Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.03.02 Электроэнергетика и электротехника

Наименование образовательной программы: Эксплуатация релейной защиты, автоматики и

электрооборудования электростанций

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Электрическая часть электрических станций

Москва 2024

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

 Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

 Сведения о владельце ЦЭП МЭИ

 Владелец
 Гусев О.Ю.

 Идентификатор
 Ra9cc2490-GusevOY-4e595360

Разработчик

СОГЛАСОВАНО:

Руководитель образовательной программы

1930 MOM	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»			
	Сведения о владельце ЦЭП МЭИ			
	Владелец	Волошин А.А.		
	Идентификатор	Ra915003b-VoloshinAA-408ebd73		

А.А. Волошин

О.Ю. Гусев

Заведующий выпускающей кафедрой

MSM MCM	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»	
	Сведения о владельце ЦЭП МЭИ		
	Владелец	Волошин А.А.	
	Идентификатор	Ra915003b-VoloshinAA-408ebd73	

А.А. Волошин

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-1 Способен участвовать в проектировании объектов профессиональной деятельности ИД-1 Применяет типовые проектные решения
 - ИД-2 Выбирает параметры электрооборудования, учитывая технические и экономические ограничения

и включает:

для текущего контроля успеваемости:

Форма реализации: Письменная работа

- 1. Контрольная работа № 1 "Выбор проводников и кабельных линий" (Контрольная работа)
- 2. Контрольная работа № 2 "Конструкция ОРУ" (Контрольная работа)
- 3. Курсовой проект "Проектирование электрической части электростанции/подстанции" (Индивидуальный проект)
- 4. Тест № 1 "Электрооборудование собственных нужд" (Тестирование) (Тестирование)

БРС дисциплины

7 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по лиспиплине:

- КМ-1 Тест № 1 "Электрооборудование собственных нужд" (Тестирование) (Тестирование)
- КМ-2 Контрольная работа № 1 "Выбор проводников и кабельных линий" (Контрольная работа)
- КМ-3 Контрольная работа № 2 "Конструкция ОРУ" (Контрольная работа)
- КМ-4 Курсовой проект "Проектирование электрической части электростанции/подстанции" (Индивидуальный проект)

Вид промежуточной аттестации – Зачет с оценкой.

	Веса контрольных мероприятий, %					
Роспол писминации	Индекс	КМ-	КМ-	КМ-	КМ-	
Раздел дисциплины	KM:	1	2	3	4	
	Срок КМ:	4	6	8	8	
Раздел 1						
Выбор структурной схемы электроустановки и их распределительных устройств					+	
Раздел 2						

Основные требования к электрооборудованию. Расчетные условия выбора и проверки электрооборудования		+		+
Раздел 3				
Методы и средства ограничения токов короткого замыкания				+
Раздел 4				
Главные схемы электрических соединений	+	+		+
Раздел 5				
Электродинамическая стойкость проводников			+	+
Раздел 6				
Конструкции распределительных устройств и комплектных трансформаторных подстанций				+
Раздел 7				
Системы собственных нужд электроустановок				+
Bec KM:	10	20	20	50

БРС курсовой работы/проекта

7 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по курсовому проекту:

КМ-1 Разработка структурной схемы

КМ-2 Расчет токов короткого замыкания

КМ-3 Выбор оборудования

Вид промежуточной аттестации – защита КП.

	Bec	Веса контрольных мероприятий, %				
Раздел дисциплины	Индекс	KM-1	KM-2	KM-3		
т аздел дисциплины	KM:					
	Срок КМ:	4	6	8		
Выбор структурной схемы		+				
Расчет токов короткого замыкания			+			
Выбор оборудования				+		
Разработка главной схемы				+		
	Bec KM:	30	30	40		

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор		Запланированные	Контрольная точка
компетенции			результаты обучения по	•
			дисциплине	
ПК-1	ИД-1 _{ПК-1}	Применяет	Знать:	КМ-3 Контрольная работа № 2 "Конструкция ОРУ" (Контрольная
	типовые	проектные	условные графические	работа)
	решения		изображения элементов	КМ-4 Курсовой проект "Проектирование электрической части
			подстанций	электростанции/подстанции" (Индивидуальный проект)
			типовые конструкции	
			распределительных	
			устройств	
			условные графические	
			изображения элементов	
			электростанций	
			методику технико-	
			экономического	
			сопоставления вариантов	
			структурных схем	
			электроустановок и их	
			схем распределительных	
			устройств	
			типовые структурные	
			схемы подстанций, схемы	
			их распределительных	
			устройств и системы	
			электроснабжения	
			собственных нужд	
			методы и средства	
			ограничения токов	

короткого замыкания типовые структурные схемы электростанций, схемы их распределительных устройств и системы электроснабжения собственных нужд Уметь: составлять варианты структурных схем подстанций с учетом технических ограничений и задания применять методы и средства ограничения токов короткого замыкания составлять главную схему электрических соединений электростанции составлять главную схему электрических соединений подстанции рассчитывать техникоэкономические показатели вариантов электроустановки и выбирать оптимальный вариант составлять варианты структурных схем электростанций с учетом

