# Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.03.02 Электроэнергетика и электротехника

Наименование образовательной программы: Электромеханика, электрические и электронные

аппараты

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

## Оценочные материалы по дисциплине Теория автоматического управления

Москва 2025

### ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:



### СОГЛАСОВАНО:

Руководитель образовательной программы

Разработчик

| NO HOSO          | Подписано электрон           | ной подписью ФГБОУ ВО «НИУ «МЭИ» |  |
|------------------|------------------------------|----------------------------------|--|
| Sale Company and | Сведения о владельце ЦЭП МЭИ |                                  |  |
| MOM              | Владелец                     | Кузнецова Е.А.                   |  |
|                  | Идентификатор                | Re7bf1ad9-KuznetsovaYA-c9331b9   |  |

Заведующий выпускающей кафедрой

| a reconstruction of the second | Подписано электронн          | ой подписью ФГБОУ ВО «НИУ «МЭИ» |  |
|--------------------------------|------------------------------|---------------------------------|--|
|                                | Сведения о владельце ЦЭП МЭИ |                                 |  |
| -                              | Владелец                     | Киселев М.Г.                    |  |
| ¾ <u>M<b>⊙</b>N</u> ¾          | Идентификатор                | R572ca413-KiselevMG-f37ee096    |  |

М.Г. Киселев

Кузнецова

Д.В.

E.A.

Вершинин

### ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. РПК-3 Способен понимать общие принципы построения и функционирования систем автоматического управления
  - ИД-1 Демонстрирует понимание принципов построения и функционирования систем автоматического управления
  - ИД-2 Выполняет анализ простых систем автоматического управления

#### и включает:

### для текущего контроля успеваемости:

### Форма реализации: Выполнение задания

1. Выполнение лабораторной работы № 1 «Принципы автоматического управления» (Лабораторная работа)

### Форма реализации: Компьютерное задание

1. Выполнение лабораторной работы № 4 «Исследование линейных импульсных автоматических систем и исследование релейных систем автоматического регулирования методом фазовой плоскости» (Лабораторная работа)

### Форма реализации: Письменная работа

- 1. «Определение устойчивости САУ, структурная схема которой получена при выполнении КМ-2» (Контрольная работа)
- 2. «Составление структурной схемы САУ на основе системы дифференциальных уравнений, описывающей её работу. Определение её передаточной функции» (Контрольная работа)

### Форма реализации: Устная форма

- 1. Защита лабораторной работы № 1 «Принципы автоматического управления» (Лабораторная работа)
- 2. Защита лабораторной работы № 2 «Исследование качества систем автоматического управления» (Лабораторная работа)
- 3. Защита лабораторной работы № 3 «Коррекция систем автоматического управления» (Лабораторная работа)

### БРС дисциплины

### 5 семестр

### Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

КМ-1 Выполнение лабораторной работы № 1 «Принципы автоматического управления» (Лабораторная работа)

- КМ-2 «Составление структурной схемы САУ на основе системы дифференциальных уравнений, описывающей её работу. Определение её передаточной функции» (Контрольная работа)
- КМ-3 Защита лабораторной работы № 1 «Принципы автоматического управления» (Лабораторная работа)
- КМ-4 Защита лабораторной работы № 2 «Исследование качества систем автоматического управления» (Лабораторная работа)
- КМ-5 «Определение устойчивости САУ, структурная схема которой получена при выполнении КМ-2» (Контрольная работа)
- КМ-6 Защита лабораторной работы № 3 «Коррекция систем автоматического управления» (Лабораторная работа)
- КМ-7 Выполнение лабораторной работы № 4 «Исследование линейных импульсных автоматических систем и исследование релейных систем автоматического регулирования методом фазовой плоскости» (Лабораторная работа)

