ответ: г) 4,7*Тмю

- 3. При настройке контура регулирования тока (момента) чем пренебрегают Ответы:
- а) обратной связью по току (моменту)
- в) постоянной времени преобразователя Тп
- г) электрической постоянной времени Тэ
- д) коэффициентом передачи преобразователя Кп

Верный ответ: б) внутренней обратной связью по ЭДС двигателя

3. Компетенция/Индикатор: ИД- $1_{\Pi K-4}$ Знает основные этапы исследования и проектирования электротехнических устройств, электромеханических и электротехнологических систем

Вопросы, задания

1. Разомкнутая система электропривода «тиристорный преобразователь-двигатель» (ТП-Д)

ТП: $K\pi=22$, $T\pi=0.01$ c, $R\pi=0.6$ Oм; Uy.ном= Uy.max =10 B; $E\pi.$ max =220 B Двигатель ДПТ HB: UH=220 B; WH=100 paJ/c; Rs.S=0.4 Oм; IH=100 A; Ts=0.02 c; JS=0.8 Kr*M2

- изобразить структурную схему ТП-Д в передаточных функциях;
- 2. Разомкнутая система электропривода «тиристорный преобразователь-двигатель» (ТП-Д)

ТП: $K\pi=22$, $T\pi=0.01$ c, $R\pi=0.6$ Oм; Uy.ном= Uy.max =10 B; $E\pi.$ max =220 В Двигатель ДПТ HB: UH=220 B; WH=100 рад/c; $R\pi.S=0.4$ Oм; IH=100 A; $T\pi=0.02$ c; JS=0.8 $K\Gamma*M2$

- рассчитать все параметры структурной схемы;
- 3. Разомкнутая система электропривода «тиристорный преобразователь-двигатель» (ТП-Д)
- ТП: $K\pi=22$, $T\pi=0.01$ c, $R\pi=0.6$ Oм; Uy.ном= Uy.max =10 B; $E\pi.$ max =220 В Двигатель ДПТ HB: UH=220 B; WH=100 рад/c; $R\pi.S=0.4$ Oм; IH=100 A; $T\pi=0.02$ c; JS=0.8 Kr*M2
- рассчитать и построить статическую электромеханическую характеристику в системе $T\Pi$ -Д для значений Uy = 5~B

Материалы для проверки остаточных знаний

1.С чем связано ограничение пускового тока ДПТ НВ на уровне 2,5-3 от номинального значения

Ответы:

- а) с условиями насыщения магнитопровода двигателя
- б) с условиями коммутации тока на коллекторе
- в) с ограничением динамических ударов в механической части привода в момент пуска Верный ответ: б) с условиями коммутации тока на коллекторе
- 2. При реостатном ступенчатом пуске ДПТ НВ в момент коммутации резисторов в цепи якоря происходит следующее

Ответы:

- а) скачкообразное изменение скорости двигателя
- б) скачкообразное изменение тока (момента) двигателя
- в) скачкообразное изменение потока возбуждения двигателя Верный ответ: б) скачкообразное изменение тока (момента) двигателя
- **4. Компетенция/Индикатор:** ИД-2_{ПК-4} Выбирает и применяет методы анализа и расчета электромеханических устройств, электротехнологического оборудования и систем на их основе

Вопросы, задания

- 1.Последовательная коррекция контуров регулирования: виды регуляторов, настройка на технический оптимум, подчиненное регулирование
- 2.Последовательная коррекция контура регулирования тока в системе УП-Д. Настройка на технический оптимум
- 3.Последовательная коррекция контура регулирования скорости в системе УП-Д. Настройка на технический оптимум

Материалы для проверки остаточных знаний

1. Двухконтурная система регулирования, контуры момента и скорости настроены на технический оптимум. Какую постоянную времени системы компенсирует контур момента?

Ответы:

- а) постоянную времени электрического преобразователя Тп
- б) электромеханическую Тм
- в) электрическую Тэ
- г) никакую
- д) электрическую Тэ и электромеханическую Тм

Верный ответ: в) электрическую Тэ

2. Двухконтурная система регулирования, контуры момента и скорости настроены на технический оптимум. Какую постоянную времени системы компенсирует контур скорости?

Ответы:

а) электрическую Тэ и электромеханическую Тм

- б) электромеханическую Тм
- в) электрическую Тэ
- г) постоянную времени электрического преобразователя Тп
- д) никакую

Верный ответ: б) электромеханическую Тм

- 3. Двухконтурная система регулирования, контуры момента и скорости настроены на технический оптимум. Чему равно желаемое значение перерегулирования скорости? Ответы:
- a) 4,7 %
- б) 3,6%
- в) 9,4%
- г) 4,3%
- д) 8,6%

Верный ответ: г) 4,3%

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

Оценка: 2

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

ІІІ. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и экзаменационной составляющих

Для курсового проекта/работы:

7 семестр

Форма проведения: Защита КП/КР

І. Процедура защиты КП/КР

Студент представляет результаты курсового проектирования и отвечает на вопросы комиссии по представляемым результатам

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70 Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

Оценка: 2

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

ІІІ. Правила выставления итоговой оценки по курсу

Оценка за курсовой проект определяется в соответствии с Положением о балльнорейтинговой системе для студентов НИУ «МЭИ».