		технических ограничений	
		и задания	
ПК-1	ИД-2 _{ПК-1} Выбирает	Знать:	КМ-1 Тест № 1 "Электрооборудование собственных нужд"
	параметры	методики выбора и	(Тестирование) (Тестирование)
	электрооборудования,	проверки проводников и	КМ-2 Контрольная работа № 1 "Выбор проводников и кабельных
	учитывая технические и	коммутационных	линий" (Контрольная работа)
	экономические	аппаратов	КМ-4 Курсовой проект "Проектирование электрической части
	ограничения	состав	электростанции/подстанции" (Индивидуальный проект)
		электрооборудования	
		собственных нужд	
		электроустановок и систем	
		оперативного постоянного	
		тока	
		основные принципы	
		процесса производства	
		электрической энергии на	
		электростанциях	
		различных типов	
		назначение и основные	
		характеристики силового	
		электрооборудования	
		методику выбора	
		трансформаторов с учетом	
		перегрузочной	
		способности	
		Уметь:	
		производить выбор и	
		проверку проводников и	
		аппаратов	
		выбирать	
		трансформаторное	
		оборудование	
		электростанций и	

подстанций	
выбирать мощность	
трансформаторов и	
двигателей собственных	
нужд	
рассчитывать	
электродинамическую	
стойкость шинных	
конструкций	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Тест № 1 "Электрооборудование собственных нужд" (Тестирование)

Формы реализации: Письменная работа

Тип контрольного мероприятия: Тестирование **Вес контрольного мероприятия в БРС:** 10

Процедура проведения контрольного мероприятия: Письменная работа по выбору

электрооборудования собственных нужд.

Краткое содержание задания:

Электрооборудование собственных нужд

Контрольные вопросы/задания:

контрольные вопросы/задания.	
Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки
дисциплинс	
Знать: состав электрооборудования собственных	1.5. Для успешного разворота
нужд электроустановок и систем оперативного	механизма необходимо, чтобы:
постоянного тока	а. пусковой ток составлял не
	более 5 крат от номинального тока
	двигателя
	b. вращающий момент двигателя
	был больше момента сопротивления
	механизма
	с. напряжение на шинах
	двигателя было не меньше 120% от
	номинального
	d. скольжение двигателя не
	превышало 5%

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Оценка «ОТЛИЧНО» выставляется студенту, правильно выполнившему практическое задание, который показал при ответе на вопросы билета и на дополнительные вопросы, что владеет материалом изученной дисциплины, свободно применяет свои знания для объяснения различных явлений.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 65

Описание характеристики выполнения знания: Оценка «ХОРОШО» выставляется студенту, правильно выполнившему практическое задание и в основном правильно ответившему на вопросы билета и на дополнительные вопросы, но допустившему при этом непринципиальные ошибки.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка «УДОВЛЕТВОРИТЕЛЬНО» выставляется студенту, который в ответах на вопросы билета допустил существенные и даже грубые ошибки, но затем исправил их сам.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка «НЕУДОВЛЕТВОРИТЕЛЬНО» выставляется студенту, который: а)не ответил на вопросы билета; б)при ответе на дополнительные вопросы обнаружил незнание большого раздела программы.

КМ-2. Контрольная работа № 1 "Выбор проводников и кабельных линий"

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Письменная работа по выбору

проводников и кабельных линий.

Краткое содержание задания:

Расчетная схема представлена на рисунке. $S_{\rm px}=3$ <u>МВА.</u> $T_{\rm max}=5000$ ч; время перегрузки $t_{\rm n}=6$ ч; температура почвы 0.15 с. $t_{\rm px}=1.00$ с; $t_{\rm px}=0.05$ с. $t_{\rm mx}=0.055$ с.

Выбрать сечение кабельной линии по продолжительному режиму и проверить на термическую стойкость, определив S тер \min . Сделать вывод о необходимости ограничения токов короткого замыкания.

Контрольные вопросы/задания:

Запланированные	результаты	обучения	ПО	Вопросы/задания для проверки
дисциплине				
Знать: методики	выбора	и прове	рки	1.Поясните методику выбора сечения
проводников и коммутационных аппаратов				КЛ
Уметь: рассчиты	вать электр	одинамичес	кую	1.Определите ток термической
стойкость шинных конструкций				стойкости для выбранного сечения

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Оценка «ОТЛИЧНО» выставляется студенту, правильно выполнившему практическое задание, который показал при ответе на вопросы билета и на дополнительные вопросы, что владеет материалом изученной дисциплины, свободно применяет свои знания для объяснения различных явлений.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 65

Описание характеристики выполнения знания: Оценка «ХОРОШО» выставляется студенту, правильно выполнившему практическое задание и в основном правильно ответившему на вопросы билета и на дополнительные вопросы, но допустившему при этом непринципиальные ошибки.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка «УДОВЛЕТВОРИТЕЛЬНО» выставляется студенту, который в ответах на вопросы билета допустил существенные и даже грубые ошибки, но затем исправил их сам.

Оценка: 2 («неудовлетворительно»)

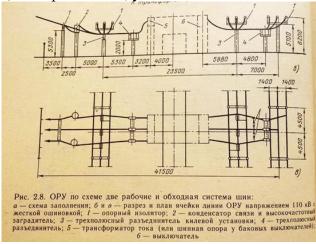
Описание характеристики выполнения знания: Оценка «НЕУДОВЛЕТВОРИТЕЛЬНО» выставляется студенту, который: а)не ответил на вопросы билета; б)при ответе на дополнительные вопросы обнаружил незнание большого раздела программы.

КМ-3. Контрольная работа № 2 "Конструкция ОРУ"

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20


Процедура проведения контрольного мероприятия: Контрольная работа содержит одну задачу. Время выполнения 90 минут. Для решения задачи предоставляются справочные данные на основе справочника: Неклепаев Б.Н., Крючков И.П. Электрическая часть электростанций и подстанций: Справочные материалы для курсового и дипломного проектирования. М.: Энергоатомиздат, 1989.

