Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.03.02 Электроэнергетика и электротехника

Наименование образовательной программы: Электромеханика, электрические и электронные

ппараты

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Электронные аппараты для систем с возобновляемыми источниками энергии

Москва 2024

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Разработчик

СОГЛАСОВАНО:

Руководитель образовательной программы

NASO TO THE TANK OF THE PARTY O	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»			
Sale Company and	Сведения о владельце ЦЭП МЭИ				
	Владелец	Кузнецова Е.А.			
» <u>МЭИ</u> «	Идентификатор	Re7bf1ad9-KuznetsovaYA-c9331b9			

Е.А. Кузнецова

К.В. Крюков

Заведующий выпускающей кафедрой

COSO ACT	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»		
2 HH 100 HH 10	Сведения о владельце ЦЭП МЭИ			
	Владелец Киселев М.Г.			
» <u>МЭИ</u> »	Идентификатор	R572ca413-KiselevMG-f37ee096		

М.Г. Киселев

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-4 Способен принимать участие в проектировании, анализировать конкурентоспособные варианты технических решений и обосновывать выбор целесообразных проектных решений в соответствии с требованиями технического задания в области электрических машин и аппаратов
 - ИД-5 Применяет приближенные методы расчета и выбора основных элементов электрических машин и аппаратов
- 2. ПК-5 Способен осуществлять поиск научно-технической информации и участвовать в составлении типовой сопроводительной документации
 - ИД-2 Формирует элементы технической документации

и включает:

для текущего контроля успеваемости:

Форма реализации: Компьютерное задание

- 1. Команды языка MATLAB (Тестирование)
- 2. Настройка датчиков для ІоТ устройств (Контрольная работа)
- 3. Регуляторы постоянного тока в системах с ВИЭ (Контрольная работа)
- 4. Системы экстремального регулирования (Тестирование)
- 5. Электронные регуляторы для систем с ВИЭ (Тестирование)
- 6. Электронные регуляторы переменного тока (Контрольная работа)

БРС дисциплины

8 семестр

	Beca	Веса контрольных мероприятий			й, %		
Decree weekens	Индекс	КМ-	КМ-	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	1	2	3	4	5	6
	Срок КМ:	4	6	8	10	12	14
Применение электронных аппаратов в							
электроэнергетических системах							
Место электронных аппаратов в		+					
электроэнергетических комплексах							
Моделирование электронных аппаратов							
комплексов в программном комплексе М	Matlab /						
Simulink							
Особенности построения обобщённых							
компьютерных моделей электронных регуляторов					+		
для систем с возобновляемыми источниками				+	+		
энергии в программном комплексе Matlab / Simulink							

Электронные регуляторы постоянного тока и их						
применение в электроэнергетических комплексах						
Основные виды альтернативных источников						
энергии. Типовые структуры систем на базе						
возобновляемых источников энергии. Накопители						
электроэнергии. Типовые схемы регуляторов		+				
постоянного тока. Алгоритмы управления						
регуляторами постоянного тока. Примеры						
моделирования.						
ІоТ устройства в системах с возобновляемыми						
источниками энергии						
Понятие "Интернет вещей" (ІоТ). Облачный ІоТ						
сервис ThingSpeak. Способы организации обмена						
данными между датчиками и сервисом ThingSpeak.					+	
Примеры MATLAB-кода для выполнения						
предобработки, визуализации и анализа данных.						
Электронные регуляторы в децентрализованных						
системах электроснабжения						
Понятие активной, реактивной и искажающей						
мощностей. Понятие коэффициента мощности.						
Необходимость коррекции коэффициента						
мощности. Методы коррекции коэффициента						,
мощности. Схемы электронных аппаратов для						+
коррекции коэффициента мощности. Понятие						
активной фильтрации. Схемы активных фильтров.						
Примеры моделирования						
Bec KM:	10	10	25	10	25	20

\$Общая часть/Для промежуточной аттестации\$

БРС курсовой работы/проекта

8 семестр

	Веса контрольных мероприятий			í, %	
Doowood warenessee	Индекс	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	1	2	3	4
	Срок КМ:	4	6	10	14
Расчет параметров и выбор основных элементов ре	гулятора				
постоянного тока и расчет дросселя регулятора пос	отоннкот	+			+
тока					
Выбор датчиков тока и напряжения и расчет парам	+				
согласования сигналов с датчиков	T			T	
Разработка программы для реализации алгоритма г		+		+	
максимальной мощности		Т		T	
Организация передачи, обработки и визуализации д			+		
датчиков при помощи облачного сервиса ThingSpe			Т	T	
Разработка компоновки макета регулятора					+
	Bec KM:	20	35	20	25

