Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.04.02 Электроэнергетика и электротехника Наименование образовательной программы: Инжиниринг в системах электроснабжения

Уровень образования: высшее образование - магистратура

Форма обучения: Очная

Оценочные материалы по дисциплине Релейная защита и автоматизация систем электроснабжения

Москва 2024

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

 Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

 Сведения о владельце ЦЭП МЭИ

 Владелец
 Колобродов Е.Н.

 Идентификатор
 R3746fd8c-KolobrodovYN-d93f0e3

Е.Н. Колобродов

Разработчик

СОГЛАСОВАНО:

Руководитель образовательной программы

O NECESTIONAL PROPERTY.	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»				
New	Сведения о владельце ЦЭП МЭИ				
	Владелец	Шведов Г.В.			
	Идентификатор	Rdd042f00-ShvedovGV-637a98fb			

Г.В. Шведов

Заведующий выпускающей кафедрой

NCW NCW	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»	
	Сведения о владельце ЦЭП МЭИ		
	Владелец	Шаров Ю.В.	
	Идентификатор	R324da3b6-SharovYurV-0bb905bf	

Ю.В. Шаров

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

1. ПК-1 Способен участвовать в управлении проектами систем электроснабжения объектов ИД-3 Выбирает электрооборудование для проектов систем электроснабжения объекта

и включает:

для текущего контроля успеваемости:

Форма реализации: Письменная работа

- 1. Автоматический ввод резерва (Контрольная работа)
- 2. Дифференциальна защита шин (Контрольная работа)
- 3. Расчет дифференциальной защиты трансформатора (Контрольная работа)
- 4. Расчет токовой защиты нулевой последовательности (Контрольная работа)
- 5. Релейная защита трансформатора (Контрольная работа)
- 6. Релейная защита электродвигателя 10 кВ (Контрольная работа)

БРС дисциплины

2 семестр

	Bed	са контј	ольны	х меро	прияти	й, %	
Раздел дисциплины	Индекс	КМ-	КМ-	КМ-	КМ-	КМ-	КМ-
газдел дисциплины	KM:	1	2	3	4	5	6
	Срок КМ:	3	5	8	10	13	15
Ступенчатые защиты линий							
Общие сведения о релейной защите (РЗ) и автоматизации электроэнергетической системы (ЭЭС) Термины и определения							+
Токовые защиты от междуфазных КЗ		+					
Токовые защиты нулевой последовательности		+					
Дистанционные защиты		+					
Дифференциальные токовые защиты							
Дифференциальные токовые защиты		+	+				
РЗА РУ 6-35 кВ и присоединений 6-35 кВ							
РЗА шин РУ 6-35 кВ							+

РЗА электродвигателей 6-10 кВ			+			
РЗА трансформаторов 10/0,4 кВ				+		
РЗА шин РУ 110-220 кВ						
Дифференциальная защита шин РУ 110-220 кВ				+	+	
РЗА секционных, шиносоединительных и обходных выключателей 110-220 кВ				+	+	
Автоматика						
Автоматическое повторное включение						+
Автоматическое включение резерва						+
Автоматическая частотная разгрузка						+
Bec KM:	15	15	15	15	20	20

^{\$}Общая часть/Для промежуточной аттестации\$

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	_	результаты обучения по	•
		дисциплине	
ПК-1	ИД-3 _{ПК-1} Выбирает	Знать:	Расчет токовой защиты нулевой последовательности (Контрольная
	электрооборудование для	Расчетные режимы и	работа)
	проектов систем	методику выбора	Расчет дифференциальной защиты трансформатора (Контрольная
	электроснабжения объекта	параметров срабатывания	работа)
		устройств РЗ	Релейная защита электродвигателя 10 кВ (Контрольная работа)
		трансформаторов 10/0,4	Релейная защита трансформатора (Контрольная работа)
		кВ.	Дифференциальна защита шин (Контрольная работа)
		Объем и виды устройств	Автоматический ввод резерва (Контрольная работа)
		РЗА, а также методику	
		выбора параметров	
		срабатывания релейной	
		защиты РУ 6-35 кВ,	
		присоединений 6-35 кВ и	
		автоматики в системах	
		электроснабжения.	
		Объем и виды устройств	
		РЗА, а также методику	
		выбора параметров	
		срабатывания защиты шин	
		РУ 110-220 кВ.	
		Расчетные режимы и	
		методику выбора	
		параметров срабатывания	
		дифференциальной	
		защиты трансформатора	