Краткое содержание задания:

На основе разреза ячейки ВЛ (с выходом в сторону обходной системы шин) ОРУ с жесткой ошиновкой 110 кВ, выполненного по схеме две рабочие и обходная система шин, начертить следующие эскизы.

1) Схема заполнения ячейки обходного выключателя ОРУ 110 кВ, выполненного по схеме электрических соединений одна рабочая секционированная система сборных шин и обходная система шин. Обходной выключатель подключен ко второй секции.

2) Разрез ячейки, указанной в п.1 ОРУ 110 кВ с жесткой ошиновкой сборных шин

Контрольные вопросы/задания:

Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки
Уметь: составлять варианты структурных схем электростанций с учетом технических ограничений и	1.Составьте схему заполнения ячейки ШСВ ОРУ 110 кВ
задания	A ICHKH INCB CT 3 TTO KB

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Оценка «ОТЛИЧНО» выставляется студенту, правильно выполнившему практическое задание, который показал при ответе на вопросы билета и на дополнительные вопросы, что владеет материалом изученной дисциплины, свободно применяет свои знания для объяснения различных явлений.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 65

Описание характеристики выполнения знания: Оценка «ХОРОШО» выставляется студенту, правильно выполнившему практическое задание и в основном правильно ответившему на вопросы билета и на дополнительные вопросы, но допустившему при этом непринципиальные ошибки.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка «УДОВЛЕТВОРИТЕЛЬНО» выставляется студенту, который в ответах на вопросы билета допустил существенные и даже грубые ошибки, но затем исправил их сам.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка «НЕУДОВЛЕТВОРИТЕЛЬНО» выставляется студенту, который: а)не ответил на вопросы билета; б)при ответе на дополнительные вопросы обнаружил незнание большого раздела программы.

КМ-4. Курсовой проект "Проектирование электрической части электростанции/подстанции"

Формы реализации: Письменная работа

Тип контрольного мероприятия: Индивидуальный проект

Вес контрольного мероприятия в БРС: 50

Процедура проведения контрольного мероприятия: Преподаватель проверяет выполнение курсового проекта и допускает студента к защите. В соответствии с распределением, подготовленным кафедрой, студент направляется на защиту курсового проекта к другому преподавателю. Принимающий защиту преподаватель проверяет выполненный курсовой проект, задает вопросы по тематике выполненного зидиния и выставляет оценку по пятибальной шкале.

Краткое содержание задания:

Проектирование главной схемы электрических соединений

На основании данных раздела I разработать главную схему электрических соединений проектируемой электроустановки.

Задание выполнить на основании технико-экономического сопоставления наиболее целесообразных вариантов.

Выбрать структурную схему (число, тип и мощность главных трансформа-торов и автотрансформаторов связи). Расчет вариантов структурных схем провести с учетом показателей надежности

Выбрать электрические схемы РУ всех напряжений. Для РУ повышенных напряжений расчет провести с учетом показателей надежности.

Выбрать схему питания собственных нужд, включая выбор числа, типов и мощности трансформаторов собственных нужд. Расчетную нагрузку собственных нужд опре-делить по заданному значению Рсн тах.

Произвести расчет токов К3, необходимых для выбора электрических ап-паратов и проводников, и выбрать технически необходимые и экономически целесообразные средства ограничения токов К3. При наличии кабельных линий, питающих РП 6-10 кВ, предварительно должны быть выбраны сечения кабелей.

В соответствии с требованиями ГОСТа выбрать электрические аппараты: выключатели, разъединители, реакторы, предохранители, разрядники, измери-тельные трансформаторы тока и напряжения, определить состав измерительных приборов. Измерительные трансформаторы выбрать по напряжению, по току продол-жительного режима с учетом их назначения, места установки, количества, схемы соединений, классов точности.

По указанию преподавателя:	
а) произвести выбор измерительных трансформаторов по всем условиям,	, включая
вторичную нагрузку:	
трансформаторов тока цепи	_;
трансформаторов напряжения цепи	_;
б) выбрать токопроводы (шинные конструкции) в цепи	
Вычертить главную схему электрических соединений на листе ватмана	форматом А1
(594•840 мм) с указанием типов и параметров всего оборудования.	
Проектирование конструкции распределительных устройств	
Разработать конструкцию распределительного	
устройства .	
Выполнить схему заполнения РУ	
Выполнить план РУ	·
Выполнить эскизы ячеек	,
Чертежи выполняются на миллиметровой бумаге в масштабе, предусмот	ренном
ГОСТом.	

Контрольные вопросы/задания:

контрольные вопросы/задания:	
Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	
Знать: методику технико-экономического	1.Какой главный критерий, по которому
сопоставления вариантов структурных схем	сопоставляются варианты при технико-
электроустановок и их схем	экономическом сопоставлении?
распределительных устройств	
Знать: методы и средства ограничения	1. Какие средства и методы применяют для
токов короткого замыкания	ограничения токов короткого замыкания?
Знать: типовые конструкции	1.Приведите пример распределительного
распределительных устройств	устройства в котором отключается
	присоединение одним коммутационным
	аппаратом?
	Приведите пример распределительного
	устройства в котором отключается
	присоединение двумя коммутационными
	аппаратом?
Знать: типовые структурные схемы	1.Опишите типичную структурную схему
подстанций, схемы их распределительных	подстанцию с тремя уровнями
устройств и системы электроснабжения	напряжения?
собственных нужд	
Знать: типовые структурные схемы	1.Опишите типичную структурную схему
электростанций, схемы их	КЭС?
распределительных устройств и системы	
электроснабжения собственных нужд	
Знать: условные графические изображения	1.Каким условным графическим
элементов подстанций	изображением обозначают
	трансформатор? Выключатель?
Знать: условные графические изображения	1.Каким условным графическим
элементов электростанций	изображением обозначают генератор?
<u>r</u> 	Двигатель?
Знать: методику выбора трансформаторов с	1.Как производится выбор
учетом перегрузочной способности	(авто)трансформаторов связи на
j ierom neperpjse men eneconocin	электростанции?
	На каких подстанциях используется
	тта какил подстапциях использустся

Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки
	переменный оперативный ток?
Знать: назначение и основные характеристики силового электрооборудования	1.Как организуется электроснабжение потребителей 1ой группы на электростанциях? Какая система заземления нейтрали используется на подстанции в системах электроснабжения собственных нужд до 1000 В?
Знать: основные принципы процесса производства электрической энергии на электростанциях различных типов	1. Какой критерий используется при принятии решения о структурной схеме электростанции? При каких условиях на подстанции необходимо ставить три трансформатора?
Уметь: применять методы и средства ограничения токов короткого замыкания	1.Укажите критерии по котором выбирается токоограничивающий реактор.
Уметь: рассчитывать технико- экономические показатели вариантов электроустановки и выбирать оптимальный вариант	1.Осуществите перевод электроснабжения собственных нужд электростанции от резервного источника электроснабжения? Осуществите перевод электроснабжения собственных нужд подстанции от резервного источника электроснабжения?
Уметь: составлять варианты структурных схем подстанций с учетом технических ограничений и задания	 1.Осуществите синхронизацию генератора № 1 на электростанции в выполненном КП? Осуществите вывод в ремонт выключателя силового трансформатора в РУ ВН?
Уметь: составлять главную схему электрических соединений подстанции	1.Выведите в ремонт самый мощный электродвигатель в системе собственных нужд электростанции? Выведите в ремонт один из силовых трансформаторов подстанции?
Уметь: составлять главную схему электрических соединений электростанции Уметь: выбирать мощность трансформаторов и двигателей собственных нужд	1.Укажите критерии по которым выбираются двигатели собственных нужд. 1.Укажите критерии по которым выбираются трансформаторы собственных нужд.
Уметь: выбирать трансформаторное оборудование электростанций и подстанций	1.Оцените капиталовложения в две различные схему РУ с одинаковым количеством присоединений.
Уметь: производить выбор и проверку проводников и аппаратов	1. Укажите критерии по которым проверяется электродинамическая стойкость шинных конструкций.

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

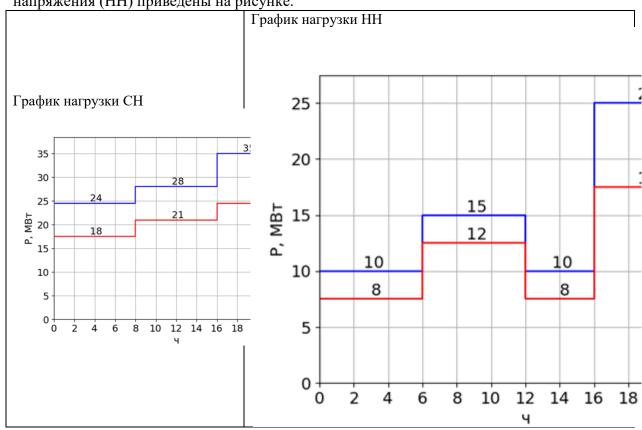
7 семестр

Форма промежуточной аттестации: Зачет с оценкой

Пример билета

Выбрать тип и мощность трансформаторов на понижающей двухтрансформаторной подстанции с тремя уровнями напряжения Ивн, Исн и Инн.

Построить график наиболее нагруженной обмотки высшего напряжения (ВН) трансформатора SBH = SCH + SHH, по графику обмотки BH осуществить проверку на допустимость фактических систематических и аварийных перегрузок. При выборе трансформатора рассмотреть нормальный, ремонтный и послеаварийный режим для зимнего и летнего графиков нагрузки. В конце решения указать тип и мощность выбранного трансформатора.


Исходные данные

$U_{BH} = 110 \text{ kB}$	Зимняя и летняя эквивалентные температуры в месте сооружения подстанции:
$U_{CH} = 35 \text{ kB}$	Тлето = 20 °C
$U_{\rm HH} = 10 \ {\rm kB}$	Тзима = -10 °C

Для всех потребителей принять $\cos \varphi = 0.85$

Графики нагрузки потребителей на стороне среднего напряжения (СН) и низшего

напряжения (НН) приведены на рисунке.

Процедура проведения

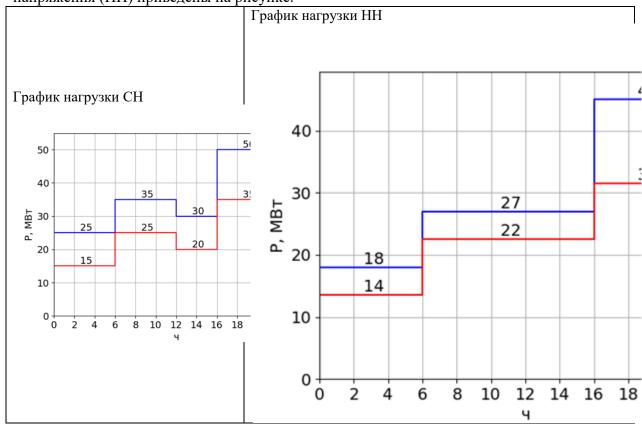
Билет включает практическую задачу на выбор мощности трансформаторов на подстанции. Время подготовки ответа -60 минут

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД- $1_{\Pi K-1}$ Применяет типовые проектные решения

Вопросы, задания

1.Выбрать тип и мощность трансформаторов на понижающей двухтрансформаторной подстанции с тремя уровнями напряжения Uвн, Uсн и Uнн.


