Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.04.02 Электроэнергетика и электротехника

Наименование образовательной программы: Электротехнологические процессы и установки с

системами питания и управления

Уровень образования: высшее образование - магистратура

Форма обучения: Очная

Оценочные материалы по дисциплине Силовые и управляющие аппараты электротехнологических установок

Москва 2022

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

MOM.

Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»			
Сведения о владельце ЦЭП МЭИ			
Владелец	Лепешкин А.Р.		
идентификатор R644edb02-LepeshkinAR-80			
(подпись)			

A.P. Лепешкин

(расшифровка подписи)

Преподаватель

(должность)

СОГЛАСОВАНО:

Руководитель образовательной программы

(должность, ученая степень, ученое звание)

Заведующий выпускающей кафедры (должность, ученая степень, ученое

звание)

1930 MCM MCM	NC-SETTOWNERS OF	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»	
	San Company and	Сведения о владельце ЦЭП МЭИ		
		Владелец	Федин М.А.	
	» <u>МЭИ</u> »	Идентификатор	R3e9797a9-FedinMA-34f385d8	
(

(подпись)

NCW	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»	
	Сведения о владельце ЦЭП МЭИ		
	Владелец	Цырук С.А.	
	Идентификатор	Raf2c04da-TsyrukSA-47ef358f	

(подпись)

М.А. Федин

(расшифровка подписи)

С.А. Цырук (расшифровка подписи)

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-3 Способен принимать участие в разработке проекта системы автоматического управления электротехнологической установкой (комплексом)
 - ИД-1 Демонстрирует умение разработать концепцию системы автоматического управления электро-технологической установкой (комплексом)

и включает:

для текущего контроля успеваемости:

Форма реализации: Компьютерное задание

- 1. Контрольная работа "Моделирование систем автоматического управления электротехнологическими установками в среде MATLAB/Simulink" (Контрольная работа)
- 2. Контрольная работа "Программируемые микропроцессорные контроллеры систем управления ЭТУ" (Контрольная работа)

Форма реализации: Письменная работа

- 1. Контрольная работа "Датчики систем управления" (Контрольная работа)
- 2. Контрольная работа "Электромагнитные, электромеханические и полупроводниковые преобразователи систем управления ЭТУ" (Контрольная работа)

БРС дисциплины

1 семестр

	Веса контрольных мероприятий, %				
Danway wyayyyyyyyy	Индекс	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	1	2	3	4
	Срок КМ:	4	8	12	16
Классификация управляющих и силовых элемент	ов систем				
управления ЭТУ					
Классификация управляющих и силовых элемент	ов систем				
управления ЭТУ		+			
Датчики и задатчики систем управления ЭТУ					
Датчики и задатчики систем управления ЭТУ			+	+	+
Программируемые микропроцессорные контроллеры систем					
управления ЭТУ					
Программируемые микропроцессорные контроллеры систем			+	+	+
управления ЭТУ			T	Т	
Электромагнитные и электромеханические преобразователи					
систем управления ЭТУ					

Электромагнитные и электромеханические преобразователи систем управления ЭТУ		+	+	
Полупроводниковые преобразователи систем управления ЭТУ				
Полупроводниковые преобразователи систем управления ЭТУ		+	+	+
Электрические приводы систем управления ЭТУ				
Электрические приводы систем управления ЭТУ		+		+
Электрогидравлические приводы ЭТУ				
Электрогидравлические приводы ЭТУ		+		
Bec KM:	25	25	25	25

^{\$}Общая часть/Для промежуточной аттестации\$

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	_	результаты обучения по	
		дисциплине	
ПК-3	ИД-1 _{ПК-3} Демонстрирует	Знать:	Контрольная работа "Датчики систем управления" (Контрольная
	умение разработать	– основные понятия,	работа)
	концепцию системы	относящиеся к структуре и	Контрольная работа "Электромагнитные, электромеханические и
	автоматического	составу научно-	полупроводниковые преобразователи систем управления ЭТУ"
	управления электро-	исследовательских работ,	(Контрольная работа)
	технологической	существующих	Контрольная работа "Программируемые микропроцессорные
	установкой (комплексом)	возможностях и	контроллеры систем управления ЭТУ" (Контрольная работа)
		перспективах их	Контрольная работа "Моделирование систем автоматического
		автоматизации,	управления электротехнологическими установками в среде
		номенклатуру, структуру и	MATLAB/Simulink" (Контрольная работа)
		характеристики аппаратов,	
		используемых в системах	
		автоматического	
		управления	
		 современные стандарты 	
		и элементную базу для	
		построения	
		автоматизированных	
		систем в	
		электротехнологии,	
		номенклатуру датчиков и	
		нормирующих	
		преобразователей	
		Уметь:	
		– осуществлять	