Расчетные режимы и методику выбора параметров срабатывания ступенчатых защит линий электропередач (от междуфазныз КЗ, от однофазных КЗ на землю, ДЗ). Расчетные режимы и методику выбора параметров срабатывания устройств РЗ электродвигателей 10 кВ. Уметь: Выполнять расчет параметров срабатывания ступенчатых защит линий электропередач (от междуфазныз КЗ, от однофазных КЗ на землю, ДЗ). Выполнять расчет параметров срабатывания устройств РЗ трансформаторов 10/0,4 Выполнять расчет параметров срабатывания дифференциальной защиты трансформатора. Выполнять расчет параметров срабатывания релейной защиты РУ 6-35

кВ, присоединений 6-35 кВ
и автоматики в системах
электроснабжения.
Выполнять расчет
параметров срабатывания
устройств РЗ
электродвигателей 10 кВ.
Выполнять расчет
параметров срабатывания
защиты шин РУ 110-220
κB.

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Расчет токовой защиты нулевой последовательности

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: Проводится в период аудиторных

занятий. Работа выполняется индивидуально по вариантам заданий.

Краткое содержание задания:

КЗ, от однофазных КЗ на землю,

Контрольная работа ориентирована на контроль умения выполнять расчет уставок ТЗНП линий.

Контрольные вопросы/задания:	
Знать: Расчетные режимы и	1.Каким видом селективности обладают ТЗНП?
методику выбора параметров	2. Какие электрические величины используются при
срабатывания ступенчатых	выполнении РЗ от КЗ на землю в сетях с эффективно-
защит линий электропередач (от	заземленной нейтралью (при напряжении 110 кВ и
междуфазныз КЗ, от однофазных	выше)?
КЗ на землю, ДЗ).	3. Как выполняются фильтры тока и напряжения
	нулевой последовательности?
	4. Какие условия учитываются при выборе
	параметров срабатывания первой, второй и третьей
	ступеней токовой защиты нулевой
	последовательности?
	5. Какими преимуществами обладает чувствительная
	ступень нулевой защиты по сравнению с МТЗ,
	включенной на токи фаз, при КЗ на землю?
	6.Почему чувствительные ступени защит от КЗ на
	землю, включенные на токи нулевой
	последовательности, как правило, имеют меньшие
	значения времени срабатывания, чем МТЗ?
	7. Что понимается под коэффициентом
	токораспределения, и как он влияет на выбор токов
	срабатывания защит от КЗ на землю?
	8.По какой причине появляются токи небаланса на
	выходе ФТНП (фильтра тока нулевой
	последовательности)?
	9.По какой причине может возникнуть
	необходимость использования органа направления
	мощности в защите от КЗ на землю в сети с
	односторонним питанием?
	10.В каком случае может потребоваться установка
	четвертой ступени защиты от КЗ на землю?
Уметь: Выполнять расчет	1.Для сети, изображенной на рисунке, определить
параметров срабатывания	токи и времена срабатывания ступенчатых токовых
ступенчатых защит линий	защит нулевой последовательности на участках 1-3 и
электропередач (от междуфазныз	оценить чувствительность ступеней защиты нулевой

последовательности при однофазных КЗ на землю.