Указания

Построить график наиболее нагруженной обмотки высшего напряжения (ВН) трансформатора SBH = SCH + SHH, по графику обмотки ВН осуществить проверку на допустимость фактических систематических и аварийных перегрузок. При выборе трансформатора рассмотреть нормальный, ремонтный и послеаварийный режим для зимнего и летнего графиков нагрузки. В конце решения указать тип и мощность выбранного трансформатора.

Исходные данные

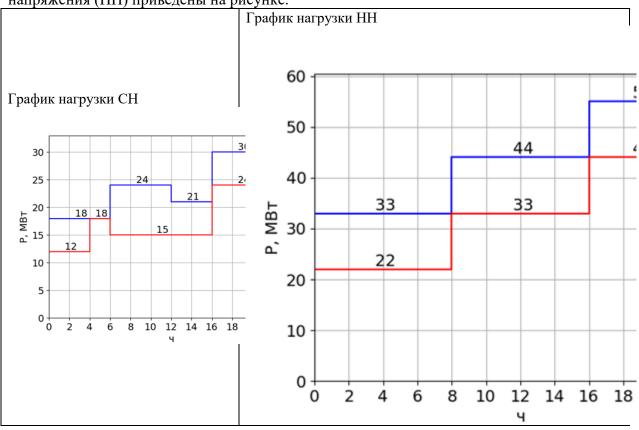
$U_{BH} = 110 \text{ kB}$	Зимняя и летняя эквивалентные температуры в месте сооружения подстанции:
Uch = 35 кB	Тлето = 20 °C
$U_{\rm HH} = 6 \ {\rm kB}$	Тзима = -10 °C

Для всех потребителей принять $\cos \varphi = 0.88$

2.Выбрать тип и мощность трансформаторов на понижающей двухтрансформаторной подстанции с тремя уровнями напряжения Uвн, Uсн и Uнн.

Указания

Построить график наиболее нагруженной обмотки высшего напряжения (ВН) трансформатора SBH = SCH + SHH, по графику обмотки ВН осуществить проверку на допустимость фактических систематических и аварийных перегрузок. При выборе трансформатора рассмотреть нормальный, ремонтный и послеаварийный режим для зимнего и летнего графиков нагрузки. В конце решения указать тип и мощность выбранного трансформатора.


Исходные данные

$U_{BH} = 110 \text{ kB}$	Зимняя и летняя эквивалентные температуры в месте сооружения подстанции:
Uch = 35 кB	Тлето = 20 °C
$U_{\rm HH} = 10 \ {\rm kB}$	Тзима = -10 °C

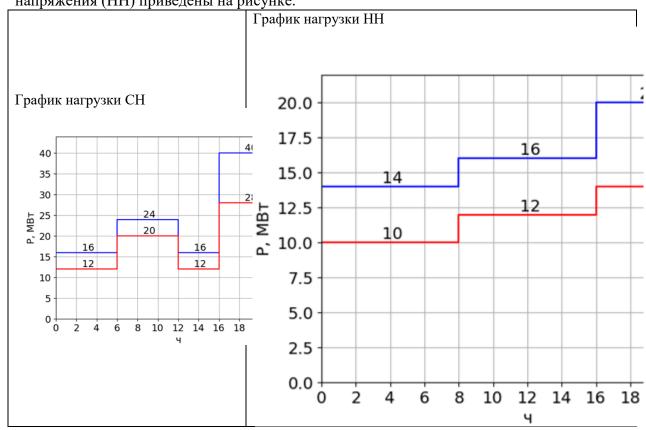
Для всех потребителей принять $\cos \varphi = 0.87$

Графики нагрузки потребителей на стороне среднего напряжения (СН) и низшего

напряжения (НН) приведены на рисунке.

3. Выбрать тип и мощность трансформаторов на понижающей двухтрансформаторной подстанции с тремя уровнями напряжения Uвн, Uсн и Uнн.

Указания


Построить график наиболее нагруженной обмотки высшего напряжения (ВН) трансформатора SBH = SCH + SHH, по графику обмотки ВН осуществить проверку на допустимость фактических систематических и аварийных перегрузок. При выборе трансформатора рассмотреть нормальный, ремонтный и послеаварийный режим для зимнего и летнего графиков нагрузки. В конце решения указать тип и мощность выбранного трансформатора.

Исходные данные

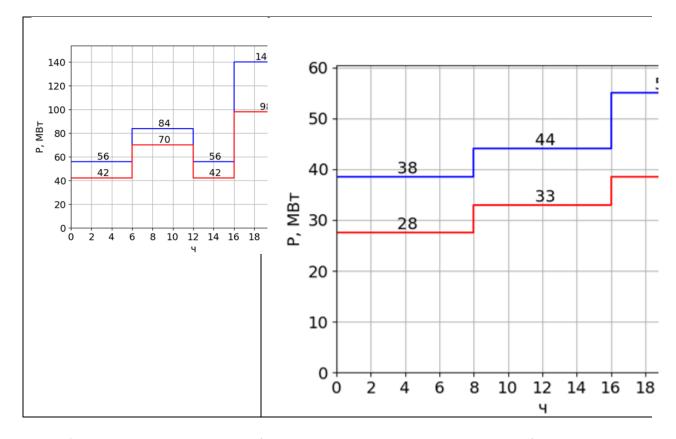
$U_{BH} = 220 \text{ kB}$	Зимняя и летняя эквивалентные температуры в месте сооружения подстанции:
Uch = 35 кB	

Для всех потребителей принять $\cos \varphi = 0.85$

Графики нагрузки потребителей на стороне среднего напряжения (СН) и низшего напряжения (НН) приведены на рисунке.