автоматизированный поиск научно-технической информации и патентный поиск при выполнении научно-исследовательских работ, планировать и ставить задачи исследования, выделять влияющие факторы и целевые функции объекта исследования для определения структуры систем автоматического управления, выбирать датчики и исполнительные регуляторы – определять состав и технические характеристики стандартизованного оборудования, применяемого при построении автоматизированных систем, разрабатывать схемотехнические решения для сопряжения управляющих и силовых аппаратов с электротехнологическими установками и комплексами

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Контрольная работа "Датчики систем управления"

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Выполняется письменное задание.

Время выполнения 90 минут.

Краткое содержание задания:

Необходимо выполнить все пункты задания, дав развернутые ответы.

Контрольные вопросы/задания:

контрольные вопросы/задания.	
Знать: – современные стандарты и элементную базу для	1. Какова роль датчиков обратной связи в системе управления?
построения автоматизированных	
систем в электротехнологии, номенклатуру датчиков и	Как характеристики датчиков влияют на свойства системы?
нормирующих преобразователей	
	Назовите задачи, выполняемые датчиками в системах управления?
	Какие физические явления используют при построении датчиков температуры?
	Какую температуру измеряют пирометры излучения?

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-2. Контрольная работа "Электромагнитные, электромеханические и полупроводниковые преобразователи систем управления ЭТУ"

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Выполняется письменное задание. Время выполнения 90 минут.

Краткое содержание задания:

Необходимо выполнить все пункты задания, дав развернутые ответы.

Контрольные вопросы/задания:

Знать: основные понятия, относящиеся к структуре и составу научноисследовательских работ, существующих возможностях и перспективах их автоматизации, номенклатуру, структуру характеристики аппаратов, используемых системах автоматического управления

1.Опишите принцип действия магнитного усилителя и приведите его основные характеристики. Передаточная функция магнитного усилителя.

Классификация исполнительных элементов систем управления ЭТУ.

Регулируемые источники питания. Классификация регулируемых источников питания, используемых в системах управления ЭТУ.

Динамические и статические характеристики электромашинных преобразователей.

Регулируемые трансформаторы. Структурное представление регулируемого трансформатора.

Описание шкалы опенивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-3. Контрольная работа "Программируемые микропроцессорные контроллеры систем управления ЭТУ"

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Задание выполняется студентом на компьютере в среде MATLAB/Simulink. Время выполнения 90 минут.

Краткое содержание задания:

Необходимо выполнить все пункты задания, дав развернутые ответы.

Контрольные вопросы/задания:

Уметь: осуществлять автоматизированный поиск научно-технической информации и патентный поиск при выполнении научноисследовательских работ, планировать и ставить задачи исследования, выделять влияющие факторы и целевые функции объекта исследования для определения структуры систем автоматического управления, выбирать датчики и исполнительные регуляторы

1.Составить структурную модель ПИД-регулятора электрической печи сопротивления. Печь представить инерционным звеном первого порядка (коэффициент передачи печи - 1, постоянная времени - 1 о.е.). Датчик температуры представить безынерционным звеном с коэффициентом усиления, равным 1. Исполнительный элемент представить безынерционным звеном с коэффициентом усиления, равным 2. Произвести автонастройку регулятора средствами Simulink под требуемые показатели переходного процесса: максимальное перерегулирование 0,05, время переходного процесса - 3 о.е.

Составить структурную модель ПИД-регулятора электрической печи сопротивления. Печь представить инерционным звеном первого порядка (коэффициент передачи печи - 1, постоянная времени - 2 о.е.). Датчик температуры представить безынерционным звеном с коэффициентом усиления, равным 1. Исполнительный элемент представить безынерционным звеном с коэффициентом усиления, равным 2. Произвести автонастройку регулятора средствами Simulink под требуемые показатели переходного процесса: максимальное перерегулирование 0,1, время переходного процесса - 3 о.е.

Составить структурную модель ПИД-регулятора электрической печи сопротивления. Печь представить инерционным звеном первого порядка (коэффициент передачи печи - 1, постоянная времени - 1 о.е.). Датчик температуры представить инерционным звеном первого порядка с коэффициентом усиления, равным 1, и постоянной времени, равной 0,1 о.е. Исполнительный элемент представить безынерционным звеном с коэффициентом усиления, равным 2. Произвести автонастройку регулятора средствами Simulink под требуемые показатели переходного процесса: максимальное перерегулирование 0,05, время переходного процесса - 3 о.е.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70 Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

KM-4. Контрольная работа "Моделирование систем автоматического управления электротехнологическими установками в среде MATLAB/Simulink"

Формы реализации: Компьютерное задание

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Задание выполняется на компьютере

в системе MATLAB/Simulink. Время выполнения 90 минут.

Краткое содержание задания:

Студенту необходимо спроектировать систему регулирования температуры электрической печи сопротивления с заданными параметрами. Конкретный объем пунктов задания определяется преподавателем индивидуально.

Контрольные вопросы/задания:

Уметь: - определять состав и технические характеристики стандартизованного оборудования, применяемого при построении автоматизированных систем, разрабатывать схемотехнические решения ДЛЯ сопряжения управляющих силовых И аппаратов электротехнологическими установками и комплексами

1.Спроектировать непрерывную систему регулирования температуры электрической печи сопротивления со следующими параметрами: постоянная времени печи 1600 с; температура печи 1000 град. С; точность регулирования 0,02 (в относительных единицах).

Составить функциональную схему системы регулирования температуры.

Определить передаточную функцию печи сопротивления и требуемую мощность регулятора мощности, приняв коэффициент передачи печи $k\pi=1$.

Выбрать элементы системы регулирования температуры, и определим их передаточные функции.

Составить структурную схему системы регулирования температуры с П-регулятором.

По заданному значению точности регулирования определить требуемый коэффициент усиления системы регулирования.

Рассчитать и построить зависимость статической

ошибки регулирования от возмущающего воздействия, изменяющегося в диапазоне от 0 до 1 (в относительных величинах).

Проверить систему на устойчивость по критериям Гурвица и Найквиста.

Рассчитать и построить переходную функцию системы регулирования с П-регулятором для задающего и возмущающего воздействий. Воздействия принимать в диапазоне от 0.5 до 1 (в относительных величинах).

Провести синтез системы регулирования температуры электрической печи сопротивления, выбрав вид и параметры последовательного корректирующего звена, обеспечивающего перерегулирование не более 0.01 от установившегося значения.

Для рассчитанных параметров корректирующего звена построить переходные функции при изменении задающего и возмущающего воздействий отдельно для каждой составляющей закона регулирования и при использовании всех выбранных составляющих закона регулирования.

Сделать выводы по проделанной работе.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70 Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

1 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

- 1. Принципы построения и классификация датчиков температуры.
- 2. Тиристорные регуляторы напряжения с улучшенными энергетическими показателями.
- 3. Предложить исполнительный элемент и датчик температуры для электрической печи сопротивления с рабочей температурой нагревателей 1100 С. Составить структурную схему системы регулирования температуры электрической печи сопротивления с Прегулятором.

Процедура проведения

Составить структурную схему системы регулирования температуры с П-регулятором.с

- I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины
- **1. Компетенция/Индикатор:** ИД-1_{ПК-3} Демонстрирует умение разработать концепцию системы автоматического управления электро-технологической установкой (комплексом)

Вопросы, задания

- 1. Исполнительные приводы постоянного тока.
- 2.Исполнительные приводы переменного тока.
- 3. Датчики температуры. Пирометры излучения.
- 4. Основные понятия об элементах систем управления.
- 5. Датчики электрических величин.
- 6.Преобразователи частоты.

Материалы для проверки остаточных знаний

- 1. Как влияют характеристики элементов на свойства САУ?
- 2. Какие принципы положены в основу работы регулируемых трансформаторов?
- 3. Сопоставьте характеристики тиристорных регуляторов напряжения с фазоимпульсным и широтно-импульсным управлением.

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно.

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и экзаменационной составляющих.