HD)	11
Д3).	Исходные данные:
	$I_{H1} = 50 A;$
	$I_{H2} = 70 A;$
	$I_{H3} = 35 A;$
	tc.3.4 = 1,5 c;
	tc.3.5 = 2.5 c;
	tc.3.6 = 2.5 c;
	I(1)K2 = 6.0 kA;
	I(1)K4 = 3.0 kA;
	I(1)K6 = 1,75 kA;
	3Iot(K1) = 0.2 kA;
	3Iot(K2) = 0.3 kA;
	I(3)K3 = 1.5 KA;
	I(3)K5 = 1.0 kA;
	I(3)K7 = 0.7 kA;
	$k_3 = 1,5.$

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка «ОТЛИЧНО» выставляется студенту, правильно выполнившему задание, который показал при ответе на вопросы, что владеет материалом изученной дисциплины, свободно применяет свои знания для объяснения различных явлений и решения задач.

Оценка: 4

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка «ХОРОШО» выставляется студенту, правильно выполнившему задание и в основном правильно ответившему на вопросы, но допустившему при этом непринципиальные ошибки.

Оценка: 3

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка «УДОВЛЕТВОРИТЕЛЬНО» выставляется студенту, который в ответах на вопросы допустил существенные и даже грубые ошибки, но затем исправил их сам, но либо наметил правильный путь его выполнения.

Оиенка: 2

Описание характеристики выполнения знания: Оценка «НЕУДОВЛЕТВОРИТЕЛЬНО» выставляется студенту, который: а) не ответил на вопросы и не смог решить, либо наметить правильный путь решения задания; б) при ответе на вопросы обнаружил незнание большого раздела учебной программы.

КМ-2. Расчет дифференциальной защиты трансформатора

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Работа выполняется индивидуально по вариантам заданий.

Краткое содержание задания:

Контрольная работа ориентирована на контроль умения выполнять расчет уставок дифференциальной защиты трансформатора.

Контрольные вопросы/задания:

контрольные вопросы/задания:	
Знать: Расчетные режимы и	1. Какие причины вызывают появление тока
методику выбора параметров	небаланса в цепях продольной дифференциальной
срабатывания	токовой защиты трансформатора?
дифференциальной защиты	2. Каким образом при выборе тока срабатывания
трансформатора	дифференциальной защиты учитывается наличие на
	защищаемом трансформаторе устройства РПН?
	3. Каким образом при выполнении дифференциальной
	токовой защиты трансформатора учитывается
	наличие сдвига по фазе между первичными токами
	двух групп трансформаторов тока?
	4.Как выбираются коэффициенты трансформации
	трансформаторов тока, установленных с разных
	сторон защищаемого трансформатора с соединением
	его обмоток по схеме У/Д, при выполнении
	дифференциальной защиты?
	5. Каким образом определяется ток срабатывания и
	оценивается чувствительность дифференциальной
	токовой отсечки?
	6. Чем определяется зона действия дифференциальной
	защиты?
	7. Как влияет на выбор тока срабатывания продольной
	дифференциальной защиты трансформатора наличие устройства регулирования РПН?
	8. Какой способ отстройки от БНТ применяется при
	выполнении дифференциальной токовой отсечки?
	9.При каких видах повреждений должна работать
	дифференциальная защита трансформатора?
	дифференциальная защита трансформатора: 10.Каким видом селективности обладает
	дифференциальная защита трансформатора?
Уметь: Выполнять расчет	1. Определить ток срабатывания дифференциальной
параметров срабатывания	токовой отсечки.
дифференциальной защиты	Исходные данные:
трансформатора.	Sт.ном = 2,5 MBA;
	Sкз сист. = 400 MBA;
	$U_{\rm BH}/U_{\rm HH} = 38,5/11 \ {\rm kB};$
	$U\kappa = 6.5\%;$
	$I_H = 75 A;$
	tc.3.H. = 0.9 c;
	$k_3 = 1,5.$
	· · · · · · · · · · · · · · · · · · ·

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка «ОТЛИЧНО» выставляется студенту, правильно выполнившему задание, который показал при ответе на вопросы, что владеет материалом изученной дисциплины, свободно применяет свои знания для объяснения различных явлений и решения задач.

Оценка: 4

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка «ХОРОШО» выставляется студенту, правильно выполнившему задание и в основном правильно ответившему на вопросы, но допустившему при этом непринципиальные ошибки.