### Вид промежуточной аттестации – Зачет с оценкой.

|                                                      |          |     |     | Веса контрольных мероприятий, % |     |     |     |     |
|------------------------------------------------------|----------|-----|-----|---------------------------------|-----|-----|-----|-----|
| D                                                    | Индекс   | КМ- | КМ- | КМ-                             | КМ- | КМ- | КМ- | КМ- |
| Раздел дисциплины                                    | KM:      | 1   | 2   | 3                               | 4   | 5   | 6   | 7   |
|                                                      | Срок КМ: | 4   | 8   | 8                               | 12  | 14  | 14  | 15  |
| Общие понятия управления                             |          |     |     |                                 |     |     |     |     |
| Общие понятия управления                             |          | +   |     | +                               |     |     |     |     |
| Математическое описание л систем управления          | инейных  |     |     |                                 |     |     |     |     |
| Математическое описание л систем управления          | инейных  |     | +   |                                 |     |     |     |     |
| Устойчивость линейных сис<br>управления              | стем     |     |     |                                 |     |     |     |     |
| Устойчивость линейных систем<br>управления           |          |     |     |                                 | +   | +   | +   |     |
| Качество линейных САУ                                |          |     |     |                                 |     |     |     |     |
| Качество линейных САУ                                |          |     |     |                                 | +   | +   | +   |     |
| Дискретные линейные системы<br>управления            |          |     |     |                                 |     |     |     |     |
| Дискретные линейные системы<br>управления            |          |     |     |                                 |     |     |     | +   |
| Устойчивость и качество импульсных систем управления |          |     |     |                                 |     |     |     |     |
| Устойчивость и качество импульсных систем управления |          |     |     |                                 |     |     |     | +   |
| Нелинейные системы управления                        |          |     |     |                                 |     |     |     |     |
| Нелинейные системы управ.                            | ления    |     |     |                                 |     |     |     | +   |
|                                                      | Bec KM:  | 5   | 15  | 15                              | 20  | 20  | 20  | 5   |

### СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

### I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

| Индекс      | Индикатор               | Запланированные           | Контрольная точка                                              |
|-------------|-------------------------|---------------------------|----------------------------------------------------------------|
| компетенции |                         | результаты обучения по    |                                                                |
|             |                         | дисциплине                |                                                                |
| РПК-3       | ИД-1РПК-3 Демонстрирует | Знать:                    | КМ-1 Выполнение лабораторной работы № 1 «Принципы              |
|             | понимание принципов     | основы теории систем      | автоматического управления» (Лабораторная работа)              |
|             | построения и            | автоматического           | КМ-2 «Составление структурной схемы САУ на основе системы      |
|             | функционирования систем | управления, позволяющие   | дифференциальных уравнений, описывающей её работу. Определение |
|             | автоматического         | получать математическое   | её передаточной функции» (Контрольная работа)                  |
|             | управления              | описание систем           | КМ-3 Защита лабораторной работы № 1 «Принципы автоматического  |
|             |                         | управления, строить       | управления» (Лабораторная работа)                              |
|             |                         | теоретически и получать   |                                                                |
|             |                         | экспериментально их       |                                                                |
|             |                         | характеристики            |                                                                |
|             |                         | Уметь:                    |                                                                |
|             |                         | проводить расчёты и       |                                                                |
|             |                         | проектирование отдельных  |                                                                |
|             |                         | блоков и устройств систем |                                                                |
|             |                         | автоматизации и           |                                                                |
|             |                         | управления                |                                                                |
| РПК-3       | ИД-2РПК-3 Выполняет     | Знать:                    | КМ-4 Защита лабораторной работы № 2 «Исследование качества     |
|             | анализ простых систем   | методы анализа и          | систем автоматического управления» (Лабораторная работа)       |
|             | автоматического         | моделирования линейных    | КМ-5 «Определение устойчивости САУ, структурная схема которой  |
|             | управления              | и нелинейных технических  | получена при выполнении КМ-2» (Контрольная работа)             |
|             |                         | объектов и систем         | КМ-6 Защита лабораторной работы № 3 «Коррекция систем          |
|             |                         | Уметь:                    | автоматического управления» (Лабораторная работа)              |
|             |                         | выполнять анализ и синтез | КМ-7 Выполнение лабораторной работы № 4 «Исследование          |
|             |                         | простых систем            | линейных импульсных автоматических систем и исследование       |
|             |                         | автоматического           | релейных систем автоматического регулирования методом фазовой  |

|  |               | (П С С )                           |
|--|---------------|------------------------------------|
|  | vправления    | плоскости» (Лаоораторная работа)   |
|  | Jiipabiiaiiii | miotrotiin (viacoparopiian pacera) |

### II. Содержание оценочных средств. Шкала и критерии оценивания

### КМ-1. Выполнение лабораторной работы № 1 «Принципы автоматического управления»

Формы реализации: Выполнение задания

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 5

Процедура проведения контрольного мероприятия: Демонстрация выполнения

лабораторной работы.