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор		Запланированные	Контрольная точка
компетенции	_		результаты обучения по	
			дисциплине	
ПК-4	ИД-5пк-4	Применяет	Знать:	Системы экстремального регулирования (Тестирование)
	приближенные		Команды MATLAB для	Регуляторы постоянного тока в системах с ВИЭ (Контрольная работа)
	расчета и	выбора	организации	Команды языка MATLAB (Тестирование)
	основных	элементов	параметрического анализа,	Электронные регуляторы переменного тока (Контрольная работа)
	электрических	машин и	графического	
	аппаратов		представления данных и	
	_		организации обмена	
			данными с облачным	
			сервисом ThingSpeak	
			Алгоритмы управления	
			регуляторами постоянного	
			тока в системах с	
			возобновляемми	
			источниками энергии	
			Уметь:	
			Создавать модели	
			регуляторов переменного	
			тока для систем с	
			возобновляемыми	
			источниками энергии	
			Создавать модели	
			регуляторов постоянного	
			тока для систем с	
			возобновляемыми	
			источниками энергии	

ПК-5	ИД-2 _{ПК-5}	Формирует	Знать:	Электронные регуляторы для систем с ВИЭ (Тестирование)
	элементы	технической	Схемы силовых	Настройка датчиков для ІоТ устройств (Контрольная работа)
	документаци	И	электронных регуляторов	
			для систем с	
			возобновляемми	
			источниками энергии	
			Уметь:	
			Выбирать датчики для	
			систем управления	
			регуляторами постоянного	
			тока и организовывать	
			сбор, хранение и	
			обработку данных при	
			помощи облачного сервиса	
			ThingSpeak	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Электронные регуляторы для систем с ВИЭ

Формы реализации: Компьютерное задание **Тип контрольного мероприятия**: Тестирование **Вес контрольного мероприятия в БРС**: 10

Процедура проведения контрольного мероприятия: Тест проводится в компьютерном

классе

Краткое содержание задания:

Тест состоит из 8 вопросов, на вопросы теста необходимо дать однозначные ответы – т.е. на 1 вопрос необходим 1 правильный ответ. Если существуют два и больше непротиворечивых ответа, то один из них - наиболее полный, он считается правильным.

Контрольные вопросы/задания:

Знать:	Схемы		сило	овых
электронн	ΗЫХ	регулят	горов	для
систем	c	возоб	новляє	емми
источника	ами з	энергии		

- 1.Наиболее эффективной по отбору мощности от ФЭП является
 - 1. Система с центральным инвертором;
 - 2. Система с модульными инверторами;
- 3. Система с инверторами работающими на цепочку последовательно соединенных модулей;
 - 4. Нет правильного ответа.
- 2. Какие виды мощности относятся к неактивной мощности
 - 1. Реактивная мощность;
 - 2. Реактивная мощность и мощность искажения;
 - 3. Активная мошность:
 - 4. Нет правильного ответа.
- 3. Коэффициент мощности это
- 1. комплексный показатель, характеризующий потери энергии в электросети, обусловленные фазовыми и нелинейными искажениями тока и напряжения в нагрузке, численно равный отношению активной мощности Р нагрузки к её полной мошности S;
- 2. комплексный показатель, характеризующий потери энергии в электросети, обусловленные нелинейными искажениями тока и напряжения в нагрузке, численно равный отношению активной мощности Р нагрузки к её реактивной мощности Q;
- 3. комплексный показатель, характеризующий потери энергии в электросети, обусловленные фазовыми и нелинейными искажениями в нагрузке, численно равный отношению реактивной мощности Q нагрузки к её полной мощности S;
- 4. комплексный показатель, характеризующий потери энергии в электросети, обусловленные фазовыми искажениями тока в нагрузке, численно равный отношению активной мощности Р нагрузки к

- её реактивной мощности Q.
- 4. Какое из перечисленных устройств не относится к устройствам поперечной компенсации
 - 1. CTATKOM;
 - 2. Управляемые шунтирующие реакторы;
 - 3. Статические тиристорные компенсаторы;
 - 4. Фазоповоротные устройства.
- 5. Какое из перечисленных устройств не относится к устройствам продольной компенсации
 - 1. Асинхронизированные компенсаторы;
 - 2. Устройства продольной компенсации;
 - 3. Статические тиристорные компенсаторы;
 - 4. Фазоповоротные устройства.
- 6. Какой из перечисленных источников неактивной мощности используется для ее компенсации
 - 1. Асинхронный двигатель;
- 2. Синхронный двигатель работающий на холостом ходу;
 - 3. Выпрямитель с емкостной нагрузкой;
 - 4. Ни один из перечисленных.
- 7. Какой из перечисленных источников относится к источникам мощности искажения
 - 1. Выпрямитель с емкостной нагрузкой;
 - 2. Синхронный компенсатор;
 - 3. Асинхронный двигатель;
 - 4. Bce.

