Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.03.02 Электроэнергетика и электротехника

Наименование образовательной программы: Электрический транспорт

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Информационные технологии в тяговом электрооборудовании

Москва 2024

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ» New Mem Идентификатор

Осипов В.Е. R0851f56b-OsipovVY-8c32e8f9 В.Е. Осипов

СОГЛАСОВАНО:

Руководитель образовательной программы

Разработчик

NSO NEW MEM	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»			
	Сведения о владельце ЦЭП МЭИ				
	Владелец	Глушенков В.А.			
	Идентификатор	R5e5809b4-GlushenkovVA-5aef358			

B.A. Глушенков

Заведующий выпускающей кафедрой

-st. (OBAY)-	Полписано электрони	ON DOUBLES DEFON BO "HMY "MAM"				
NCW NCW	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ» Сведения о владельце ЦЭП МЭИ					
	Владелец	Румянцев М.Ю.				
	Идентификатор R	4b7b75d7-RumyantsevMY-eafe30				

М.Ю. Румянцев

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК7 Способен рассчитывать и обеспечивать требуемые режимы работы тягового электрооборудования
 - ИД-1 Демонстрирует знание ограничений допустимых режимов работы электроподвижного состава и способы их обеспечения
 - ИД-2 Демонстрирует способность производить расчет требуемых режимов работы тягового электрооборудования
 - ИД-3 Демонстрирует способность производить расчет элементов тягового электрооборудования
- 2. ПК8 Способен реализовывать мероприятия по обеспечению энергетической эффективности на электрическом транспорте
 - ИД-1 Демонстрирует знание методов экономии энергии при движении электроподвижного состава
 - ИД-2 Демонстрирует знание алгоритмов энергоэффективных режимов работы тягового электрооборудования
 - ИД-3 Демонстрирует способность производить расчет кривых движения с учетом требований по обеспечению энергетической эффективности
- 3. ПК9 Способен осуществлять физическое и математическое моделирование процессов, в том числе с использованием информационных технологий
 - ИД-1 Проводит моделирование физико-механических процессов с использованием информационных технологий
 - ИД-2 Проводит моделирование физических процессов в натурных и масштабных условиях

и включает:

для текущего контроля успеваемости:

Форма реализации: Допуск к лабораторной работе

1. Силовые электронные преобразователи электрических машин, используемых на электрическом транспорте, алгоритмы их управления (Лабораторная работа)

Форма реализации: Письменная работа

- 1. Методы и соответствующие им алгоритмы вычисления логических функций, языки программирования (Контрольная работа)
- 2. Принципы построения информационно-управляющих систем (Контрольная работа)
- 3. Устройства электропитания систем управления транспортного оборудования (Контрольная работа)

БРС дисциплины

5 семестр

	Веса конт	грольнь	іх мероі	приятий	í, %
Раздел дисциплины	Индекс	КМ-	КМ-	КМ-	КМ-
г аздел дисциплины	KM:	1	2	3	4
	Срок КМ:	5	8	12	16
Микропроцессорные системы управления тяговым	ſ				
электрооборудованием					
Основные микропроцессорные средства, использу электрооборудовании транспортных средств	емые в	+		+	+
Структурная схема микропроцессорной системы у	правления	+			
Основные интерфейсные элементы и их характери	стики			+	+
Алгоритмы управления оборудованием электричестранспорта					
Алгоритмы управления дискретными элементами	+	+		+	
Алгоритмы систем автоматического управления электрооборудования	+	+			
Алгоритмы управления силовых электронных преобразователей энергии	+	+	+		
Алгоритмы управления тяговыми приводами	+				
Алгоритмы многоуровневых систем управления транспортных средств	+				
	Bec KM:	25	25	25	25