4. Выбрать тип и мощность трансформаторов на понижающей двухтрансформаторной подстанции с тремя уровнями напряжения Uвн, Uсн и Uнн.

Указания


Построить график наиболее нагруженной обмотки высшего напряжения (ВН) трансформатора SBH = SCH + SHH, по графику обмотки ВН осуществить проверку на допустимость фактических систематических и аварийных перегрузок. При выборе трансформатора рассмотреть нормальный, ремонтный и послеаварийный режим для зимнего и летнего графиков нагрузки. В конце решения указать тип и мощность выбранного трансформатора.

Исходные данные

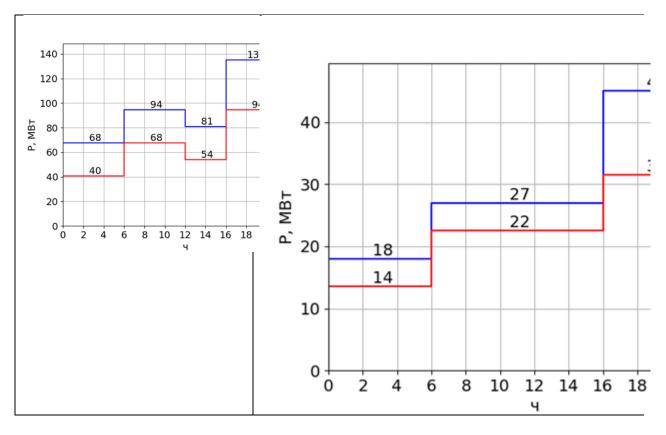
$U_{BH} = 220 \text{ kB}$	Зимняя и летняя эквивалентные температуры в месте сооружения подстанции:
Uch = 35 кB	Тлето = 20 °C
$U_{\rm HH} = 6 \ {\rm kB}$	Тзима = -10 °C

Для всех потребителей принять $\cos \varphi = 0.89$

График нагрузки СН	График нагрузки НН

5.Выбрать тип и мощность трансформаторов на понижающей двухтрансформаторной подстанции с тремя уровнями напряжения Uвн, Uсн и Uнн.

Указания


Построить график наиболее нагруженной обмотки высшего напряжения (ВН) трансформатора SBH = SCH + SHH, по графику обмотки ВН осуществить проверку на допустимость фактических систематических и аварийных перегрузок. При выборе трансформатора рассмотреть нормальный, ремонтный и послеаварийный режим для зимнего и летнего графиков нагрузки. В конце решения указать тип и мощность выбранного трансформатора.

Исходные данные

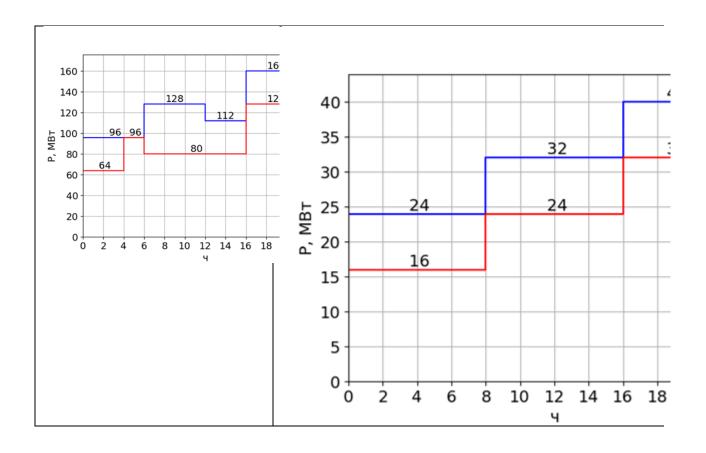
$U_{\rm BH} = 220 \ {\rm kB}$	Зимняя и летняя эквивалентные температуры в месте сооружения подстанции:
$U_{CH} = 110 \text{ kB}$	Тлето = 20 °C
$U_{\rm HH} = 10 \ {\rm kB}$	Тзима = -10 °C

Для всех потребителей принять $\cos \varphi = 0.9$

1	y
График нагрузки СН	График нагрузки НН
T purpling numpy state of 1	- pupin nui pjonii 1111

6.Выбрать тип и мощность трансформаторов на понижающей двухтрансформаторной подстанции с тремя уровнями напряжения Uвн, Uсн и Uнн.

Указания


Построить график наиболее нагруженной обмотки высшего напряжения (ВН) трансформатора SBH = SCH + SHH, по графику обмотки ВН осуществить проверку на допустимость фактических систематических и аварийных перегрузок. При выборе трансформатора рассмотреть нормальный, ремонтный и послеаварийный режим для зимнего и летнего графиков нагрузки. В конце решения указать тип и мощность выбранного трансформатора.

Исходные данные

$U_{BH} = 330 \text{ kB}$	Зимняя и летняя эквивалентные температуры в месте сооружения подстанции:
Uch = 110 kB	
$U_{\rm HH} = 10 \ {\rm kB}$	Тзима = -10 °C

Для всех потребителей принять $\cos \varphi = 0.92$

График нагрузки СН График нагрузки НН	

Материалы для проверки остаточных знаний

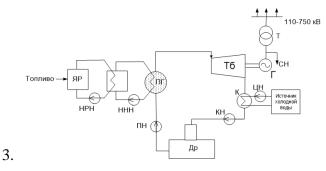
1.Основными потребителями электроэнергии, по суммарной потребляемой мощности, являются:

Ответы:

- А. Асинхронные двигатели
- Б. Вычислительные устройства
- В. Электрические духовые шкафы
- Г. Кондиционеры

Верный ответ: А

2.Первично оценить капиталовложения в разные варианты РУ можно сравнив количество...