8.СТАТКОМ это

- 1. устройство выполненное на основе полностью управляемых полупроводниковых приборах по схеме преобразователя напряжения;
- 2. устройство выполненное на основе традиционных тиристоров по схеме преобразователя тока;
- 3. устройство выполненное на основе неуправляемых силовых полупроводниковых приборах по схеме преобразователя напряжения;
- 4. устройство выполненное на основе диодов по схеме преобразователя напряжения.
- 9. Величина реактивной мощности определяется
- 1. Мощностью, переносимой первой гармоникой тока отстающей от напряжения сети на 90° ;
- 2. Мощностью, переносимой первой гармоникой тока синфазной с напряжением сети;
- 3. Мощностью, переносимой первой гармоникой тока отстающей или опережающей напряжение се-ти на 90°:
- 4. Суммарной мощностью переносимой высшими гармониками тока.
- 10.Для стабилизации параметров электроэнергии на выходе генератора ВЭУ, используются
 - 1. Повышающий регулятор постоянного тока;
 - 2. Понижающий регулятор постоянного тока;

3. Инвертор; 4. Управляемый или не управляемый
выпрямитель вместе с инвертором.

Описание шкалы оценивания:

Оиенка: 5

Нижний порог выполнения задания в процентах: 100 Описание характеристики выполнения знания: 8 правильных ответов – оценка «Отлично»

Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: 6-7 правильных ответов – оценка «Хорошо»

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: 4-5 правильных ответов — оценка «Удовлетворительно»

Оценка: 2

Описание характеристики выполнения знания: менее 4-х правильных ответов — оценка «Неудовлетворительно»

КМ-2. Системы экстремального регулирования

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Тест проводится в компьютерном

классе

Краткое содержание задания:

Тест состоит из 8 вопросов, на вопросы теста необходимо дать однозначные ответы – т.е. на 1 вопрос необходим 1 правильный ответ. Если существуют два и больше непротиворечивых ответа, то один из них - наиболее полный, он считается правильным.

Контрольные вопросы/задания:

Знать: Алгоритмы управления	1.В методе "Возмущение и наблюдение", увеличение
регуляторами постоянного тока в	периода измерения тока и напряжения на выходе
системах с возобновляемми	ФЭП приводит
источниками энергии	1. К ускорению процесса поиска точки
	максимальной мощности;
	2. К замедлению процесса поиска точки
	максимальной мощности;
	3. К переходу модуля ФЭП в режим короткого
	замыкания;
	4. К переходу модуля ФЭП в режим холостого
	хода.
	2.В методе "Возмущение и наблюдение", уменьшение
	периода измерения тока и напряжения на выходе
	ФЭП приводит
	1. К ускорению процесса поиска точки
	максимальной мощности;
	2. К замедлению процесса поиска точки
	максимальной мощности;

- 3. К переходу модуля $\Phi \ni \Pi$ в режим короткого замыкания;
- 4. К переходу модуля ФЭП в режим холостого хода.
- 3.В методе "Возмущение и наблюдение", уменьшение амплитуды возмущения в сигнале управления регулятором постоянного тока приводит
- 1. К ускорению процесса поиска точки максимальной мощности;
- 2. К замедлению процесса поиска точки максимальной мощности;
- 3. К переходу модуля ФЭП в режим короткого замыкания;
- 4. К переходу модуля $\Phi \ni \Pi$ в режим холостого хода.
- 4.В методе "Возмущение и наблюдение", увеличение амплитуды возмущения в сигнале управления регулятором постоянного тока приводит
- 1. К ускорению процесса поиска точки максимальной мощности;
- 2. К замедлению процесса поиска точки максимальной мощности;
- 3. К переходу модуля ФЭП в режим короткого замыкания:
- 4. К переходу модуля $\Phi \ni \Pi$ в режим холостого хода.
- 5.Увеличение амплитуды возмущения, в сигнале управления регулятором постоянного тока, выше определенного, критического значения, приведет к
- 1. появлению дополнительных, нежелательных, колебаний в системе;
- 2. резкому увеличению скорости достижения точки максимальной мощности;
- 3. снижению скорости достижения точки максимальной мощности;
- 4. не будет иметь никакого значения. 6.Уменьшение амплитуды возмущения, в сигнале управления регулятором постоянного тока, ниже определенного, критического значения, приведет к
- 1. появлению дополнительных, нежелательных, колебаний в системе;
- 2. резкому увеличению скорости достижения точки максимальной мощности;
- 3. появлению нечувствительности в системе, и как следствие, невозможности поиска точки максимальной мошности ФЭП;
- 4. не будет иметь никакого значения. 7.Отличие метода возрастающей проводимости от метода возмущения и наблюдения заключается в том, что:
- 1. для метода возрастающей проводимости нужны два датчика напряжения на выходе ФЭП;

