Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.03.02 Электроэнергетика и электротехника

Наименование образовательной программы: Электромеханика, электрические и электронные

аппараты

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Теоретическая механика

Москва 2025

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

Сведения о владельце ЦЭП МЭИ

Владелец Гавриленко А.Б.

Идентификатор Rfc797ba0-GavrilenkoAB-386ea3e

СОГЛАСОВАНО:

Руководитель образовательной программы

Разработчик

NOSO NOSO	Подписано электрон	ной подписью ФГБОУ ВО «НИУ «МЭИ»			
	Сведения о владельце ЦЭП МЭИ				
	Владелец	Кузнецова Е.А.			
» Mon	Идентификатор	Re7bf1ad9-KuznetsovaYA-c9331b9			

Е.А. Кузнецова

Гавриленко

А.Б.

Заведующий выпускающей кафедрой

a recognitional state	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»	
MOM	Сведения о владельце ЦЭП МЭИ		
	Владелец	Киселев М.Г.	
	Идентификатор	R572ca413-KiselevMG-f37ee096	

М.Г. Киселев

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

1. ОПК-4 Способен применять методы анализа и моделирования, теоретического и экспериментального исследования при решении практических задач

ИД-1 Демонстрирует понимание физических явлений и применяет законы механики, термодинамики, электричества и магнетизма

и включает:

для текущего контроля успеваемости:

Форма реализации: Письменная работа

- 1. Динамика (Контрольная работа)
- 2. Кинематика плоского движения (Контрольная работа)
- 3. Кинематика сложного движения. Сферическое движение (Контрольная работа)
- 4. Статика плоских систем сил (Контрольная работа)
- 5. Статика произвольных систем сил (Контрольная работа)

БРС дисциплины

2 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Статика плоских систем сил (Контрольная работа)
- КМ-2 Статика произвольных систем сил (Контрольная работа)
- КМ-3 Кинематика плоского движения (Контрольная работа)
- КМ-4 Кинематика сложного движения. Сферическое движение (Контрольная работа)
- КМ-5 Динамика (Контрольная работа)

Вид промежуточной аттестации – Экзамен.

	Веса контрольных мероприятий, %						
Раздел дисциплины	Индекс	KM-1	KM-2	KM-3	KM-4	KM-5	
т аздел дисциплины	KM:						
	Срок КМ:	4	8	11	13	15	
Статика							
Статика плоских систем сил		+	+				
Произвольные системы сил		+	+				

Фермы	+	+			
Кинематика					
Кинематика точки			+	+	
Плоское движение			+	+	
Сложное движение точки.			+	+	
Сферическое движение			+	+	
Динамика					
Динамика точки					+
Теоремы динамики точки и системы					+
Аналитическая механика					+
Bec KM:	20	20	20	20	20

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	-	результаты обучения по	
		дисциплине	
ОПК-4	ИД-10ПК-4 Демонстрирует	Знать:	КМ-1 Статика плоских систем сил (Контрольная работа)
	понимание физических	Аксиомы и уравнения	КМ-2 Статика произвольных систем сил (Контрольная работа)
	явлений и применяет	статики	КМ-3 Кинематика плоского движения (Контрольная работа)
	законы механики,	Законы кинематики	КМ-4 Кинематика сложного движения. Сферическое движение
	термодинамики,	Теоремы динамики точки и	(Контрольная работа)
	электричества и	системы	КМ-5 Динамика (Контрольная работа)
	магнетизма	Вывод математических	
		формулировок теорем	
		динамики и уравнения	
		Лагранжа 2 рода	
		Уметь:	
		Находить скорости и	
		ускорения точек	
		механизма	
		Определять реакции опор	
		конструкции	
		Решать задачи на	
		составление уравнений	
		динамики системы по	
		методике Лагранжа	
		Составлять и решать	
		уравнения движения точки	
		и системы тел	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Статика плоских систем сил

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Решение задачи.