Ответы:

А. ... разъединителей

Б. ... выключателей

В. ... присоединений

Верный ответ: Б

Принципиальная схема какой станции изображена на рисунке?

Ответы:

А. АЭС

Б. КЭС

В. ТЭЦ

Г. ГЭС

Верный ответ: А

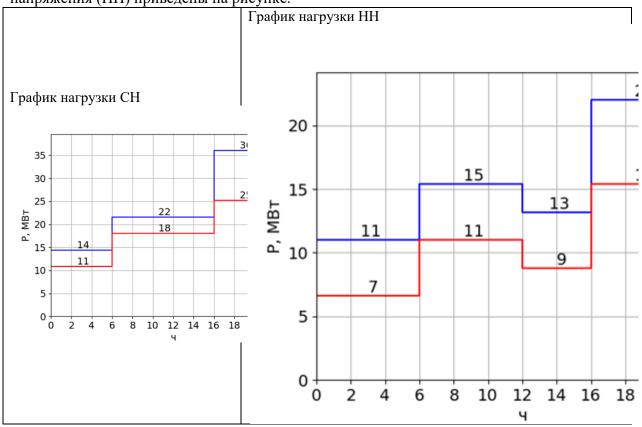
2. Компетенция/Индикатор: ИД- $2_{\Pi K-1}$ Выбирает параметры электрооборудования, учитывая технические и экономические ограничения

Вопросы, задания

1.Выбрать тип и мощность трансформаторов на понижающей двухтрансформаторной подстанции с тремя уровнями напряжения Uвн, Uсн и Uнн.

Указания

Построить график наиболее нагруженной обмотки высшего напряжения (ВН) трансформатора SBH = SCH + SHH, по графику обмотки ВН осуществить проверку на допустимость фактических систематических и аварийных перегрузок. При выборе трансформатора рассмотреть нормальный, ремонтный и послеаварийный режим для зимнего и летнего графиков нагрузки. В конце решения указать тип и мощность выбранного трансформатора.


Исходные данные

$U_{BH} = 220 \text{ kB}$	Зимняя и летняя эквивалентные температуры в месте сооружения подстанции:
Uch = 35 кB	Тлето = 20 °C
$U_{\rm HH} = 10 \ {\rm kB}$	Тзима = -10 °C

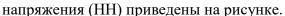
Для всех потребителей принять $\cos \varphi = 0.8$

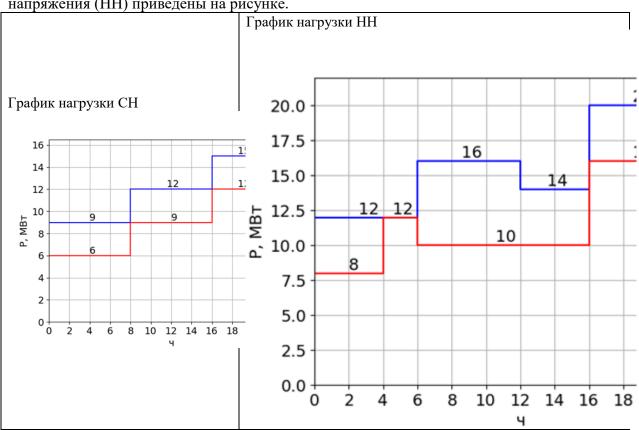
Графики нагрузки потребителей на стороне среднего напряжения (СН) и низшего

напряжения (НН) приведены на рисунке.

Выбрать тип и мощность трансформаторов на понижающей двухтрансформаторной подстанции с тремя уровнями напряжения Ивн, Исн и Инн.

Указания


Построить график наиболее нагруженной обмотки высшего напряжения (ВН) трансформатора SBH = SCH + SHH, по графику обмотки BH осуществить проверку на допустимость фактических систематических и аварийных перегрузок. При выборе трансформатора рассмотреть нормальный, ремонтный и послеаварийный режим для зимнего и летнего графиков нагрузки. В конце решения указать тип и мощность выбранного трансформатора.


Исходные данные

$U_{BH} = 220 \text{ kB}$	Зимняя и летняя эквивалентные температуры в месте сооружения подстанции:
Uch = 35 кB	Тлето = 20 °C
$U_{\rm HH} = 10 \ {\rm kB}$	Тзима = -10 °C

Для всех потребителей принять $\cos \varphi = 0.92$

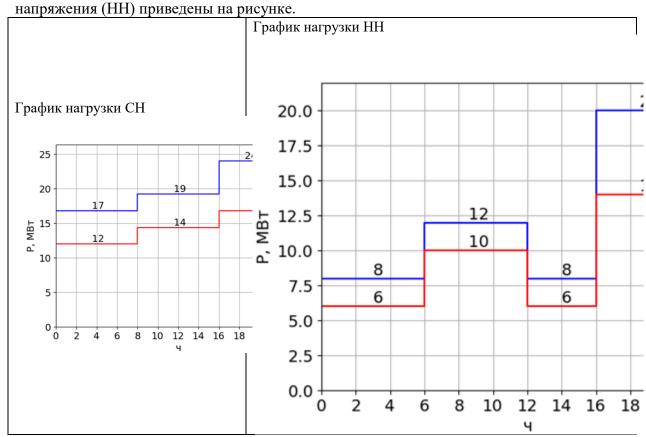
Графики нагрузки потребителей на стороне среднего напряжения (СН) и низшего

3.Вариант №8

Выбрать тип и мощность трансформаторов на понижающей двухтрансформаторной подстанции с тремя уровнями напряжения Ивн, Исн и Инн.