- 2. для метода возмущения и наблюдения нужен датчик тока короткого замыкания модуля ФЭП;
- 3. при управлении по методу "возмущение и наблюдение" система всегда будет колебаться около точки максимальной мощности;
- 4. для реализации метода возрастающей проводимости не нужны датчики напряжения на выходе модуля ФЭП.
- 8.В методе "Возмущение и наблюдение", задание периода измерения тока и напряжения на выходе ФЭП, меньше чем период коммутации ключа регулятора приводит
- 1. К ускорению процесса поиска точки максимальной мощности;
- 2. К замедлению процесса поиска точки максимальной мощности;
- 3. К невозможности поиска точки максимальной мощности ФЭП;
- 4. К переходу модуля $\Phi \ni \Pi$ в режим холостого хода.
- 9.Метод "Возмущение и наблюдение" с переменной величиной амплитуды приращения в сигнале управления регулятором постоянного тока позволяет
- 1. Увеличить скорость поиска точки максимальной мощности в переходных режимах;
- 2. Уменьшить скорость поиска точки максимальной мощности в переходных режимах и уменьшить амплитуду колебаний вокруг точки максимальной мощности в установившемся режиме;
- 3. Увеличить скорость поиска точки максимальной мощности в переходных режимах и уменьшить амплитуду колебаний вокруг точки максимальной мощности в установившемся режиме;
- 4. Уменьшить скорость поиска точки максимальной мощности в переходных режимах и увеличить амплитуду колебаний вокруг точки максимальной мощности в установившемся режиме; 10.Метод "Возмущение и наблюдение", в котором используется информация о двух предыдущих состояниях системы позволяет
- 1. исключить "ложные" приращения в сигнале управления силовым ключом регулятора при резком изменении освещенности модуля ФЭП;
- 2. снизить амплитуду колебаний вокруг точки максимальной мощности в установившемся режиме;
- 3. внести "ложные" приращения в сигнал управления силовым ключом регулятора для снижения амплитуды колебаний около точки максимальной мощности в установившемся режиме;
- 4. снизить скорость поиска точки максимальной мощности в переходных режимах.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 100

Описание характеристики выполнения знания: 8 правильных ответов – оценка «Отлично»

Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: 6-7 правильных ответов – оценка «Хорошо»

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: 4-5 правильных ответов – оценка «Удовлетворительно»

Оценка: 2

Описание характеристики выполнения знания: менее 4-х правильных ответов — оценка «Неудовлетворительно»

КМ-3. Регуляторы постоянного тока в системах с ВИЭ

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Контрольная работа

Краткое содержание задания:

Решите предложенную задачу

Контрольные вопросы/задания:

Уметь:	Создавать	модели
регуляторог	в постоянно	го тока
для систем	с возобновл	іяемыми
источникам	и энергии	

1.Используя следующие исходные данные: Функциональный блок описывающий математическую модель силовой части Сик-регулятора, базовый скрипт М-функции и зависимость которая будет определять характер нагрузки (Iнагр = f(Uнагр)).

Необходимо:

- a) Создать Simulink модель на базе заданного функционального блока;
- б) Создать нагрузку регулятора на базе М-функции;
- в) Получить диаграммы средних значений тока в полупроводниковых приборах;
- г) Получить регулировочную характеристику регулятора;
- д) Получить нагрузочную характеристику регулятора;
- е) Получить зависимость КПД регулятора от тока нагрузки.
- 2.Используя следующие исходные данные: Функциональный блок описывающий математическую модель силовой части SEPIС-регулятора, базовый скрипт М-функции и зависимость которая будет определять характер нагрузки (Iнагр = f(Uнагр)). Необходимо:

a) Создать Simulink модель на базе заданного
функционального блока;
б) Создать нагрузку регулятора на базе М-функции;
в) Получить диаграммы средних значений тока в
полупроводниковых приборах;
г) Получить регулировочную характеристику
регулятора;
д) Получить нагрузочную характеристику
регулятора;
е) Получить зависимость КПД регулятора от тока
нагрузки

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70 Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-4. Команды языка MATLAB

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Тест проводится в компьютерном

классе

Краткое содержание задания:

Тест состоит из 8 вопросов, на вопросы теста необходимо дать однозначные ответы – т.е. на 1 вопрос необходим 1 правильный ответ. Если существуют два и больше непротиворечивых ответа, то один из них - наиболее полный, он считается правильным.