^{\$}Общая часть/Для промежуточной аттестации\$

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции		результаты обучения по	
		дисциплине	
ПК7	ИД-1пк7 Демонстрирует	Знать:	Принципы построения информационно-управляющих систем
	знание ограничений	принципы построения	(Контрольная работа)
	допустимых режимов	информационно-	
	работы	управляющих систем в	
	электроподвижного	ТЯГОВОМ	
	состава и способы их	электрооборудовании	
	обеспечения	Уметь:	
		строить алгоритмы	
		управления тяговым	
		электрооборудованием	
ПК7	ИД-2 _{ПК7} Демонстрирует	Знать:	Принципы построения информационно-управляющих систем
	способность производить	режимы ограничения	(Контрольная работа)
	расчет требуемых	работы электрического	Устройства электропитания систем управления транспортного
	режимов работы тягового	транспорта	оборудования (Контрольная работа)
	электрооборудования	Уметь:	
		рассчитывать режимы	
		пуска и торможения ТС	
ПК7	ИД-3 _{ПК7} Демонстрирует	Знать:	Принципы построения информационно-управляющих систем
	способность производить	языки программирования,	(Контрольная работа)
	расчет элементов тягового	используемые в	Методы и соответствующие им алгоритмы вычисления логических
	электрооборудования	микропроцессорной	функций, языки программирования (Контрольная работа)
		технике тягового	Силовые электронные преобразователи электрических машин,
		электрооборудования	используемых на электрическом транспорте, алгоритмы их
		Уметь:	управления (Лабораторная работа)
		программировать	

		микроконтроллеры,	
		используемые в тяговом	
		электрооборудовании	
ПК8	$ИД-1_{\Pi K8}$ Демонстрирует	Знать:	Устройства электропитания систем управления транспортного
	знание методов экономии	алгоритмы энергетически	оборудования (Контрольная работа)
	энергии при движении	эффективных режимов	Методы и соответствующие им алгоритмы вычисления логических
	электроподвижного	работы тягового	функций, языки программирования (Контрольная работа)
	состава	электрооборудования	
		Уметь:	
		оценивать эффективность	
		алгоритмов	
ПК8	ИД-2пкв Демонстрирует	Знать:	Принципы построения информационно-управляющих систем
	знание алгоритмов	энергетически	(Контрольная работа)
	энергоэффективных	эффективные режимы	Устройства электропитания систем управления транспортного
	режимов работы тягового	работы тягового	оборудования (Контрольная работа)
	электрооборудования	электрооборудования	
	1 15,,	Уметь:	
		реализовывать задачи	
		логического управления	
		ТЯГОВЫМ	
		электрооборудованием	
ПК8	ИД-3 _{ПК8} Демонстрирует	Знать:	Принципы построения информационно-управляющих систем
11110	способность производить	особенности	(Контрольная работа)
	расчет кривых движения с	микропроцессорных	Методы и соответствующие им алгоритмы вычисления логических
	учетом требований по	систем автоматического	функций, языки программирования (Контрольная работа)
	обеспечению	управления	функции, изыки программирования (понтрольная расота)
	энергетической	Уметь:	
	эффективности	производить расчеты	
	эффективности	кривых движения с учетом	
		с учетом требований по	
		энергетической	
		эффективности	
ПК9	ИЛ 1—— Песто	* *	Haveyyyyy waaraayyya yyyhaayyayyya yyyaanaayyyy
11N7	ИД-1пк9 Проводит	Знать:	Принципы построения информационно-управляющих систем

	моделирование физико-	структуру и	(Контрольная работа)
	механических процессов с	микропроцессорную	Силовые электронные преобразователи электрических машин,
	использованием	реализацию регуляторов	используемых на электрическом транспорте, алгоритмы их
	информационных	Уметь:	управления (Лабораторная работа)
	технологий	проводить моделирование	
		процессов с использование	
		информационных	
		технологий	
ПК9	$ИД-2_{\Pi K9}$ Проводит	Знать:	Методы и соответствующие им алгоритмы вычисления логических
	моделирование	элементную базу	функций, языки программирования (Контрольная работа)
	физических процессов в	управляющих устройств	Силовые электронные преобразователи электрических машин,
	натурных и масштабных	ТЯГОВОГО	используемых на электрическом транспорте, алгоритмы их
	условиях	электрооборудования	управления (Лабораторная работа)
		Уметь:	
		проводить моделирование	
		процессов с в натуральных	
		и масштабных условиях	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Принципы построения информационно-управляющих систем

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Ответы на поставленные вопросы

Краткое содержание задания:

Какие задачи по автоматизации устройств тягового электроснабжения могут быть решены при помощи микропроцессора?