Указания

Построить график наиболее нагруженной обмотки высшего напряжения (ВН) трансформатора SBH = SCH + SHH, по графику обмотки BH осуществить проверку на допустимость фактических систематических и аварийных перегрузок. При выборе трансформатора рассмотреть нормальный, ремонтный и послеаварийный режим для зимнего и летнего графиков нагрузки. В конце решения указать тип и мощность выбранного трансформатора.


Исходные данные

TT 220 D	
1 UBH = 220 kB	Зимняя и летняя эквивалентные температуры в месте сооружения полстанции:

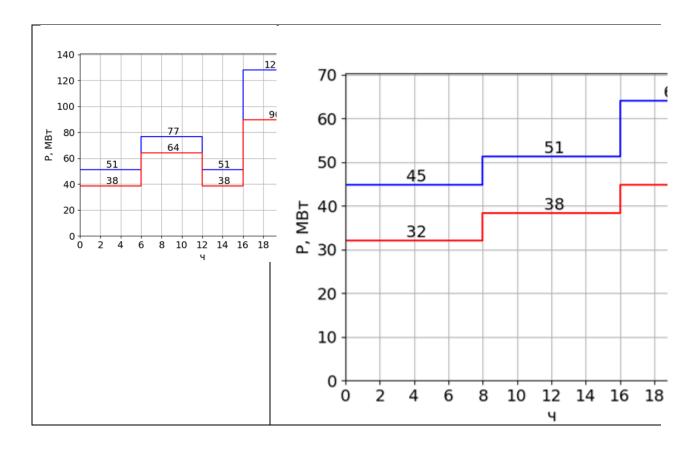
Ucн = 110 кB	Тлето = 20 °C
$U_{\rm HH} = 6 {\rm kB}$	Тзима = -10 °C

Для всех потребителей принять $\cos \varphi = 0.9$

Графики нагрузки потребителей на стороне среднего напряжения (СН) и низшего

4. Выбрать тип и мощность трансформаторов на понижающей двухтрансформаторной подстанции с тремя уровнями напряжения Uвн, Uсн и Uнн.

Указания


Построить график наиболее нагруженной обмотки высшего напряжения (ВН) трансформатора SBH = SCH + SHH, по графику обмотки ВН осуществить проверку на допустимость фактических систематических и аварийных перегрузок. При выборе трансформатора рассмотреть нормальный, ремонтный и послеаварийный режим для зимнего и летнего графиков нагрузки. В конце решения указать тип и мощность выбранного трансформатора.

Исходные данные

$U_{\rm BH} = 220 \ {\rm kB}$	Зимняя и летняя эквивалентные температуры в месте сооружения подстанции:
$U_{CH} = 110 \text{ kB}$	Тлето = 20 °C
$U_{\rm HH} = 6 \ {\rm kB}$	Тзима = -10 °C

Для всех потребителей принять $\cos \varphi = 0.88$

_ паприжения (тит) приведены на рисунке.				
График нагрузки СН	График нагрузки НН			

Материалы для проверки остаточных знаний

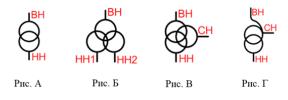


Figure 1 На каком рисунке изображен трансформатор с расщепленной обмоткой?

Ответы:

А. Рис. А

1.

- Б. Рис. Б
- В. Рис. В
- Г. Рис. Г

Верный ответ: Б

2. Трансформатор с номинальным напряжением высшей обмотки 121 кВ и низшей - 10 кВ:

Ответы:

- А. Повышающий
- Б. Понижающий

Верный ответ: А

- 3. Какая категория потребителей допускает перерыв питания до 24 часов? Ответы:
- А. Первая особая
- Б. Первая
- В. Вторая
- Г. Третья

Верный ответ: Г

4. Параметр выключателя, который определяет время от начала разведения контактов выключателя до полного погашения дуги:

Ответы:

- А. Время срабатывания релейной защиты
- Б. Собственное время отключения выключателя
- В. Полное время отключения выключателя
- Г. Время гашения дуги выключателя

Верный ответ: В

5. На каких станциях применяют обратимые агрегаты?

Ответы:

А. КЭС

Б. ТЭЦ

В. АЭС

Г. ГАЭС

Верный ответ: Г

6. Наибольшее значение мощности собственных нужд, в процентах от установленный мощности станции, на...

Ответы:

- А. ... гидроэлектростанциях
- Б. ... пылеугольных тепловых станциях
- В. ... газомазутных тепловых станциях

Верный ответ: Б

7. Какая скорость вращения в нормальном режиме у гидрогенератора с 60 парами полюсов, работающего в энергосистеме с частотой 50 Гц?

Ответы:

- А. 50 об./мин
- Б. 100 об./мин
- В. 1000 об./мин
- Г. 3000 об./мин

Верный ответ: А

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

ІІІ. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о бально-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и зачетной составляющих.

Для курсового проекта/работы:

7 семестр

Форма проведения: Защита КП/КР

І. Процедура защиты КП/КР

На защите курсового проекта обучающемуся задаются теоретические и практические вопросы по представленной расчетно-пояснительной записке и графическому материалу.

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

ІІІ. Правила выставления итоговой оценки по курсу

Оценка за курсовой проект определяется в соответствии с Положением о балльнорейтинговой системе для студентов НИУ «МЭИ».