Контрольные вопросы/задания:

Знать: Команды	1.Команда thingSpeakWrite используется для:		
MATLAB для	1. Записи данных в память микроконтроллера;		
организации	2. Чтения данных из канала сервиса ThingSpeak;		
параметрическог	3. Публикации данных на сервисе ThingSpeak;		
о анализа,	4. нет правильного ответа.		
графического	2. Для чтения всех данных из ThingSpeak-канала имеющего ID =		
представления	SampleData в переменную data эта переменная должна быть задана		
данных и	как		

организации обмена данными с облачным сервисом ThingSpeak

- 1. data = thingSpeakRead(SampleData);
- 2. data = thingSpeakRead(SampleData,Name,Value);
- 3. data = thingSpeakRead(Name, Value, SampleData);
- 4. data = thingSpeakRead(SampleData, allvalues).
- 3.Для записи значений в поле "Температура" ThingSpeak-канала имеющй ID = SampleData должена использоваться комманда

thingSpeakWrite(SampleData,'Fields',[1],'Values',[33],'WriteKey','channel write api key');

2

thingSpeakWrite(SampleData,'Fields',[1,2],'Values',[21,22],'WriteKey','ch annel write api key');

3

thingSpeakWrite(SampleData,'Fields',[2],'Values',[44],'WriteKey','channel write api key');

4

thingSpeakWrite(SampleData,'Fields',[2],'Values',[21],'channel write apikey').

4.Запрос «GET

9:

912:

канала 9;

<u>https://api.thingspeak.com/channels/9/feeds.xml?results=4»</u> используется для

- 1. чтения всех данных из поля 4 общедоступного канала
- 2. чтения четырех точек из поля 4 общедоступного
- 3. чтения четырех наборов данных из общедоступного канала 9 в *xml* формате;
- 4. чтения четырех наборов данных из общедоступного канала 9 в *csv* формате.
- 5.Запрос «GET

<u>https://api.thingspeak.com/channels/9/fields/1.json?results=2»</u> используется для

- 1. Для чтения двух результатов из поля 1 общедоступного канала 9;
- 2. Для чтения одной точки из поля 2 общедоступного канала 9;
 - 3. Для чтения данных из защищенного канала с паролем
- 4. Для чтения двух результатов из поля 9 общедоступного канала 1.
- 6. Команда plot (x,y) используется для
- 1. вывода графика по оси абсцисс которого будут откладываться значения вектора X, а по оси ординат значения вектора Y;
- 2. вывода графика по оси ординат которого будут откладываться значения вектора X, а по оси абсцисс значения вектора Y;
 - 3. для деления переменной х на переменную у;
- 4. для перемножения переменной х на переменную у. 7.Запустить симуляцию модели из файла model.slx, при помощи
- /.Запустить симуляцию модели из фаила model.six, при помощи коммандной строки MATLAB, можно используя команду:
 - 1. Simulate(model.slx);

- 2. Simulate('model.slx');
- 3. Sim('model.slx');
- 4. Run(model.slx);

8. Если переменная sim_out, включающая в себя значения одного, изменяющегося во врмени сигнала, сохраняется в рабочую область MATLAB, как переменная типа "Array". То доступ к вектору значений сигнала осуществляется командой:

- 1. sim_out.values;
- 2. sim_out.signals;
- 3. sim_out.values.Data;
- 4. sim_out.

9. Если переменная sim_out, включающая в себя значения одного, изменяющегося во врмени сигнала, сохраняется в рабочую область MATLAB, как переменная типа "Structure with time". То доступ к вектору значений сигнала осуществляется командой:

- 1. sim_out.signals.values;
- 2. sim_out.values.signals;
- 3. sim_out.signals.Data;
- 4. sim_out.values.

10. Если переменная sim_out, включающая в себя значения двух, изменяющихся во врмени сигналов, сохраняется в рабочую область MATLAB, как переменная типа "Array". То доступ к вектору значений сигнала 2 осуществляется командой:

- 1. sim_out(2,:);
- 2. sim_out.signals(:,2);
- 3. sim_out.values.Data(2,:);
- 4. sim_out(:,2).

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 100 Описание характеристики выполнения знания: 8 правильных ответов – оценка «Отлично»

Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: 6-7 правильных ответов – оценка «Хорошо»

Оиенка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: 4-5 правильных ответов – оценка «Удовлетворительно»

Оценка: 2

Описание характеристики выполнения знания: менее 4-х правильных ответов — оценка «Неудовлетворительно»

КМ-5. Настройка датчиков для ІоТ устройств

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Выполнение задания

Краткое содержание задания:

Контрольные вопросы/задания:

Уметь: Выбирать датчики для систем управления регуляторами постоянного тока и организовывать сбор, хранение и обработку данных при помощи облачного сервиса ThingSpeak