Краткое содержание задания:

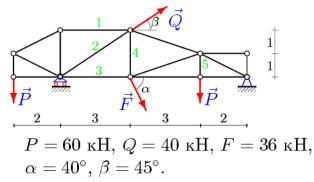


Figure 1 Задача. Найти усилие в стержнях 1-5

Контрольные вопросы/задания:

Запланированные	Вопросы/задания для проверки
результаты обучения по	
дисциплине	
Знать: Аксиомы и уравнения	1.Сечение Риттера
статики	2.Момент трения качения
	3. Как меняется главный момент системы при перемене
	центра приведения?
	4. Чем главный вектор отличается от равнодейств
Уметь: Определять реакции	1.Решить задачу на определение реакций опор составной
опор конструкции	конструкции
	$P=7$ к $H,\ Q=3$ к $H,\ \alpha=60^\circ,\ \beta=60^\circ,\ AB=4$ м, $BC=11$ м, $CD=6$ м, $DE=5$ м, $CN=3$ м, $BK=3$ м. $LC=7$ м.

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-2. Статика произвольных систем сил

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Решение задачи и ответ на вопрос.

Краткое содержание задания:

Решить задачу на определение реакций опор

Контрольные вопросы/задания:

Запланированные ре	зультаты Е	Вопросы/задания для проверки
обучения по дисциплине		
Знать: Аксиомы и у	равнения	1.Минимальный момент приведения
статики		2.Шаг винта
		3.Скалярный инвариант
		4.Векторный инвариант
Уметь: Определять реакц конструкции	ии опор	Однородная прямоугольная горизонтальная плита весом G опирается на шесть невесомых шарнирно закрепленных по концам стержней. Вдоль ребра плиты действует сила F . Определить усилия в стержнях (в кН). 3 адача 13.1. 1. $F = 56 \text{ кH}, G = 180 \text{ кH}.$ Figure 3 Задача Горизонтальный вал весом G может вращаться в цилиндрических шарнирах A и B . К шкиву 1 приложено нормальное давление N и касательная сила сопротивления F , пропорциональная N . На шкив 2 действуют силы натижения ремней T_1 и T_2 . Груз Q висит на нити, навитой на шкив 3 . Определить силу давления N и реакции шарниров в условии равновесия вала. Учесть веса шкивов P_1 , P_2 , P_3 . Все нагрузки действуют в вертикальной плоскости. Силы даны в ньогонах, размеры — в сантиметрах. Кирсанов M . M . Решебник. Теоретическая механика/Под ред. M . M . Кириллова.— M .: ФИЗМАТЛИТ, 2008. — M .

Запланированные рез	зультаты	Вопросы/задания для проверки
обучения по дисциплине		
		Figure 4 Задача

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-3. Кинематика плоского движения

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Дается задача и несколько вопросов.

Краткое содержание задания:

Найти скорости точек механизма

Контрольные вопросы/задания:

		Вопросы/задания для проверки
обучения по дисциплине		
Уметь: Находить сп ускорения точек механиз	корости и ма	Механизм изображен в произвольном положении, определяемом некоторым углом φ . Задана угловая скорость одного из звеньев (c^{-1}) или скорость центра диска (cM/c). Длины звеньев даны в сантиметрах, радиус диска равен 5 см. Заданы координаты шарнира C и ордината оси диска в осях с началом в шарнире O . Диск катится без проскальзывания. Найти угловые скорости всех звеньев механизма и скорость центра диска при $\varphi = \varphi_0$. Задача 27.1. $\omega_{OA_z} = 44$, $BC=10$, $DE = BE = 10$, $OA = 6$, $AD = 11$, $x_C = 26$, $y_C = -1$, $y_E = -3$, $\varphi_0 = 0$.

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-4. Кинематика сложного движения. Сферическое движение

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Задача и два вопроса.