### Краткое содержание задания:

Изучить принципы построения систем разомкнутого управления, управления по отклонению и комбинированного управления.

Исследовать статические характеристики двигателя постоянного тока как объекта управления.

Исследовать статические характеристики разомкнутых систем, статических и комбинированных систем управления.

Исследовать зависимости ошибок от параметров и структуры систем управления.

Контрольные вопросы/задания:

| Запланированные результаты | Вопросы/задания для проверки                     |
|----------------------------|--------------------------------------------------|
| обучения по дисциплине     |                                                  |
| Уметь: проводить расчёты и | 1.Объясните суть, преимущества и недостатки      |
| проектирование отдельных   | основных принципов автоматического управления.   |
| блоков и устройств систем  | 2.Объясните по регулировочной характеристике     |
| автоматизации и управления | двигателя, как осуществляется управление в САУ   |
|                            | скоростью вращения двигателя с принципом         |
|                            | регулирования по отклонению при                  |
|                            | пропорциональном законе управления.              |
|                            | 3.Покажите, при каких условиях скорость вращения |
|                            | двигателя в комбинированной системе не будет     |
|                            | зависеть от нагрузки (в установившемся режиме).  |
|                            | 4.Запишите уравнение статики и постройте         |
|                            | регулировочные и нагрузочные характеристики      |
|                            | двигателя.                                       |

### Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 100

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме и протокол выполнения лабораторной работы не содержит ошибочных результатов.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если задание выполнено в объеме не менее 90 % и протокол выполнения лабораторной работы содержит не более 5% ошибочных результатов.

### Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если задание выполнено в объеме не менее 70 % и протокол выполнения лабораторной работы содержит не более 15% ошибочных результатов.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если студентом не выполнены условия, предполагающие оценку «удовлетворительно».

## KM-2. «Составление структурной схемы САУ на основе системы дифференциальных уравнений, описывающей её работу. Определение её передаточной функции»

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: Работа проводится по вариантам, во

время практического занятия. Время на проведение - 45 минут.

### Краткое содержание задания:

Контрольная работа состоит из одной задачи на составление и преобразование структурной схемы линейной САУ.

Контрольные вопросы/задания:

| Запланированные результать                                                                                                                                                                | Вопросы/задания для проверки                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| обучения по дисциплине                                                                                                                                                                    |                                                                                                                                                              |
| Знать: основы теории систем автоматического управления позволяющие получати математическое описание систем управления, строити теоретически и получати экспериментально из характеристики | системе диффе-ренциальных уравнений и, используя правила структурных преобразований, определить передаточную функцию. Вариант 1: $\delta = x_{ex} - x_{exy}$ |

### Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 100

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «отлично», если задание выполнено правильно.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «хорошо», если задание выполнено с небольшими расчетными ошибками, но алгоритм его решения выбран правильно.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «удовлетворительно», если задание выполнено с грубыми ошибками, но алгоритм его решения выбран правильно.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «неудовлетворительно», если студент не смог наметить правильный путь решения задания или оно выполнено с грубыми ошибками, которые существенно повлияли на вид полученного ответа.

### КМ-3. Защита лабораторной работы № 1 «Принципы автоматического управления»

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 15

**Процедура проведения контрольного мероприятия:** Лабораторная работа принимается к защите при наличии оформленного в письменном виде отчета, содержащего протокол выполнения и обработки результатов проведения работы, а также принципиальные, функциональные и структурные схемы изучаемых систем. Каждому члену бригады выдается по одному вопросу на защиту. Защита проводится в устной форме в виде подготовки и изложения развернутого ответа. Время на подготовку ответа – не более 45 минут.

### Краткое содержание задания:

Контрольное мероприятие ориентировано на проверку знаний по разделу «Общие понятия управления».