- 1.Для Matlab-модели модуля ФЭП с переменной освещенностью. Создайте ThingSpeak-канал для отображения и хранения данных о токе и напряжении модуля ФЭП. На странице ThingSpeak-канала, настройте отображение графика мощности на выходе модуля ФЭП.
- 2.Для Matlab-модели модуля ФЭП с переменной освещенностью. Создайте ThingSpeak-канал для отображения и хранения данных о токе и температуре модуля ФЭП. На странице ThingSpeak-канала, настройте отображение графика мощности на выходе модуля ФЭП.
- 3.Для Matlab-модели модуля ФЭП. Создайте ThingSpeak-канал для отображения и хранения данных о токе, напряжении, освещенности и температуре модуля ФЭП. На странице ThingSpeak-канала, настройте предупреждение сигнализирующее о том, что произошла деградация характеристик модуля ФЭП более чем на 5%.
- 4.Для Matlab-модели системы, состоящей из двух параллельно соединенных цепочек из 4-х последовательно включенных модулей ФЭП. Создайте ThingSpeak-канал, где будет отображаться текущее значение мощности, генерируемой каждой из цепочек последовательно соединенных модулей ФЭП, а также предупреждение о том, что произошло затемнение одного из модулей ФЭП

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оиенка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-6. Электронные регуляторы переменного тока

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Решение задания

Краткое содержание задания:

Решите предложенную задачу

Контрольные вопросы/задания:

Уметн	s: Co	здавать	MO	дели		
регуля	яторов 1	переменн	ОГО	тока		
для с	истем с	возобног	вляем	ими		
источниками энергии						

1. Используя следующие исходные данные: Функциональный блок описывающий математическую модель активного выпрямителя, базовый скрипт М-функции и блок-схема алгоритма управления.

Необходимо:

- а) Создать *Simulink* модель на базе заданного функционального блока;
- б) Создать систему управления регулятором на базе М-функции;
- в) Получить диаграммы гладких составляющих токов в полупроводниковых приборах;
- г) Получить нагрузочную характеристику регулятора;
- д) Получить зависимость КПД регулятора от тока нагрузки.
- 2.Используя следующие исходные данные: Функциональный блок описывающий математическую модель силовой части корректора коэффициента мощности на базе не-управляемого выпрямителя, базовый скрипт М-функции и блоксхема алгоритма управления.

Необходимо:

- а) Создать *Simulink* модель на базе заданного функционального блока;
- б) Создать систему управления регулятором на базе М-функции;
- в) Получить диаграммы гладких составляющих токов в полупроводниковых приборах;
- г) Получить нагрузочную характеристику регулятора;
- д) Получить зависимость КПД регулятора от тока нагрузки.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

8 семестр

Форма промежуточной аттестации: Зачет с оценкой

Пример билета

- 1. Поиск точки максимальной мощности ФЭП. Метод возмущения и наблюдения.
- 2. Схемы силовых электронных преобразователей для ФЭП. Согласование с сетью переменного тока.

3. Задача

Используя следующие исходные данные: Функциональный блок описывающий математическую модель силовой части повышающего регулятора, базовый скрипт Мфункции и блок-схема алгоритма управления.

Необходимо:

- а) Создать имитационную модель на базе заданного функционального блока;
- б) Создать нагрузку регулятора на базе М-функции;
- в) Получить диаграммы средних значений тока в полупроводниковых приборах;
- г) Получить регулировочную характеристику регулятора;
- д) Получить нагрузочную характеристику регулятора;
- е) Получить зависимость КПД регулятора от тока нагрузки.

Процедура проведения

Проводится по билетам в виде подготовки и изложения развернутого ответа. Каждый билет включает в себя два вопроса и одну задачу. Время на подготовку ответа не менее 60 минут.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-5_{ПК-4} Применяет приближенные методы расчета и выбора основных элементов электрических машин и аппаратов

Вопросы, задания

- 1.Поиск точки максимальной мощности ФЭП. Метод возмущения и наблюдения.
- 2.Поиск точки максимальной мошности ВЭУ. Метод оптимального момента.
- 3. Какие методы управления используются в статических компенсаторах и активных фильтрах?
- 4. Показатели качества электроэнергии. Причины ухудшения качества электроэнергии.
- 5.Влияние высших гармоник тока и напряжения на электроэнергетические системы.

6.Задача

Используя следующие исходные данные: Функциональный блок описывающий математическую модель силовой части понижающего регулятора, базовый скрипт Мфункции и блок-схема алгоритма управления.

Необходимо:

- а) Создать имитационную модель на базе заданного функционального блока;
- б) Создать нагрузку регулятора на базе М-функции;
- в) Получить диаграммы средних значений тока в полупроводниковых приборах;
- г) Получить регулировочную характеристику регулятора;
- д) Получить нагрузочную характеристику регулятора;
- е) Получить зависимость КПД регулятора от тока нагрузки.

7.Задача

Используя следующие исходные данные: Функциональный блок описывающий математическую модель силовой части повышающего регулятора, базовый скрипт Мфункции и блок-схема алгоритма управления.

Необходимо:

- а) Создать имитационную модель на базе заданного функционального блока;
- б) Создать нагрузку регулятора на базе М-функции;
- в) Получить диаграммы средних значений тока в полупроводниковых приборах;
- г) Получить регулировочную характеристику регулятора;
- д) Получить нагрузочную характеристику регулятора;
- е) Получить зависимость КПД регулятора от тока нагрузки.