Краткое содержание задания:

Найти скорость и ускорение точки или муфты в механизме

Контрольные вопросы/задания:

Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
Знать: Законы кинематики	1. Что такое переносная скорость?
	2. Что такое относительная скорость?
	3.Что такое абсолютное ускорение?
Уметь: Находить скорости и ускорения точек механизма	V K V

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-5. Динамика

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Необходимо решить задачу и

ответить на вопросы.

Краткое содержание задания:

Дана механическая система с 1 или 2 степенями свободы. Составить выражение для кин. энергии и уравнение движения в форме Лагранжа.

Контрольные вопросы/задания:

контрольные вопросы/задания.	
Запланированные результаты	Вопросы/задания для проверки
обучения по дисциплине	
Знать: Вывод математических	1.Запишите уравнение Лагранжа 2 рода
формулировок теорем динамики и	
уравнения Лагранжа 2 рода	
Знать: Теоремы динамики точки и	1.Тензор инерции.
системы	2.Обобщенная сила. Определение.
Уметь: Решать задачи на составление уравнений динамики системы по методике Лагранжа	 Цилиндр радиуса R жестко соединен с однородным стержнем массой m₁ длиной a. Цилиндр вращается вокруг неподвижной оси и интью связан с внутренним ободом блока массой m₂. Радиусы блока R₀ и r₀, момент инерции J₀. Составить уравнение движения системы. За обобщенную координату принять φ. Оси цилиндров соединены спарником. Верхний цилиндр катится без проскальзывания по пластинке, скользящей по вертикальной плоскости. Нижний цилиндр находится в зацеплении с верхним и катится по горизонтальной поверхности. Радиусы цилиндров R. Масса верхнего цилиндра m₁, масса пластинки m₂. К нижнему цилиндру приложен момент M. Составить уравнение движения системы. За обобщенную координату принять угол поворота спарника φ.
Уметь: Составлять и решать уравнения движения точки и системы тел	На вертикальном штоке шарнирно закреплен однородный диск 1 радиуса R массой m_1 . Диск жестко соединен со стержнем AO . Масса горизонтального штока — m_2 . К диск уприложен момент M , к штоку — сила F ; $AO = a$. Составить уравнение движения системы. За обобщенную координату принять φ .

Запланированные	результаты	Вопросы/задания для проверки
обучения по дисциплине		
		Точка массой 2197 кг движется с постоянной скоростью 3 м/с по гладкой параболической направляющей $y=(5/24)x^2$. Найти реакцию направляющей при $x=1$ м.
		3.Решить задачу
		Воздушный шар весом 550 кН поднимается вверх с ускорением. Сила сопротивления воздуха 45 кН. Если бы сила сопротивления была бы равна 50 кН, то ускорение было бы в два раза меньше. Найти подъемную сила шара.

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

2 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

1. Аксиомы статики 2. Теорема трапеции

На вертикальном штоке шарнирно закреплен однородный диск 1 радиуса R массой m_1 . Диск жестко соединен со стержнем AO. Масса горизонтального штока — m_2 . К дискуприложен момент M, к штоку — сила F; AO = a. Составить уравнение движения системы. За обобщенную координату принять φ .

Figure 7 Задача

Процедура проведения

За 60 мин в студент отвечает (письменно) на 2 теоретических вопроса и решает (в общем виде) задачу

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД- $1_{O\Pi K-4}$ Демонстрирует понимание физических явлений и применяет законы механики, термодинамики, электричества и магнетизма

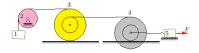
Вопросы, задания

1.