Контрольные вопросы/задания:

| тонгроивные вопросы, задания     |                                               |
|----------------------------------|-----------------------------------------------|
| Запланированные результаты       | Вопросы/задания для проверки                  |
| обучения по дисциплине           |                                               |
| Уметь: проводить расчёты и       | 1.Выведите структурную схему двигателя        |
| проектирование отдельных блоков  | постоянного тока (объекта управления в        |
| и устройств систем автоматизации | лабораторной работе).                         |
| и управления                     | 2.Поясните, как Вы снимали статические        |
|                                  | характеристики разомкнутой, статической и     |
|                                  | комбинированной систем управления?            |
|                                  | 3.Объясните основные принципы автоматического |
|                                  | управления (по возмущению, по отклонению,     |
|                                  | комбинированный). Изобразите функциональные   |
|                                  | схемы САУ и дайте краткие пояснения к ним.    |

#### Описание шкалы оценивания:

### Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Защита лабораторной работы принимается с оценкой «отлично», если выполнены следующие условия: - отчет по лабораторной работе не содержит ошибок; - даны правильные и полные ответы не менее чем на 90% вопросов на защите работы.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Защита лабораторной работы принимается с оценкой «хорошо», если выполнены следующие условия: - отчет по лабораторной работе не содержит ошибок; - даны правильные и полные ответы не менее чем на 80% вопросов на защите работы.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Защита лабораторной работы принимается с оценкой «удовлетворительно», если выполнены следующие условия: - отчет по лабораторной работе не содержит ошибок; - даны правильные и полные ответы не менее чем на 60% вопросов на защите работы.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Защита лабораторной работы не принимается и ставится оценка «неудовлетворительно», если студентом не выполнены условия, предполагающие оценку «удовлетворительно».

### КМ-4. Защита лабораторной работы № 2 «Исследование качества систем автоматического управления»

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 20

**Процедура проведения контрольного мероприятия:** Лабораторная работа принимается к защите при наличии оформленного в письменном виде отчета, содержащего протокол выполнения и обработки результатов проведения работы. Каждому члену бригады выдается по теоретическому вопросу и задаче. Защита проводится в устной форме в виде подготовки и изложения развернутого ответа. Время на подготовку ответа — не более 45 минут.

### Краткое содержание задания:

Смоделировать САУ.

Построить временные и частотные характеристики и определить по ним показатели качества.

Сравнить показатели качества, полученные в ходе моделирования с заранее рассчитанными.

Контрольные вопросы/задания:

| Запланированные     | Вопросы/задания для проверки                              |
|---------------------|-----------------------------------------------------------|
| результаты обучения |                                                           |
| по дисциплине       |                                                           |
| Уметь: выполнять    | 1.Пример задачи на защиту:                                |
| анализ и синтез     | Записать передаточную функцию и построить асимптотическую |
| простых систем      | логарифмическую фазовую частотную характеристику (ЛФЧХ)   |
| автоматического     | и амплитудно-фазовую характеристику (АФХ) для             |
| управления          | минимально-фазовой системы, заданной логарифмической      |

| Запланированные результаты обучения по лисциплине | Вопросы/задания для проверки                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| по дисциплине                                     | частотной характеристикой (ЛАЧХ):  L(ω)  60  60                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                   | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                   | <ul> <li>2.Как определяются прямые показатели качества САУ (tp, σ, N, tmax)?</li> <li>3.Поясните, из каких соображений устанавливается время и шаг интегрирования при цифровом моделировании системы.</li> <li>4.Расскажите, как определить косвенные показатели качества системы по частотным (AΦX) и логарифмическим (ЛАЧХ, ЛФЧХ) функциям исследуемой системы.</li> <li>5.Что такое статическая ошибка системы, как она вычисляется, от чего зависит, как ее снять экспериментально?</li> </ul> |

#### Описание шкалы оценивания:

### Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Защита лабораторной работы принимается с оценкой «отлично», если выполнены следующие условия: - отчет по лабораторной работе не содержит ошибок; - даны правильные и полные ответы не менее чем на 90% вопросов на защите работы.

### Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Защита лабораторной работы принимается с оценкой «хорошо», если выполнены следующие условия: - отчет по лабораторной работе не содержит ошибок; - даны правильные и полные ответы не менее чем на 80% вопросов на защите работы.

### Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Защита лабораторной работы принимается с оценкой «удовлетворительно», если выполнены следующие условия: - отчет по лабораторной работе не содержит ошибок; - даны правильные и полные ответы не менее чем на 60% вопросов на защите работы.

### Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Защита лабораторной работы не принимается и ставится оценка «неудовлетворительно», если студентом не выполнены условия, предполагающие оценку «удовлетворительно».

### КМ-5. «Определение устойчивости САУ, структурная схема которой получена при выполнении КМ-2»

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Работа проводится по вариантам, во

время практического занятия. Время на проведение - 45 минут.

### Краткое содержание задания:

По заданной системе дифференциальных уравнений необходимо определить устойчивость САУ.

Контрольные вопросы/задания:

| контрольные вопросы/задани | и.                                                                                                                           |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Запланированные результаты | Вопросы/задания для проверки                                                                                                 |
| обучения по дисциплине     |                                                                                                                              |
| Уметь: выполнять анализ и  | 1.Определить, является ли устойчивой САУ, заданная                                                                           |
| синтез простых систем      | системой дифференциальных уравнений.                                                                                         |
| автоматического управления | Вариант 1:                                                                                                                   |
|                            | $\delta = x_{ex} - x_{ebx}$                                                                                                  |
|                            | $\begin{cases} \mathcal{S} = x_{ex} - x_{ebix} \\ T_1 \frac{d^2 x_1}{dt^2} + \frac{d x_1}{dt} = k_1 \mathcal{S} \end{cases}$ |
|                            | $T_2 \frac{d^2 x_2}{dt^2} + \frac{dx_2}{dt} = k_2 \delta$                                                                    |
|                            | $\begin{cases} x_3 = k_3(x_1 + x_2 + x_5) \end{cases}$                                                                       |
|                            | $x_5 = k_5 x_{ex}$                                                                                                           |
|                            | $T_4^2 \frac{d^2 x_{\text{sbix}}}{dt^2} + \frac{d x_{\text{sbix}}}{dt} + x_{\text{sbix}} = k_4 x_3$                          |
|                            | $T_1 = 2$ $T_2 = 1$ $T_4 = 0.75$<br>$k_1 = 3$ $k_2 = 5$ $k_3 = 2$ $k_4 = 4$ $k_5 = 1$                                        |
|                            | $k_1 = 3$ $k_2 = 5$ $k_3 = 2$ $k_4 = 4$ $k_5 = 1$                                                                            |
|                            |                                                                                                                              |
|                            |                                                                                                                              |

### Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 100

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «отлично», если задание выполнено правильно.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «хорошо», если задание выполнено с небольшими расчетными ошибками, но алгоритм его решения выбран правильно.

### Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «удовлетворительно», если задание выполнено с грубыми ошибками, но алгоритм его решения выбран правильно.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Контрольная работа считается выполненной на оценку «неудовлетворительно», если студент не смог наметить правильный путь решения задания или оно выполнено с грубыми ошибками, которые существенно повлияли на вид полученного ответа.

### КМ-6. Защита лабораторной работы № 3 «Коррекция систем автоматического управления»

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 20

**Процедура проведения контрольного мероприятия:** Лабораторная работа принимается к защите при наличии оформленного в письменном виде отчета, содержащего протокол выполнения и обработки результатов проведения работы. Каждому члену бригады выдается по вопросу и задаче. Защита проводится в устной форме в виде подготовки и изложения развернутого ответа. Время на подготовку ответа — не более 45 минут.

### Краткое содержание задания:

С учетом заданных показателей качества необходимо провести коррекцию заданной САУ тремя способами: последовательно, параллельно, при помощи ОС. Смоделировать три способа коррекции САУ и проверить удовлетворение полученных показателей качества заданию.