Контрольные вопросы/задания:

контрольные вопросы/задания.	
Знать: принципы построения	1.Последовательность выполнения программы в
информационно-управляющих	типовом микропроцессоре?
систем в тяговом	
электрооборудовании	
Знать: энергетически	1.Перечислите основные тенденции в развитии
эффективные режимы работы	архитектуры микро и мини эвм в области
тягового электрооборудования	электротранспорта?
Знать: структуру и	1. Какие основные составные части
микропроцессорную реализацию	микропроцессорной системы управления
регуляторов	транспортным средством Вы знаете?
Уметь: строить алгоритмы	1.Определите емкостную нагрузку по линиям шины
управления тяговым	адреса?
электрооборудованием	
Уметь: рассчитывать режимы	1.Проконтролировать правильность работы
пуска и торможения ТС	микропроцессора при управлении ответственными
	объектами электротранспорта?
Уметь: программировать	1. Объедините несколько микропроцессоров в
микроконтроллеры,	единую систему? Приведите примеры структур
используемые в тяговом	таких систем
электрооборудовании	
Уметь: производить расчеты	1.Составить технические задания на разработку
кривых движения с учетом с	микропроцессорной системы управления зарядной
учетом требований по	станции электробуса ?
энергетической эффективности	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: - даны правильные ответы не менее чем на 90 % вопросов, исключая вопросы, на которые студент должен дать свободный ответ - на все вопросы, предполагающие свободный ответ, студент дал правильный и полный ответ

Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: - даны правильные ответы не менее чем на 75 % вопросов, исключая вопросы, на которые студент должен дать свободный ответ - на все

вопросы, предполагающие свободный ответ, студент дал правильный, но допустил незначительные ошибки и не показал необходимой полноты

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: - даны правильные ответы не менее чем на 50 % вопросов, исключая вопросы, на которые студент должен дать свободный ответ - на все вопросы, предполагающие свободный ответ, студент дал непротиворечивый ответ или при ответе допустил значительные неточности и не показал полноты

Оценка: 2

Описание характеристики выполнения знания: Оценка "не зачтено" выставляется если задание не выполнено в отведенный срок или результат не соответствует заданию

КМ-2. Устройства электропитания систем управления транспортного оборудования

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Ответы на поставленные вопросы

Краткое содержание задания:

Назовите эффективные средства повышения помехозащищенности измерительных цепей датчиков на электротранспорте. Дайте сравнительную характеристику помехозащишенности линий связи при воздействии внешних магнитных и электрических полей?

Контрольные вопросы/задания:

Знать: режимы ограничения	1.Какие способы защиты входных цепей
работы электрического	микропроцессорной системы управления
транспорта	от электромагнитных помех вы знаете?
Знать: алгоритмы энергетически	1. Какими физическими явлениями сопровождается
эффективных режимов работы	коммутация сильноточных цепей на
тягового электрооборудования	электротранспорте и как это влияет на
	информационные технологии в тяговом
	электрооборудовании?
Уметь: реализовывать задачи	1. Организуйте микропроцессорную защиту и
логического управления тяговым	разработайте токовременную защиту тяговой сети
электрооборудованием	постоянного тока.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: - даны правильные ответы не менее чем на 90 % вопросов, исключая вопросы, на которые студент должен дать свободный ответ - на все вопросы, предполагающие свободный ответ, студент дал правильный и полный ответ

Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: - даны правильные ответы не менее чем на 75 % вопросов, исключая вопросы, на которые студент должен дать свободный ответ - на все вопросы, предполагающие свободный ответ, студент дал правильный, но допустил незначительные ошибки и не показал необходимой полноты

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: - даны правильные ответы не менее чем на 50 % вопросов, исключая вопросы, на которые студент должен дать свободный ответ - на все вопросы, предполагающие свободный ответ, студент дал непротиворечивый ответ или при ответе допустил значительные неточности и не показал полноты

Оценка: 2

Описание характеристики выполнения знания: Оценка "не зачтено" выставляется если задание не выполнено в отведенный срок или результат не соответствует заданию

КМ-3. Методы и соответствующие им алгоритмы вычисления логических функций, языки программирования

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Ответы на поставленные вопросы

Краткое содержание задания:

Как переводится перевод десятичных чисел в двоичную и шестнадцатеричную системы?