- 1. <u>Сила</u> как вектор. Системы сил (сходящиеся, <u>параллельные</u>, плоская система). Эквивалентные системы сил. <u>mp3</u>. Уравновешенная система. Равнодействующая. Уравновешивающая сила. <u>Аксиомы</u>. Связи.<u>mp3</u>
- 2. Равнодействующая системы сходящихся сил. Главный вектор. <u>Условие</u> равновесия системы сходящихся сил.
- 3. Момент силы относительно центра и относительно оси. Свойства пары сил.
- 4. Условие равновесия произвольной системы сил.
- 5. <u>Приведение системы сил к центру.</u> Варианты <u>условия равновесия плоской</u> системы сил. Статические инварианты. Динама. Видео
- 6. Минимальный момент приведения. Центральная винтовая ось.
- 7. <u>Расчет</u> фермы. <u>Метод Риттера</u> и метод вырезания узлов. Сопоставление методов. Леммы о нулевых стержнях.
- 8. Распределенная нагрузка. Трение скольжения и трение качения.
- 9. Способы задания движения точки. Скорость и ускорение точки в декартовой системе координат. Трехгранник Френе. Соприкасающаяся плоскость, нормальная, спрямляющая. Нормаль, касательная, бинормаль.
- 10. Кинематика точки. Полярные координаты.
- 11. Скорость и <u>ускорение</u> точки в естественных осях. Угол смежности. Кривизна кривой. Радиус кривизны. Нормальное и касательное ускорение. Физический смысл компонент ускорения в естественных осях.
- 12. Простейшие движения твердого тела. <u>Поступательное движение.</u> Закон движения. Скорости и ускорения точек тела. <u>Вращательное движение.</u> Закон движения. Угловая скорость и угловое ускорение тела. (mp3)

- 13. Вектора угловой скорости и углового ускорения. Замедленное и ускоренное вращение. Равномерное и равноускоренное (замедленное) движение. Формула Эйлера для скорости точки тела. Распределение скоростей в теле.
- 14. Центростремительное и вращательное ускорение. <u>Формула Ривальса.</u> Распределение ускорений в теле.
- 15. Плоское движение. Закон движения. Зависимость (или независимость) уравнений закона движения от выбора полюса. Скорости точек. Кинематические графы. План скоростей
- 16. Ускорения точек тела при плоском движении
- 17. Теорема о скоростях точек неизменяемого отрезка.
- 18. Уравнение трех угловых скоростей. Теорема трапеции. Следствие.
- 19. Теорема о концах векторов скоростей точек неизменяемого отрезка.
- 20. <u>Мгновенный центр скоростей.</u> Существование и единственность. Частные случаи положения МЦС.
- 21. Определение ускорений точек при плоском движении (пример). (youtube)
- 22. Сложное движение точки. Относительное, переносное и абсолютное движение.
- 23. Сложение скоростей. Сложение ускорений. Ускорение Кориолиса. Правило Жуковского. МРЗ
- 24. Сферическое движение. Кинематические уравнения Эйлера в проекции на подвижные оси
- 25. Формула поворота Родрига.
- 26. Динамика точки. Две задачи динамики. (mp3)
- 27. Динамика системы. Уравнение движения.
- 28. Теорема о движении центра масс системы.
- 29. Теорема об изменении количества движения системы.
- 30. Теорема об изменении момента количества движения системы.
- 31. Механическая (материальная) система. Силы внутренние и внешние. Масса системы. <u>Центр</u> масс. Моменты инерции. mp3
- 32. Вычисление кинетической энергии тела. (Тарг С.М., Николаи Е.Л., Яблонский А.А.)
- 33. Момент инерции тела относительно произвольной оси. Тензор инерции.
- 34. Кинетическая энергия пространственного движения тела.
- 35. Принцип Даламбера. Силы инерции. Классификация связей. Возможные перемещения, число степеней свободы, обобщенные координаты.
- 36. Принцип возможных перемещений. Определение реакций опор с помощью <u>принципа</u> возможных перемещений.
- 37. Общее уравнение динамики. Обобщенные силы.
- 38. Вывод уравнения Лагранжа 2-го рода.
- 39. Уравнения Рауса
- 40. Уравнения Гамильтона
- 41. Теорема Эйлера о движении жидкости.
- 42. Решение задач с двумя степенями свободы с помощью уравнения Лагранжа 2-го рода. (youtube)
- 43. Поле сил. Потенциальные силы. Условие потенциальности поля. Потенциальная энергия
- 44. Динамические уравнения Эйлера.
- 45. Функция Лагранжа. Уравнение Лагранжа 2-го рода для потенциальных полей.
- 46. Вращение тела вокруг неподвижной оси. <u>Динамические</u> реакции. <u>Задача балансировки с помощью двух масс.</u>
- 47. Колебания механических систем с одной степенью свободы. <u>Устойчивость по Ляпунову. Теорема</u> <u>Лагранжа-Дирихле. mp3</u>
- 48. Колебания механических систем с двумя степенями свободы. Коэффициент формы.
- 49. <u>Теория удара</u>. Коэффициент <u>восстановления</u>. Абсолютно упругий и абсолютно неупругий удар. <u>Косой удар. Теорема Карно.(видео) Центр удара. mp3</u>
- 50. Удар по пластине.
- 51. Удар по системе тел.