Контрольные вопросы/задания:

| Контрольные вопросы/задания: |                                                                                                    |  |  |  |
|------------------------------|----------------------------------------------------------------------------------------------------|--|--|--|
| Запланированные              | Вопросы/задания для проверки                                                                       |  |  |  |
| результаты обучения          |                                                                                                    |  |  |  |
| по дисциплине                |                                                                                                    |  |  |  |
| Уметь: выполнять             | 1.Пример задачи на защиту:                                                                         |  |  |  |
| анализ и синтез              | По заданной передаточной функции разомкнутой системы                                               |  |  |  |
| простых систем               | необходимо оценить необходимость коррекции и в случае                                              |  |  |  |
| автоматического              | необходимости провести последовательную коррекцию, с                                               |  |  |  |
| управления                   | учетом, что статическая ошибка не должна превышать значение                                        |  |  |  |
|                              | 0.01, а время регулирования должно быть меньше $0.2$ с.                                            |  |  |  |
|                              | $W(p) = \frac{p+1}{p(p+10)(p+2)(p+0.1)}$                                                           |  |  |  |
|                              | 2. Опишите порядок построения логарифмических частотных характеристик корректирующих устройств при |  |  |  |
|                              | последовательной, параллельной и коррекции с обратной связью.                                      |  |  |  |
|                              | 3. Что такое кинетическая ошибка системы, как она вычисляется                                      |  |  |  |
|                              | и от чего зависит? Как снять значение кинетической ошибки при                                      |  |  |  |
|                              | цифровом моделировании скорректированной системы?                                                  |  |  |  |

| Запланированные     | Вопросы/задания для проверки                                |
|---------------------|-------------------------------------------------------------|
| результаты обучения |                                                             |
| по дисциплине       |                                                             |
|                     | 4. Каковы алгоритмы выбора последовательного, параллельного |
|                     | и корректирующего устройства в цепи обратной связи?         |

### Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Защита лабораторной работы принимается с оценкой «отлично», если выполнены следующие условия: - отчет по лабораторной работе не содержит ошибок; - даны правильные и полные ответы не менее чем на 90% вопросов на защите работы.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Защита лабораторной работы принимается с оценкой «хорошо», если выполнены следующие условия: - отчет по лабораторной работе не содержит ошибок; - даны правильные и полные ответы не менее чем на 80% вопросов на защите работы.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Защита лабораторной работы принимается с оценкой «удовлетворительно», если выполнены следующие условия: - отчет по лабораторной работе не содержит ошибок; - даны правильные и полные ответы не менее чем на 60% вопросов на защите работы.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Защита лабораторной работы не принимается и ставится оценка «неудовлетворительно», если студентом не выполнены условия, предполагающие оценку «удовлетворительно».

## КМ-7. Выполнение лабораторной работы № 4 «Исследование линейных импульсных автоматических систем и исследование релейных систем автоматического регулирования методом фазовой плоскости»

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 5

**Процедура проведения контрольного мероприятия:** Демонстрация выполнения лабораторной работы.

### Краткое содержание задания:

- 1. Смоделировать замкнутую импульсную систему и зафиксировать вид сигналов на входе, выходе системы, сигнал ошибки до и после импульсного элемента. Определить предельный коэффициент усиления импульсной САР. Определить установившееся значение ошибки и сравнить это значение с полученным в домашней подготовке.
- 2. Смоделировать замкнутую нелинейную систему 2-го порядка. Для двух нелинейностей и начальных условий, зафиксировать фазовые портреты и переходные процессы.

### Контрольные вопросы/задания:

| Запланированные результаты | Вопросы/задания для проверки                      |
|----------------------------|---------------------------------------------------|
| обучения по дисциплине     |                                                   |
| Знать: методы анализа и    | 1. Каковы дискретные изображения Лапласа типовых  |
| моделирования линейных и   | входных сигналов (единичного импульса, единичной  |
| нелинейных технических     | ступенчатой функции, линейно возрастающего        |
| объектов и систем          | сигнала)? Выведите дискретные изображения Лапласа |
|                            | этих сигналов.                                    |
|                            | 2.Каким образом можно получить дискретную         |
|                            | передаточную функцию разомкнутой системы по       |
|                            | известной непрерывной передаточной функции и      |
|                            | известной форме импульсов на выходе импульсного   |
|                            | элемента?                                         |
|                            | 3. Дайте определение фазовой плоскости, фазовой   |
|                            | траектории, фазового портрета, изображающей точки |
|                            | особых точек, особых траекторий.                  |

### Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 100

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если задание выполнено в полном объеме и протокол выполнения лабораторной работы не содержит ошибочных результатов.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если задание выполнено в объеме не менее 90 % и протокол выполнения лабораторной работы содержит не более 5% ошибочных результатов.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если задание выполнено в объеме не менее 70 % и протокол выполнения лабораторной работы содержит не более 15% ошибочных результатов.