8.Задача

Используя следующие исходные данные: Функциональный блок описывающий математическую модель силовой части инвертирующего регулятора, базовый скрипт Мфункции и блок-схема алгоритма управления.

Необходимо:

- а) Создать имитационную модель на базе заданного функционального блока;
- б) Создать нагрузку регулятора на базе М-функции;
- в) Получить диаграммы средних значений тока в полупроводниковых приборах;
- г) Получить регулировочную характеристику регулятора;
- д) Получить нагрузочную характеристику регулятора;
- е) Получить зависимость КПД регулятора от тока нагрузки.

9.Задача

Используя следующие исходные данные: Функциональный блок описывающий математическую модель силовой части СТАТКОМа, базовый скрипт М-функции и блоксхема алгоритма управления.

Необходимо:

- а) Создать имитационную модель на базе заданного функционального блока;
- б) Создать систему управления регулятором на базе М-функции;
- в) Получить диаграммы гладких составляющих токов в полупроводниковых прибо-рах;
- г) Получить нагрузочную характеристику регулятора;
- д) Получить зависимость КПД регулятора от тока нагрузки.

Материалы для проверки остаточных знаний

1. Коэффициент мощности это

Ответы:

- 1. комплексный показатель, характеризующий потери энергии в электросети, обусловленные фазовыми и нелинейными искажениями тока и напряжения в нагрузке, численно равный отношению активной мощности Р нагрузки к её полной мощности S;
- 2. комплексный показатель, характеризующий потери энергии в электросети, обусловленные нелинейными искажениями тока и напряжения в нагрузке, численно равный отношению активной мощности Р нагрузки к её реактивной мощности Q;
- 3. комплексный показатель, характеризующий потери энергии в электросети, обусловленные фазовыми и нелинейными искажениями в нагрузке, численно равный отношению реактивной мощности Q нагрузки к её полной мощности S;
- 4. комплексный показатель, характеризующий потери энергии в электросети, обусловленные фазовыми искажениями тока в нагрузке, численно равный отношению активной мощности Р нагрузки к её реактивной мощности Q.

Верный ответ: 1. комплексный показатель, характеризующий потери энергии в электросети, обусловленные фазовыми и нелинейными искажениями тока и напряжения в нагрузке, численно равный отношению активной мощности Р нагрузки к её полной мощности S;

2.Отличие метода возрастающей проводимости от метода возмущения и наблюдения заключается в том, что:

Ответы:

- 1. для метода возрастающей проводимости нужны два датчика напряжения на выходе ФЭП;
- 2. для метода возмущения и наблюдения нужен датчик тока короткого замыкания модуля ФЭП;
- 3. при управлении по методу "возмущение и наблюдение" система всегда будет колебаться около точки максимальной мощности;
- 4. для реализации метода возрастающей проводимости не нужны датчики напряжения на выходе модуля ФЭП.

Верный ответ: 3. при управлении по методу "возмущение и наблюдение" система всегда будет колебаться около точки максимальной мощности;

3.В методе "Возмущение и наблюдение", увеличение периода измерения тока и напряжения на выходе ФЭП приводит

Ответы:

- 1. К ускорению процесса поиска точки максимальной мощности;
- 2. К замедлению процесса поиска точки максимальной мощности;
- 3. К переходу модуля ФЭП в режим короткого замыкания;
- 4. К переходу модуля ФЭП в режим холостого хода.

Верный ответ: 2. К замедлению процесса поиска точки максимальной мощности;

4.В методе "Возмущение и наблюдение", уменьшение амплитуды возмущения в сигнале управления регулятором постоянного тока приводит

Ответы:

- 1. К ускорению процесса поиска точки максимальной мощности;
- 2. К замедлению процесса поиска точки максимальной мощности;
- 3. К переходу модуля ФЭП в режим короткого замыкания;
- 4. К переходу модуля ФЭП в режим холостого хода.

Верный ответ: 2. К замедлению процесса поиска точки максимальной мощности;

5.В методе "Возмущение и наблюдение", увеличение амплитуды возмущения в сигнале управления регулятором постоянного тока приводит

Ответы:

- 1. К ускорению процесса поиска точки максимальной мощности;
- 2. К замедлению процесса поиска точки максимальной мощности;
- 3. К переходу модуля ФЭП в режим короткого замыкания;
- 4. К переходу модуля ФЭП в режим холостого хода.

Верный ответ: 1. К ускорению процесса поиска точки максимальной мощности; 6.Какой из перечисленных источников неактивной мощности используется для ее

 Какой из перечисленных источников неактивной мощности используется для ее компенсации

Ответы:

- 1. Асинхронный двигатель;
- 2. Синхронный двигатель работающий на холостом ходу;
- 3. Выпрямитель с емкостной нагрузкой;
- 4. Ни один из перечисленных.