Контрольные вопросы/задания:

Знать: языки программирования,	1.В чем разница между машинным языком и языком
используемые в	Ассемблера? Какой из них и где наиболее удобен?
микропроцессорной технике	
тягового электрооборудования	
Знать: особенности	1.В чем заключается преимущества реализации
микропроцессорных систем	логических функций на основе ПЛМ по сравнению с
автоматического управления	традиционными способами их выполнения?
Знать: элементную базу	1. Что такое программируемые логические
управляющих устройств	интегральные схемы (ПЛИС) их основные типы,
тягового электрооборудования	технология проектирования устройств с
	использованием ПЛИС?
Уметь: оценивать эффективность	1.Оцените контроль качества программ.
алгоритмов	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: - даны правильные ответы не менее чем на 90 % вопросов, исключая вопросы, на которые студент должен дать свободный ответ - на все вопросы, предполагающие свободный ответ, студент дал правильный и полный ответ

Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: - даны правильные ответы не менее чем на 75 % вопросов, исключая вопросы, на которые студент должен дать свободный ответ - на все вопросы, предполагающие свободный ответ, студент дал правильный, но допустил незначительные ошибки и не показал необходимой полноты

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: - даны правильные ответы не менее чем на 50 % вопросов, исключая вопросы, на которые студент должен дать свободный ответ - на все вопросы, предполагающие свободный ответ, студент дал непротиворечивый ответ или при ответе допустил значительные неточности и не показал полноты

Оценка: 2

Описание характеристики выполнения знания: Оценка "не зачтено" выставляется если задание не выполнено в отведенный срок или результат не соответствует заданию

КМ-4. Силовые электронные преобразователи электрических машин , используемых на электрическом транспорте , алгоритмы их управления

Формы реализации: Допуск к лабораторной работе **Тип контрольного мероприятия:** Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Проводится на лабораторном стенде во время лабораторного занятия

Краткое содержание задания:

1. Разработать алгоритм и программу работы микропроцессорной системы управления моделью транспортного средства

Описание микропроцессорной системы:

Микропроцессорный контроллер построен на базе микропроцессора I8080 В качестве портов ввода вывода в контроллере используются интерфейсные микросхемы I8355. Имена портов - PA8355 и PB8355, управление которыми возложено на специальные регистры, соответственно DA8355 и DB8355 (регистры управляющего слова- РУС). При записи лог. «1» в любой из разрядов РУС этот разряд порта будет работать на вывод, если записать лог. «0» — то соответственно — на ввод. На входные (заданные) разряды порта подаются сигналы с цифровых датчиков X1...X4 Выходные (заданные) разряды порта подключены к осциллографу и к звуковому

Описание программы:

1. запрограммировать порты ввода-вывода, в соответствии с табл.1

Табл.№1

динамику.

Размещение входных / выходных сигналов микропроцессорной системы управления .

Порт/разряды	D7	D6	D5	D4	D3	D2	D1	D0	Примечание
Порт А									PA8355
Порт В									PB8355

Выполни	ить движение мод	ели транспортного средст	ва:	на
время	сек. затем	на время	сек. и остановить его.	
Ввести з	начения переменн	ных с цифровых датчиков	X1X4	
Вычисли	ть булеву функц	цию Y= F(X1X4)		
, где Х1.	Хп – сигналы ци	ифровых датчиков .		

если Y=1 то вывести в заданный разряд порта сигнал с частотой	f1=
Гц	
Если Y=0 то вывести в заданный разряд сигнал звуковой частоты	f2=
Гц	
Описание функции	
Y=	

2. Составить таблицу истинности по заданной функции

Табл №2

Xn		X3	X2	X1	Y	Примечание
0	0	0	0	0		
0	0	0	0	1		
0	0	0	1	0		
0	0	0	1	1		
1	1	1	1	1		

Составить алгоритм программы в графическом виде. Написать программу на
языке ассемблера. Программные методы решения алгоритма:метод прямых
вычислений , табличный, метод
сравнения
Устранить ошибки в программе . Проверить работу программы в
микропроцессорном отладчике. Сопоставить работу программы с таблицей
истинности и заданием.
Отлаженную программу Показать преподавателю. (При отладке в счетчиках циклов
подпрограмм времени значения чисел определяющих выдержку времени уменьшить до
1)
-,
3. Адаптировать программу применительно к микророцессорному контроллеру
МС2721 и стенду с физическими моделями транспортных средств кафедры
электрического транспорта.
Особенности адаптации: начало программы с адресаh
-Ввод входных сигналов осуществить с помощью команды LDA "заданная ячейка
памяти "
(перед запуском программы необходимо ввести с помощью команды # S монитора
MC2721 значения X1X4 в заданную ячейку памяти) Заданная ячейка памяти для
ввода X1X4 :h
осцилограф подсоединен к разряду D7 порта с адресом F0H а звуковой динамик
соединен к выводу разряда D5 порта F0H
Для работы с выходным портом F0H необходимо (в начале программы) записать в

Проверить работу программы на стенде, замерить и подобрать заданную выходную частоту. Расчитать в % точность вывода частотного сигнала (точность должна быть не хуже 7%). Сверить полученные частоты с заданными . Результат показать преподавателю .

регистр управляющего слова с адресом F3H управляющее слово 8AH.

Изменить участок программы отвечающий за вывод частотного сигнала на осциллограф для использования в программе программируемого таймера КР580ВИ53. Выходной сигнал на осциллограф подавать с выхода таймера. Измерить выходной сигнал и сверить с заданным, при необходимости подобрать. Рассчитать точность вывода частотного сигнала. Результаты работы программы показать преподавателю.

Контрольные вопросы/задания:

контрольные вопросы/задания.					
Уметь: программировать	1.Разработать алгоритм и программу работы				
микроконтроллеры,	микропроцессорной системы управления моделью				
используемые в тяговом	транспортного средства				
электрооборудовании					
Уметь: проводить	1.Напишите программу управления тиристорным				
моделирование процессов с	преобразователем . Фаза импульсов ШИР или период				
использование информационных	следования импульсов ЧИР должны быть				
технологий	пропорциональны и меняться в зависимости от числа				
	, подаваемого на входной порт микроконтроллера				
Уметь: проводить	1.Составьте программу, формирующую импульсы с				
моделирование процессов с в	длительностью, пропорциональной числу на входе				
натуральных и масштабных	микроконтроллера				
условиях					

Описание шкалы оценивания:

Оценка: 5

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

5 семестр

Форма промежуточной аттестации: Зачет с оценкой

Пример билета

- 1. Что обычно включается в технические задания на разработку микропроцессорной системы управления зарядной станции электробуса?
- 2. Какие числа в шестнадцатеричной форме соответствуют десятичные числа 13, 9, 7, 8, 11?

Процедура проведения

Письменные и устные ответы на вопросы

- I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины
- **1. Компетенция/Индикатор:** ИД-1_{ПК7} Демонстрирует знание ограничений допустимых режимов работы электроподвижного состава и способы их обеспечения

Вопросы, задания

1. Что обычно предусматривают в микропроцессорных системах транспортных средств от сбоев, зависаний при выполнении программы?.

Материалы для проверки остаточных знаний

1. Что обычно предусматривают в микропроцессорных системах транспортных средств от сбоев, зависаний при выполнении программы? Укажите каким образом.

Ответы:

- a) Специальные таймеры Watch dog timer
- б) сигнал "Reset"
- c) контроль выполнения времени программы Верный ответ: a) Специальные таймеры – Watch dog timer
- **2. Компетенция/Индикатор:** ИД-2_{ПК7} Демонстрирует способность производить расчет требуемых режимов работы тягового электрооборудования

Вопросы, задания

1. Какие критерии обычно выбирают при подключении исполнительного устройства (реле) к выходному порту микропроцессорной системы?

Материалы для проверки остаточных знаний

1. Какие решения обычно выбирают при подключении исполнительного устройства (реле) к выходному порту микропроцессорной системы

Ответы:

- а) применение развязывающих трансформаторов
- б) применение усилителей с гальванической развязкой
- с) применение маломощных реле, оптотранзисторов Верный ответ: с) применение маломощных реле, оптотранзисторов

bepinsin order. c) uprimenenne masiomomnistik pesie, ourorpansneropo

3. Компетенция/Индикатор: ИД-3_{ПК7} Демонстрирует способность производить расчет элементов тягового электрооборудования

Вопросы, задания

1. Напишите программу управления тиристорным преобразователем. Фаза импульсов ШИР или период следования иплусьсов ЧИР должны быть пропорциональны и меняться в зависимости от числа, подаваемого на входной порт микроконтроллера

Материалы для проверки остаточных знаний

1.В программе имеются операторы CALL , CZ, CNC . В каком случае в программе произойдет безусловный переход на подпрограммы. И по какому признаку ?

Ответы:

- а)по оператору СZ
- б) по оператору CALL
- с) по оператору CNZ

Верный ответ: б) по оператору CALL

4. Компетенция/Индикатор: ИД- $1_{\Pi K8}$ Демонстрирует знание методов экономии энергии при движении электроподвижного состава

Вопросы, задания

1. Как организовать цикл?

Материалы для проверки остаточных знаний

- 1.С какой целью предусматривают в микропроцессорных системах гальваническую развязку цепей микроконтроллера от силовых тяговых цепей постоянного тока? Ответы:
- а) Для повышения быстродействия
- б) для уменьшения энергопотребления
- в) для улучшения помехозащищенности

Верный ответ: в) для улучшения помехозащищенности

5. Компетенция/Индикатор: ИД- $2_{\Pi K8}$ Демонстрирует знание алгоритмов энергоэффективных режимов работы тягового электрооборудования

Вопросы, задания

1.В каких случаях разработка микропроцессорной системы для зарядной станции электромобиля предпочтительнее системы управления на «жеской логике» ?

Материалы для проверки остаточных знаний

1. Какие способы защиты входных цепей микропроцессорной системы управления от электромагнитных помех вы знаете?

Ответы:

- а) Экранирование
- б) увеличение сечения входных проводников
- в) Понижение напряжения питания
- с) Повышение напряжения питания

Верный ответ: а) Экранирование с) Повышение напряжения питания

6. Компетенция/Индикатор: ИД-3_{ПК8} Демонстрирует способность производить расчет кривых движения с учетом требований по обеспечению энергетической эффективности

Вопросы, задания

1. Какие основные составные части микропроцессорной системы управления транспортным средством Вы знаете?

Материалы для проверки остаточных знаний

1. Какова разрядность регистров счетчика команд и указателя стека? Поясните их назначение.

Ответы:

- a) 4
- б) 8
- c) 16

Верный ответ: с) 16

7. Компетенция/Индикатор: ИД- $1_{\Pi K9}$ Проводит моделирование физико-механических процессов с использованием информационных технологий

Вопросы, задания

1. Как определить Число микросхем блоков ОЗУ и ПЗУ, если известнв их емкость и организация БИС ОЗУ и ПЗУ?

Материалы для проверки остаточных знаний

1.Сколько двоичных разрядов нужно для записи адресов памяти ,? (микропроцессор 8 разрядный , КР 580ИК80)

Ответы:

- a) 16
- б) 8
- c) 32

Верный ответ: а) 16

8. Компетенция/Индикатор: ИД- $2_{\Pi K9}$ Проводит моделирование физических процессов в натурных и масштабных условиях

Вопросы, задания

1.В каких случаях в микропроцессорной системе можно оставить неподключенными старшие разряды адреса?

Материалы для проверки остаточных знаний

1. Какое двоичное и 16-тиричное число будет на в порту A после выполнения программы если содержимое регистров до выполнения программы A=02H, H=01, L=02H,

```
C=04H,D=03
```

XRA A

ORA C

MOV M,A

STA 0102

INR A

ANA M

OUT PORTA

Ответы:

- a) 04H
- б) 07Н

c) 02H

Верный ответ: а) 04Н

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: - даны правильные ответы не менее чем на 90 % вопросов, исключая вопросы, на которые студент должен дать свободный ответ - на все вопросы, предполагающие свободный ответ, студент дал правильный и полный ответ

Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: - даны правильные ответы не менее чем на 75 % вопросов, исключая вопросы, на которые студент должен дать свободный ответ - на все вопросы, предполагающие свободный ответ, студент дал правильный, но допустил незначительные ошибки и не показал необходимой полноты

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: - даны правильные ответы не менее чем на 50 % вопросов, исключая вопросы, на которые студент должен дать свободный ответ - на все вопросы, предполагающие свободный ответ, студент дал непротиворечивый ответ или при ответе допустил значительные неточности и не показал полноты

Оценка: 2

Описание характеристики выполнения знания: Оценка "не зачтено" выставляется если задание не выполнено в отведенный срок или результат не соответствует заданию

III. Правила выставления итоговой оценки по курсу