Оценка: 2 («неудовлетворительно»)

*Описание характеристики выполнения знания:* Оценка "неудовлетворительно" выставляется, если студентом не выполнены условия, предполагающие оценку «удовлетворительно».

### СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

### 5 семестр

Форма промежуточной аттестации: Зачет с оценкой

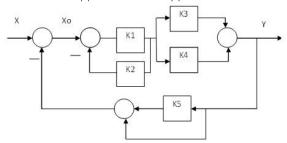
### Пример билета

\_

### Процедура проведения

Зачет проводится по совокупности результатов текущего контроля успеваемости. Время на проведение зачета - 0,3 часа на одного студента.

### I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

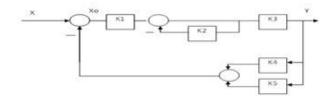

**1. Компетенция/Индикатор:** ИД-1<sub>РПК-3</sub> Демонстрирует понимание принципов построения и функционирования систем автоматического управления

### Вопросы, задания

- 1.Общие понятия управления.
- 2. Математическое описание линейных систем управления.

### Материалы для проверки остаточных знаний

1.Найти выходной сигнал Y и сигнал ошибки Xо, вычисляя сигналы из уравнений элементов при следующих значениях коэффициентов: K1=2, K2=3, K3=5, K4=1, K5=4, если на вход системы подавать сигнал X=1:




### Ответы:

- a) 5/8 1/8
- б) 10/54 4/54
- в) 16/9 1/9
- г) 60/83 35/83
- д) 25/15 5/15
- e) 12/67 7/67

Верный ответ: е

2.Найти выходной сигнал Y и сигнал ошибки Xo, вычисляя сигналы из уравнений элементов при следующих значениях коэффициентов: K1=2, K2=3, K3=5, K4=1, K5=4, если на вход системы подавать сигнал X=1:



#### Ответы:

- a) 10/54 4/54
- б) 16/9 1/9
- в) 60/83 35/83
- г) 25/15 5/15
- д) 16/90 1/90

Верный ответ: а

- 3. Какие динамические звенья называются минимально- и неминимально-фазовыми? Ответы:
- а) Передаточные функции минимально-фазовых звеньев имеют левые полюса и нули.
- б) Неминимально-фазовые звенья описываются передаточными функциями с левыми нулями и полюсами.
- в) Передаточные функции неминимально-фазовых звеньев могут иметь правые полюса или нули.
- г) Коэффициенты числителя и знаменателя передаточных функций минимально-фазовых звеньев положительны.
- д) Коэффициенты передаточных функций неминимально-фазовых звеньев положительны.

Верный ответ: а, в

4. Что такое амплитудно-частотная характеристика?

#### Ответы:

- a) A(w) = Aвыx(w)/Aвx(w)
- б)  $\Phi(w) = \Phi_{B \mapsto X}(w) / \Phi_{B \mapsto X}(w)$
- в)  $\Phi(w) = \Phi_{B \mapsto X}(w) \Phi_{B \mapsto X}(w)$
- $\Gamma$ ) W(jw)=Xвых(w)/Xвх(w)

Верный ответ: а

5. Что такое фазочастотная характеристика?

#### Ответы:

- а) A(w)=Aвыx(w)/Aвx(w)
- б)  $\Phi(w) = \Phi_{B \mapsto X}(w) / \Phi_{B \times X}(w)$
- B) A(w)=Aвых(w)-Aвх(w)
- $\Gamma$ ) W(jw)=Xвых(w)/Xвх(w)
- д)  $\Phi(w) = \Phi_{BHX}(w) \Phi_{BX}(w)$

Верный ответ: д

6. Какие входные сигналы надо подавать на объекты управления для получения их переходных и весовых (импульсных переходных) характеристик)?