Верный ответ: 2. Синхронный двигатель работающий на холостом ходу;

7. Величина реактивной мощности определяется

Ответы:

- 1. Мощностью, переносимой первой гармоникой тока отстающей от напряжения сети на 90°;
- 2. Мощностью, переносимой первой гармоникой тока синфазной с напряжением сети;
- 3. Мощностью, переносимой первой гармоникой тока отстающей или опережающей напряжение сети на 90° ;

4. Суммарной мощностью переносимой высшими гармониками тока. Верный ответ: 3. Мощностью, переносимой первой гармоникой тока отстающей или опережающей напряжение сети на 90°;

2. Компетенция/Индикатор: ИД-2_{ПК-5} Формирует элементы технической документации

Вопросы, задания

- 1.Схемы силовых электронных преобразователей для ФЭП. Регуляторы постоянного тока. Основные схемы регуляторов постоянного тока их достоинства и недостатки.
- 2.Схемы силовых электронных преобразователей для Φ ЭП. Согласование с сетью переменного тока.
- 3. Способы компенсации реактивной мощности и фильтрации гармоник.
- 4.Схемы активных и гибридных фильтров.
- 5. Принципы построения гибких линий электропередачи. Объединенный регулятор качества электроэнергии.
- 6. Принципы построения гибких линий электропередачи Универсальный кондиционер сети.
- 7.Понятие "Интернет вещей" (*IoT*). Облачный *IoT* сервис *ThingSpeak*. Способы организации обмена данными между датчиками и сервисом *ThingSpeak*. Примеры чтения данных из сервиса *ThingSpeak*.
- 8.Понятие "Интернет вещей" (IoT). Облачный IoT сервис ThingSpeak. Способы организации обмена данными между датчиками и сервисом ThingSpeak. Примеры записи данных в сервис ThingSpeak.

9.Задача

Для Matlab-модели модуля ФЭП с переменной освещенностью. Создайте ThingSpeak-канал для отображения и хранения данных о токе и напряжении модуля ФЭП. На странице ThingSpeak-канала, настройте отображение графика мощности на выходе модуля ФЭП.

10.Задача

Для Matlab-модели системы, состоящей из двух параллельно соединенных цепочек из 4-х последовательно включенных модулей ФЭП. Создайте ThingSpeak-канал, где будет отображаться текущее значение мощности, генерируемой каждой из цепочек последовательно соединенных модулей ФЭП, а также предупреждение о том, что произошло затемнение одного из модулей ФЭП.

11.Задача

Для Matlab-модели модуля ФЭП. Создайте ThingSpeak-канал для отображения и хранения данных о токе, напряжении, освещенности и температуре модуля ФЭП. На странице ThingSpeak-канала, настройте предупреждение сигнализирующее о том, что произошла деградация характеристик модуля ФЭП более чем на 5%.

Материалы для проверки остаточных знаний

- 1.Наиболее эффективной по отбору мощности от ФЭП является Ответы:
- 1. Система с центральным инвертором;
- 2. Система с модульными инверторами;
- 3. Система с инверторами работающими на цепочку последовательно соединенных модулей;
- 4. Нет правильного ответа.

Верный ответ: 2. Система с модульными инверторами;

2.СТАТКОМ это

Ответы:

1. устройство выполненное на основе полностью управляемых полупроводниковых приборах по схеме преобразователя напряжения;

- 2. устройство выполненное на основе традиционных тиристоров по схеме преобразователя тока;
- 3. устройство выполненное на основе неуправляемых силовых полупроводниковых приборах по схеме преобразователя напряжения;
- 4. устройство выполненное на основе диодов по схеме преобразователя напряжения. Верный ответ: 1. устройство выполненное на основе полностью управляемых полупроводниковых приборах по схеме преобразователя напряжения;
- 3.Для стабилизации параметров электроэнергии на выходе генератора ВЭУ, используются

Ответы:

- 1. Повышающий регулятор постоянного тока;
- 2. Понижающий регулятор постоянного тока;
- 3. Инвертор;
- 4. Управляемый или не управляемый выпрямитель вместе с инвертором. Верный ответ: 4. Управляемый или не управляемый выпрямитель вместе с инвертором.

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

Оценка: 2

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

III. Правила выставления итоговой оценки по курсу

Оценка за курс выставляется как среднее арифметическое из оценки за текущий контроль и оценки за промежуточную аттестацию

Для курсового проекта/работы:

8 семестр

Форма проведения: Защита КП/КР

І. Процедура защиты КП/КР

Защита курсового проекта производится в виде презентации по выполненной работе

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

Оценка: 2

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

ІІІ. Правила выставления итоговой оценки по курсу

Оценка за курс выставляется как среднее арифметическое из оценки за текущий контроль и оценки за промежуточную аттестацию