- 52. Несвободное движение точки. Уравнение Лагранжа 1-го рода. Гладкая поверхность.
- 53. Уравнение Мещерского. Формула Циолковского


Цилиндр радиуса R жестко соединен с однородным стержнем массой m_1 длиной a. Цилиндр вращается вокруг неподвижной оси и нитью связан с внутренним ободом блока массой m_2 . Радиусы блока R_0 и r_0 , момент инерции J_0 . Составить уравнение движения системы. За обобщенную координату принять φ .

2.

Оси цилиндров соединены спарником. Верхний цилиндр катится без проскальзывания по пластинке, скользящей по вертикальной плоскости. Нижний цилиндр находится в защеплении с верхним и катится по горизонтальной поверхности. Радиусы цилиндров R. Масса верхнего цилиндра m_1 , масса пластинки m_2 . К нижнему цилиндру приложен момент M. Составить уравнение движения системы. За обобщенную координату принять угол поворота спарника φ .

3.

 $\begin{array}{l} R_3=4,\,r_3=2,\,\rho_3=3,\\ R_4=4,\,r_4=2,\,\rho_4=3,\\ m_1=9,\,m_2=4,\\ m_3=256,\,m_4=192,\\ m_5=32. \end{array}$

4.

Figure 8 Найти приведенные массы системы

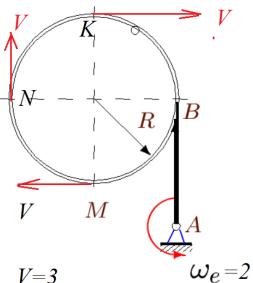
Материалы для проверки остаточных знаний

- 1.Система уравнений равновесия плоской системы сил содержит Ответы:
 - 1. Два уравнения 2. Три уравнения 3. Четыре уравнения Верный ответ: 2 Три уравнения
- 2. Минимальный момент приведения

Ответы:

1) $M^*=I/R$; 2) F^*d ; 3)0

Верный ответ: 1)


3.Шаг винта (статика)

Ответы:

1) p=M*/R; 2)p=I/R; 3) p=1

Верный ответ: 1)

4. Куда направлен вектор ускорения Кориолиса точки К, движущейся по ободу, вращающемуся вокруг оси в точке А?

Ответы:

1) Вверх 2) вниз 3) =0 4) влево Верный ответ: 1) 5. Корабль движется по меридиану от Южного полюса к Северному. Максимально по величине ускорение Кориолиса на ...

Ответы:

1) Северном полюсе 2) Экваторе 3) на широте 45 градусов

Верный ответ: 1)

6.Сколько стержней в сечении Риттера?

Ответы:

1) два 2) три 3) четыре 4) ни одного Верный ответ: 2

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

ІІІ. Правила выставления итоговой оценки по курсу

Отлично, если решена задача и есть ответы на вопросы.