#### Ответы:

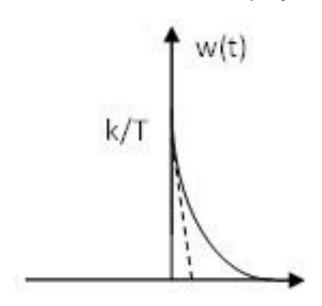
- а) единичная ступенчатая функция, единичный импульс
- б) линейно возрастающая функция, единичная ступенчатая функция
- в) единичный импульс, линейно возрастающая функция

Верный ответ: а

7. Дайте определение передаточной функции и комплексного коэффициента усиления звена или системы.

#### Ответы

а) W(jw)=Xвых(jw)/Xвx(jw),  $\Phi=\Phiвых-\Phiвх$ 

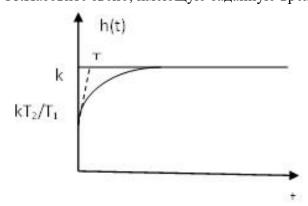

- б) W(p)=Xвыx(p)/Xвx(p),W(jw)=Xвыx(jw)/Xвx(jw)
- в) W(jw)=Xвых(jw)/Xвх(jw),W(p)=Xвых(p)/Xвх(p)

Верный ответ: б

- 8. Как связаны весовая (импульсная переходная) и переходная характеристики звена? Ответы:
- a) h(t)=dw(t)/dt
- δ) h(t)=dw(t)/dt
- $\mathbf{B}) \mathbf{w}(t) = \int \mathbf{h}(t) dt$
- $\Gamma$ )  $W(t) = \int_{0}^{\infty} h(t) dt$

Верный ответ: б

9. Назовите звено, имеющее заданную временную характеристику




### Ответы:

- а) Безынерционное
- б) Интегрирующее
- в) Инерционное
- г) Упругое дифференцирующее
- д) Упругое интегрирующее

Верный ответ: в

10. Назовите звено, имеющую заданную временную характеристику



### Ответы:

- а) Безынерционное
- б) Интегрирующее

- в) Инерционное
- г) Упругое дифференцирующее
- д) Упругое интегрирующее

Верный ответ: д

**2. Компетенция/Индикатор:** ИД-2<sub>РПК-3</sub> Выполняет анализ простых систем автоматического управления

### Вопросы, задания

- 1. Устойчивость линейных систем управления.
- 2. Качество линейных САУ.
- 3. Дискретные линейные системы управления.
- 4. Устойчивость и качество импульсных систем управления.
- 5. Нелинейные системы управления.

### Материалы для проверки остаточных знаний

- 1. Что является необходимым и достаточным условием устойчивости линейной системы? Ответы:
- а) все корни характеристического уравнения левые
- б) все корни характеристического уравнения правые
- в) все коэффициенты характеристического уравнения положительные
- г) характеристическое уравнение не содержит корней на мнимой оси Верный ответ: а
- 2. Что из перечисленного не относится к прямым показателям качества?

Ответы:

- а) запас по фазе
- б) время регулирования
- в) статическая ошибка
- г) перерегулирование

Верный ответ: а

3.Сколько положения равновесия имеет нелинейная система?

Ответы:

- а) одно
- б) одно устойчивое и несколько неустойчивых
- в) их количество определяется свойствами динамической системы

Верный ответ: в

4. Как называются системы, в которых происходит квантование сигнала и по времени, и по уровню?

Ответы:

- а) импульсными
- б) цифровыми
- в) релейными
- г) разрывными

Верный ответ: б

5. Что является необходимым и достаточным условием устойчивости линейной ИСАУ на плоскости Z?

Ответы:

- а) все корни характеристического уравнения левые
- б) все корни характеристического уравнения правые
- в) все корни характеристического уравнения лежат вне окружности единичного радиуса
- $\Gamma$ ) все корни характеристического уравнения лежат внутри окружности единичного радиуса

Верный ответ: г

### II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90 Описание характеристики выполнения знания: Оценка «отлично» выставляется, если задание выполнено в полном объеме или имеет несущественные погрешности.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка «хорошо» выставляется, если задание выполнено в полном объеме, но имеется не более 2 ошибок.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка «удовлетворительно» выставляется, если задание выполнено не менее, чем на 60%.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка «неудовлетворительно» выставляется, если задание выполнено менее, чем на 60%.

### III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ».