Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.03.02 Электроэнергетика и электротехника

Наименование образовательной программы: Электрический транспорт

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Моделирование устройств электрической тяги

Москва 2025

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Разработчик

В.Г. Комаров

СОГЛАСОВАНО:

Руководитель образовательной программы

MOM H	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»	
	Сведения о владельце ЦЭП МЭИ		
	Владелец	Глушенков В.А.	
	Идентификатор	R5e5809b4-GlushenkovVA-5aef358	

В.А. Глушенков

Заведующий выпускающей кафедрой

NASO NASO	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»		
THE PROPERTY AND S	Сведения о владельце ЦЭП МЭИ			
-	Румянцев М.Ю.			
[№] МЭИ 🐔	Идентификатор R	4b7b75d7-RumyantsevMY-eafe30		

М.Ю. Румянцев

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК5 Способен создавать и анализировать модели для прогнозирования свойств основных элементов электрического транспорта
 - ИД-1 Демонстрирует знания методов создания компьютерных моделей для устройств электрической тяги и тяговых подстанций
 - ИД-2 Выполняет анализ компьютерных моделей устройств электрической тяги
- 2. ПК6 Способен учитывать параметры и характеристики основных элементов, применяемых в устройствах тягового электроснабжения
 - ИД-1 Демонстрирует знание характеристик и режимов работы основного оборудования тяговых подстанций
 - ИД-2 Демонстрирует понимание принципов построения и функционирования систем тягового электроснабжения
- 3. ПК7 Способен рассчитывать и обеспечивать требуемые режимы работы тягового электрооборудования
 - ИД-1 Демонстрирует знание ограничений допустимых режимов работы электроподвижного состава и способы их обеспечения
 - ИД-2 Демонстрирует способность производить расчет требуемых режимов работы тягового электрооборудования
 - ИД-3 Демонстрирует способность производить расчет элементов тягового электрооборудования
- 4. ПК9 Способен осуществлять физическое и математическое моделирование процессов, в том числе с использованием информационных технологий
 - ИД-1 Проводит моделирование физико-механических процессов с использованием информационных технологий
 - ИД-2 Проводит моделирование физических процессов в натурных и масштабных условиях

и включает:

для текущего контроля успеваемости:

Форма реализации: Компьютерное задание

- 1. Компьютерные системы моделирования (Контрольная работа)
- 2. Построение модели конечного автомата для УЭТ с помощью приложения Xcos Scilab (Лабораторная работа)
- 3. Построение модели электрической цепи для УЭТ с помощью приложения Xcos Scilab (Лабораторная работа)
- 4. Построение физической модели механической системы для УЭТ с помощью приложения Xcos Scilab (Лабораторная работа)
- 5. Событийное и физическое моделирование (Лабораторная работа)
- 6. Теоретические основы моделирования (Контрольная работа)

БРС дисциплины

7 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Теоретические основы моделирования (Контрольная работа)
- КМ-2 Компьютерные системы моделирования (Контрольная работа)
- КМ-3 Построение модели конечного автомата для УЭТ с помощью приложения Xcos Scilab (Лабораторная работа)
- КМ-4 Построение модели электрической цепи для УЭТ с помощью приложения Xcos Scilab (Лабораторная работа)
- КМ-5 Событийное и физическое моделирование (Лабораторная работа)
- КМ-6 Построение физической модели механической системы для УЭТ с помощью приложения Xcos Scilab (Лабораторная работа)

Вид промежуточной аттестации – Экзамен.

	Bec	а контј	рольны	х меро	прияти	й, %	
Ворман низиминими	Индекс	КМ-	КМ-	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	1	2	3	4	5	6
	Срок КМ:	4	8	12	14	16	16
Понятие модели и её роль в процессе в	познания и						
предметно практической деятельности							
Цели моделирования. Классификация	моделей						
Понятие модели и её роль в процессе в	познания и						
предметно практической деятельности		+		+	+		+
Цели моделирования. Классификация	моделей						
Теоретические основы моделирования	ſ						
Теоретические основы моделирования		+			+	+	+
Компьютерные системы моделирования							
Компьютерные системы моделирования		+	+	+	+	+	
3D-моделирование и САПР							
3D-моделирование и САПР			+	+		+	
Событийное и физическое моделирование							
Событийное и физическое моделирование		+	+		+		+
	Bec KM:	15	15	15	15	20	20

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	_	результаты обучения по	
		дисциплине	
ПК5	ИД-1 _{ПК5} Демонстрирует знания методов создания компьютерных моделей применяются в исследованиях и разработках устройств электрической тяги и тяговых подстанций электрической тяги Уметь: создавать модели исследуемых и проектируемых устройств электрической тяги для оценки параметров, характеристик и функционирования этих		КМ-1 Теоретические основы моделирования (Контрольная работа) КМ-6 Построение физической модели механической системы для УЭТ с помощью приложения Xcos Scilab (Лабораторная работа)
ПК5	ИД-2 _{ПК5} Выполняет анализ компьютерных моделей устройств электрической тяги	объектов Знать: характеристики и режимы работы основного оборудования устройств электрической тяги Уметь: разбираться в функционировании систем тягового электрооборудования	КМ-1 Теоретические основы моделирования (Контрольная работа) КМ-2 Компьютерные системы моделирования (Контрольная работа)

ПК6	ИД-1 _{ПК6} Демонстрирует	Знать:	КМ-3 Построение модели конечного автомата для УЭТ с помощью
	знание характеристик и	базовые программные и	приложения Xcos Scilab (Лабораторная работа)
	режимов работы	аппаратные средства	hapanemental recorded a comme (compare pare run)
	основного оборудования	компьютерного	
	тяговых подстанций	моделирования для оценки	
		различных параметров,	
		характеристик и	
		построения имитационных	
		(ситуационных) моделей	
		электрической тяги	
ПК6	ИД-2пк6 Демонстрирует	Уметь:	КМ-2 Компьютерные системы моделирования (Контрольная работа)
	понимание принципов	строить характеристики	КМ-5 Событийное и физическое моделирование (Лабораторная
	построения и	основного оборудования	работа)
	функционирования систем	устройств электрической	
	ТЯГОВОГО	ТЯГИ	
	электроснабжения		
ПК7	ИД-1 _{ПК7} Демонстрирует	Знать:	КМ-2 Компьютерные системы моделирования (Контрольная работа)
	знание ограничений	ограничения допустимых	КМ-4 Построение модели электрической цепи для УЭТ с помощью
	допустимых режимов	режимов работы ЭПС	приложения Xcos Scilab (Лабораторная работа)
	работы	Уметь:	
	электроподвижного	определять ограничения	
	состава и способы их	режимов работы	
	обеспечения	подвижного состава	
ПК7	$ИД-2_{\Pi K7}$ Демонстрирует	Знать:	КМ-2 Компьютерные системы моделирования (Контрольная работа)
	способность производить	способы расчетов	КМ-4 Построение модели электрической цепи для УЭТ с помощью
	расчет требуемых	требуемых режимов	приложения Xcos Scilab (Лабораторная работа)
	режимов работы тягового	работы тягового	
	электрооборудования	электрооборудования	
		Уметь:	
		определять режимы	
		работы устройств	
		электрической тяги	
		рассчитывать требуемые	

		режимы работы тягового	
		электрооборудования	
ПК7	ИД-3 _{ПК7} Демонстрирует	Знать:	КМ-1 Теоретические основы моделирования (Контрольная работа)
	способность производить	способы расчетов	КМ-3 Построение модели конечного автомата для УЭТ с помощью
	расчет элементов тягового	элементов тягового	приложения Xcos Scilab (Лабораторная работа)
	электрооборудования	электрооборудования	
		Уметь:	
		осуществлять расчеты	
		тягового	
		электрооборудования	
ПК9	ИД-1 _{ПК9} Проводит	Знать:	КМ-1 Теоретические основы моделирования (Контрольная работа)
	моделирование физико-	основы теории подобия	КМ-5 Событийное и физическое моделирование (Лабораторная
	механических процессов с	для упрощения	работа)
	использованием	математического описания	
	информационных	и анализа объекта	
	технологий	Уметь:	
		обосновывать принятие	
		конкретного технического	
		решения при создании	
		электроэнергетического и	
		электротехнического	
		оборудования	
ПК9	$ИД-2_{\Pi K9}$ Проводит	Знать:	КМ-2 Компьютерные системы моделирования (Контрольная работа)
	моделирование	принципы построения и	КМ-6 Построение физической модели механической системы для УЭТ
	физических процессов в	функционирования систем	с помощью приложения Xcos Scilab (Лабораторная работа)
	натурных и масштабных	ТЯГОВОГО	
	условиях	электроснабжения	
		Уметь:	
		применять методы анализа	
		размерностей для	
		преобразования	
		исследуемой модели к	
		безразмерному виду	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Теоретические основы моделирования

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: По индивидуальному варианту задания каждый студент настраивает компьютерную модель и производит анализ полученных результатов моделирования, а также оценивает точность и эффективность модели.

Краткое содержание задания:

Промоделировать движение заданного типа транспортного средства

Контрольные вопросы/задания:

Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	
Знать: виды моделей, которые применяются	1.Отличие материальных и абстрактных
в исследованиях и разработках устройств	моделей.
электрической тяги	
Знать: способы расчетов элементов тягового	1.Процедура формирования эффективной
электрооборудования	модели.
Уметь: создавать модели исследуемых и	1.Составить блок-схему упрощённой
проектируемых устройств электрической	модели движения (ТС)
тяги для оценки параметров, характеристик	
и функционирования этих объектов	
Уметь: разбираться в функционировании	1.Продемонстрировать решение
систем тягового электрооборудования	дифференциального уравнения движения
	транспортного средства (ТС) с помощью
	соответствующей функции ИСМ Scilab
Уметь: обосновывать принятие конкретного	1.Продемонстрировать использование
технического решения при создании	функций языка ИСМ Scilab
электроэнергетического и	
электротехнического оборудования	

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: - даны правильные ответы не менее чем на 90 % вопросов, исключая вопросы, на которые студент должен дать свободный ответ - на все вопросы, предполагающие свободный ответ, студент дал правильный и полный ответ

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: - даны правильные ответы не менее чем на 75 % вопросов, исключая вопросы, на которые студент должен дать свободный ответ - на все вопросы, предполагающие свободный ответ, студент дал правильный, но допустил незначительные ошибки и не показал необходимой полноты

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: - даны правильные ответы не менее чем на 50 % вопросов, исключая вопросы, на которые студент должен дать свободный ответ - на все вопросы, предполагающие свободный ответ, студент дал непротиворечивый ответ или при ответе допустил значительные неточности и не показал полноты

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "не зачтено" выставляется если задание не выполнено в отведенный срок или результат не соответствует заданию

КМ-2. Компьютерные системы моделирования

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: По индивидуальному варианту задания каждый студент настраивает компьютерную модель и производит анализ полученных результатов моделирования, а также оценивает точность и эффективность модели.

Краткое содержание задания:

Промоделировать электромеханические процессы в тяговой электрической машине

Контрольные вопросы/задания:

Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине Знать: характеристики и режимы работы основного оборудования устройств электрической тяги	1.Основные уравнения математической модели тяговой электрической машины (ТЭМ) 2.Основные конструкционные параметры ТЭМ
Знать: принципы построения и функционирования систем тягового электроснабжения	1.Динамическое уравнение сил или моментов ТЭМ 2.Осуществить визуализацию электромагнитных процессов в ТЭМ
Уметь: строить характеристики основного оборудования устройств электрической тяги	1.Составить блок-схему упрощённой модели ТЭМ
Уметь: определять ограничения режимов работы подвижного состава	1. Рассчитать основные электромагнитные параметры ТЭМ
Уметь: рассчитывать требуемые режимы работы тягового электрооборудования	1.Продемонстрировать разгон и электрическое торможение ТЭМ

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: - даны правильные ответы не менее чем на 90 % вопросов, исключая вопросы, на которые студент должен дать свободный ответ - на все вопросы, предполагающие свободный ответ, студент дал правильный и полный ответ

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: - даны правильные ответы не менее чем на 75 % вопросов, исключая вопросы, на которые студент должен дать свободный ответ - на все вопросы, предполагающие свободный ответ, студент дал правильный, но допустил незначительные ошибки и не показал необходимой полноты

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: - даны правильные ответы не менее чем на 50 % вопросов, исключая вопросы, на которые студент должен дать свободный ответ - на все вопросы, предполагающие свободный ответ, студент дал непротиворечивый ответ или при ответе допустил значительные неточности и не показал полноты

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "не зачтено" выставляется если задание не выполнено в отведенный срок или результат не соответствует заданию

KM-3. Построение модели конечного автомата для УЭТ с помощью приложения Xcos Scilab

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: По индивидуальному варианту задания каждый студент настраивает компьютерную модель и производит анализ полученных результатов моделирования, а также оценивает точность и эффективность модели.

Краткое содержание задания:

Промоделировать процессы в электрической цепи фазы ТЭМ

Контрольные вопросы/задания:

контрольные вопросы/задания.	
Запланированные результаты обучения по дисциплине	Вопросы/задания для
	проверки
Знать: базовые программные и аппаратные средства	1. Уравнения
компьютерного моделирования для оценки различных	математической модели
параметров, характеристик и построения имитационных	электрической цепи
(ситуационных) моделей электрической тяги	2.Граф электрической
	цепи
Уметь: осуществлять расчеты тягового электрооборудования	1.Составить блок-схему
	модели электрической
	цепи ТЭМ

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: - даны правильные ответы не менее чем на 90 % вопросов, исключая вопросы, на которые студент должен дать свободный ответ - на все вопросы, предполагающие свободный ответ, студент дал правильный и полный ответ

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: - даны правильные ответы не менее чем на 75 % вопросов, исключая вопросы, на которые студент должен дать свободный ответ - на все

вопросы, предполагающие свободный ответ, студент дал правильный, но допустил незначительные ошибки и не показал необходимой полноты

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: - даны правильные ответы не менее чем на 50 % вопросов, исключая вопросы, на которые студент должен дать свободный ответ - на все вопросы, предполагающие свободный ответ, студент дал непротиворечивый ответ или при ответе допустил значительные неточности и не показал полноты

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "не зачтено" выставляется если задание не выполнено в отведенный срок или результат не соответствует заданию

KM-4. Построение модели электрической цепи для УЭТ с помощью приложения Xcos Scilab

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: По индивидуальному варианту задания каждый студент настраивает компьютерную модель и производит анализ полученных результатов моделирования, а также оценивает точность и эффективность модели.

Краткое содержание задания:

Промоделировать нагревание ТЭМ

Контрольные вопросы/задания:

Запланированные	результаты	обучени	оп к	Вопросы/задания для проверки
дисциплине				
Знать: ограничения	допустимых	режимов	работы	1. Уравнения нагревания ТЭМ
ЭПС	-	_		-
Знать: способы расч	етов требуемы	х режимов	работы	1. Уравнение баланса теплового
тягового электрообо	рудования			процесса в ТЭМ
Уметь: определять	режимы р	аботы ус	тройств	1.Составить блок-схему модели
электрической тяги				нагревания ТЭМ

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: - даны правильные ответы не менее чем на 90 % вопросов, исключая вопросы, на которые студент должен дать свободный ответ - на все вопросы, предполагающие свободный ответ, студент дал правильный и полный ответ

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: - даны правильные ответы не менее чем на 75 % вопросов, исключая вопросы, на которые студент должен дать свободный ответ - на все вопросы, предполагающие свободный ответ, студент дал правильный, но допустил незначительные ошибки и не показал необходимой полноты

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: - даны правильные ответы не менее чем на 50 % вопросов, исключая вопросы, на которые студент должен дать свободный ответ - на все вопросы, предполагающие свободный ответ, студент дал непротиворечивый ответ или при ответе допустил значительные неточности и не показал полноты

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "не зачтено" выставляется если задание не выполнено в отведенный срок или результат не соответствует заданию

КМ-5. Событийное и физическое моделирование

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: По индивидуальному варианту задания каждый студент настраивает компьютерную модель и производит анализ полученных результатов моделирования, а также оценивает точность и эффективность модели.

Краткое содержание задания:

Промоделировать тепловые процессы в силовом полупроводниковом приборе (СПП)

Контрольные вопросы/задания:

Запланированные	результаты	обучения	ПО	Вопросы/задания для проверки
дисциплине				
Знать: основы тес	ории подобия	для упрощ	ения	1.Какими способами можно
математического ог	тисания и аналі	иза объекта		уменьшить нагревание СПП
				2. Математическая модель
				нагревания СПП
Уметь: строить	характерист	ики основ	ного	1.Составить блок-схему модели
оборудования устро	ойств электрич	еской тяги		нагревания СПП

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: - даны правильные ответы не менее чем на 90 % вопросов, исключая вопросы, на которые студент должен дать свободный ответ - на все вопросы, предполагающие свободный ответ, студент дал правильный и полный ответ

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: - даны правильные ответы не менее чем на 75 % вопросов, исключая вопросы, на которые студент должен дать свободный ответ - на все вопросы, предполагающие свободный ответ, студент дал правильный, но допустил незначительные ошибки и не показал необходимой полноты

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: - даны правильные ответы не менее чем на 50 % вопросов, исключая вопросы, на которые студент должен дать свободный ответ - на все вопросы, предполагающие свободный ответ, студент дал непротиворечивый ответ или при ответе допустил значительные неточности и не показал полноты

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "не зачтено" выставляется если задание не выполнено в отведенный срок или результат не соответствует заданию

KM-6. Построение физической модели механической системы для УЭТ с помощью приложения Xcos Scilab

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: По индивидуальному варианту задания каждый студент настраивает компьютерную модель и производит анализ полученных результатов моделирования, а также оценивает точность и эффективность модели.

Краткое содержание задания:

Промоделировать логический автомат управления ТС

Контрольные вопросы/задания:

контрольные вопросы/задания.	
Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	
Знать: виды моделей, которые применяются в	1.В чём отличие логического
исследованиях и разработках устройств	автомата от комбинационной
электрической тяги	логической схемы
Уметь: создавать модели исследуемых и	1.Реализовать функцию ИЛИ с
проектируемых устройств электрической тяги для	помощью логических элементов
оценки параметров, характеристик и	И-НЕ
функционирования этих объектов	
Уметь: применять методы анализа размерностей	1.Реализовать с помощью
для преобразования исследуемой модели к	элементов И-НЕ арифметическое
безразмерному виду	суммирования одноразрядного
	числа

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: - даны правильные ответы не менее чем на 90 % вопросов, исключая вопросы, на которые студент должен дать свободный ответ - на все вопросы, предполагающие свободный ответ, студент дал правильный и полный ответ

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: - даны правильные ответы не менее чем на 75 % вопросов, исключая вопросы, на которые студент должен дать свободный ответ - на все вопросы, предполагающие свободный ответ, студент дал правильный, но допустил незначительные ошибки и не показал необходимой полноты

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: - даны правильные ответы не менее чем на 50 % вопросов, исключая вопросы, на которые студент должен дать свободный ответ - на все вопросы, предполагающие свободный ответ, студент дал непротиворечивый ответ или при ответе допустил значительные неточности и не показал полноты

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "не зачтено" выставляется если задание не выполнено в отведенный срок или результат не соответствует заданию

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

7 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

- 1. Что такое модель? Приведите примеры.
- 2. Что такое формализация задачи?

Процедура проведения

Устные ответы на вопросы билета

- I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины
- **1. Компетенция/Индикатор:** ИД- $1_{\Pi K5}$ Демонстрирует знания методов создания компьютерных моделей для устройств электрической тяги и тяговых подстанций

Вопросы, задания

1.В чём суть и каковы должны быть результаты этапа моделирования «Постановка задачи»?

Материалы для проверки остаточных знаний

- 1.Модель есть замещение изучаемого объекта другим объектом, который отражает: Ответы:
- а) все стороны данного объекта;
- б) некоторые стороны данного объекта;
- в) существенные стороны данного объекта;
- г) несущественные стороны данного объекта. Верный ответ: в) существенные стороны данного объекта;
- **2. Компетенция/Индикатор:** ИД- $2_{\Pi K5}$ Выполняет анализ компьютерных моделей устройств электрической тяги

Вопросы, задания

1. Чем отличаются модели структурно сложных систем от моделей простых объектов?

Материалы для проверки остаточных знаний

- 1. Правильные определения понятий приведены в пунктах
- 1) моделируемый параметр признаки и свойства объекта оригинала, которыми должна обязательно обладать модель;
- 2) моделируемый объект- предмет или группа предметов, структура или поведение которых исследуется с помощью моделирования;
- 3) закон поведение моделируемого объекта.

Ответы:

- a) 1-2-3; B) 1-3;
- 6) 2 3; Γ) 1 2.

Верный ответ: Γ) 1 – 2.

3. Компетенция/Индикатор: ИД-1_{ПК6} Демонстрирует знание характеристик и режимов работы основного оборудования тяговых подстанций

Вопросы, задания

1. Каковы основные принципы создания компьютерных моделей в системе SciLab?

Материалы для проверки остаточных знаний

1. Как называется граф, предназначенный для отображения подчиненности, наследования, вложенности и т.п. между объектами?

Ответы:

- а) схемой; в) таблицей;
- б) сетью; г) деревом.

Верный ответ: г) деревом.

4. Компетенция/Индикатор: ИД- $2_{\Pi K6}$ Демонстрирует понимание принципов построения и функционирования систем тягового электроснабжения

Вопросы, задания

1.Зачем нужно тестирование модели?

Материалы для проверки остаточных знаний

- 1. Как называется средство для наглядного представления состава и структуры системы? Ответы:
- а) таблица; в) текст;
- б) граф; г) рисунок.

Верный ответ: б) граф

5. Компетенция/Индикатор: ИД- $1_{\Pi K7}$ Демонстрирует знание ограничений допустимых режимов работы электроподвижного состава и способы их обеспечения

Вопросы, задания

1. Каково назначение этапа моделирования «Анализ результатов моделирования»?

Материалы для проверки остаточных знаний

1. Как называются модели, в которых на основе анализа различных условий принимается решение?

Ответы:

- а) словесные; в) табличные;
- б) графические; г) логические.

Верный ответ: г) логические.

6. Компетенция/Индикатор: ИД- $2_{\Pi K7}$ Демонстрирует способность производить расчет требуемых режимов работы тягового электрооборудования

Вопросы, задания

1. Каково назначение этапа моделирования «Разработка модели»?

Материалы для проверки остаточных знаний

1.Укажите в моделировании процесса исследования температурного режима комнаты цель моделирования:

Ответы:

- а) конвекция воздуха в комнате;
- б) исследование температурного режима комнаты;
- в) комната;

г) температура.

Верный ответ: б) исследование температурного режима комнаты;

7. Компетенция/Индикатор: ИД-3_{ПК7} Демонстрирует способность производить расчет элементов тягового электрооборудования

Вопросы, задания

1. Каковы средства и способы моделирования.

Материалы для проверки остаточных знаний

1. Укажите в моделировании процесса исследования температурного режима двигателя объект моделирования:

Ответы:

- а) конвекция воздуха;
- б) исследование температурного режима двигателя;
- в) двигатель;
- г) температура.

Верный ответ: в) двигатель;

8. Компетенция/Индикатор: ИД- $1_{\Pi K9}$ Проводит моделирование физико-механических процессов с использованием информационных технологий

Вопросы, задания

1. Что такое информационная модель? Приведите примеры.

Материалы для проверки остаточных знаний

1. Информационной моделью организации занятий является:

Ответы:

- а) свод правил поведения учащихся; в) расписание занятий;
- б) список группы; г) перечень учебников.

Верный ответ: в) расписание занятий

9. Компетенция/Индикатор: ИД- $2_{\Pi K9}$ Проводит моделирование физических процессов в натурных и масштабных условиях

Вопросы, задания

1.В чём различие натурной и информационной (абстрактной) модели.

Материалы для проверки остаточных знаний

- 1. Правильный порядок указанных этапов математического моделирования процесса:
- 1) анализ результата; 3) определение целей моделирования;
- 2) проведение исследования; 4) поиск математического описания.

Ответы:

Соответствует последовательности:

a)
$$3-4-2-1$$
; B) $2-1-3-4$;

6)
$$1-2-3-4$$
; Γ) $3-1-4-2$;

Верный ответ: a) 3 - 4 - 2 - 1

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: - даны правильные ответы не менее чем на 90 % вопросов, исключая вопросы, на которые студент должен дать свободный ответ - на все вопросы, предполагающие свободный ответ, студент дал правильный и полный ответ

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: - даны правильные ответы не менее чем на 75 % вопросов, исключая вопросы, на которые студент должен дать свободный ответ - на все вопросы, предполагающие свободный ответ, студент дал правильный, но допустил незначительные ошибки и не показал необходимой полноты

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: - даны правильные ответы не менее чем на 50 % вопросов, исключая вопросы, на которые студент должен дать свободный ответ - на все вопросы, предполагающие свободный ответ, студент дал непротиворечивый ответ или при ответе допустил значительные неточности и не показал полноты

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "не зачтено" выставляется если задание не выполнено в отведенный срок или результат не соответствует заданию

III. Правила выставления итоговой оценки по курсу