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка «УДОВЛЕТВОРИТЕЛЬНО» выставляется студенту, который в ответах на вопросы допустил существенные и даже грубые ошибки, но затем исправил их сам, но либо наметил правильный путь его выполнения.

Оценка: 2

Описание характеристики выполнения знания: Оценка «НЕУДОВЛЕТВОРИТЕЛЬНО» выставляется студенту, который: а) не ответил на вопросы и не смог решить, либо наметить правильный путь решения задания; б) при ответе на вопросы обнаружил незнание большого раздела учебной программы.

КМ-3. Релейная защита электродвигателя 10 кВ

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: Проводится в период аудиторных

занятий. Работа выполняется индивидуально по вариантам заданий.

Краткое содержание задания:

Контрольная работа ориентирована на контроль умения выполнять расчет уставок защит электродвигателя 10 кВ.

Контрольные вопросы/залания:

контрольные вопросы/задания.	
Знать: Расчетные режимы и	1.На электродвигатели какой мощности и при каких
методику выбора параметров	токах замыкания на землю действует 3О33?
срабатывания устройств РЗ	2.Предусматривается ли защита от перегрузки с
электродвигателей 10 кВ.	действием на отключение для электродвигателя,
	перегрузка которых возможна при чрезмерном
	увеличении длительности пускового периода при
	понижении напряжения питающей сети?
	3.Первая ступень защиты минимального напряжения
	действует на сигнал при снижении напряжения?
	4. Как рассчитывается ток срабатывания защиты
	токовой отсечки электродвигателя с выдержкой
	времени 0,1 с?
	5.Какой фактор не может быть использован для
	реализации алгоритма защиты от потери питания?
	6.Позволяет ли дифференциальная защита
	электродвигателя с тормозной характеристикой
	предотвратить отключение электродвигателя при
	обрывах или различных видах замыканий в
	измерительных цепях?
	7. Как правильно звучит расчетное условие, по
	которому следует оценить значение коэффициента
	чувствительности токовой отсечки электродвигателя

(см. схему):

- 8.Защита от неполнофазного режима работы электродвигателя контролирует токи прямой, обратной и нулевой последовательностей в нейтрали статора?
- 9. Каково условие расчета уставки защиты от однофазного замыкания на землю для ЭД1:
- 10.Сработает ли ТНЗНП электродвигателя, если ток срабатывания защиты 10 А?

Уметь: Выполнять расчет параметров срабатывания устройств РЗ электродвигателей 10 кВ.

- 1.Для электродвигателя 6 кВ:
- 1. Произвести оценку чувствительности защит.
- 2. Выполнить расчет уставок защит электродвигателя 6 кВ.

Примечание:

- 1. Коэффициент трансформации ТТНП принять равным $30/1~{\rm A}$
- 2. Коэффициент броска емкостного тока принять равным 2,0.
- 3. Удельные емкостные токи кабелей 6 кВ
- 4. Низкоомное заземление в сети 6 кВ обеспечивается резистором 100 Ом.

Табл.1

Сечение кабеля, мм2	70	95	120	150	185	240
ІС.УД, А	0,8	0,9	1,0	1,18	1,25	1,45

- 5. ЗП ЭД с независимой выдержкой времени.
- 6. Для двигателей мощностью меньше 3 МВт емкость двигателя не учитывать и принять равной нулю.
- 7. Если какой-то тип защиты не используется, то в ответе прописать 0.

Исходные данные:

Параметры ЭД:

Тип двигателя - асинхронный. $\cos\phi + \cos\theta = 0.87$; $\eta = 0.95$; k = 0.95;

kп=6.5 - кратность пускового тока; kотс

TO=1.2; kcx=1;

kote 3O33 = 1.2; kote MT3 = 1.2;

Рном=32 кВт; Lкаб=150 м; Sкаб=1х(3х120) мм2; tпуск = 9 с - время пуска ЭД; kотс пуска ЭД = 1,2; Ответственность механизма (1 - ответственный механизм; 2 - неответственный механизм; 3 - особо

ответственный механизм) - 2;

Подверженность механизма перегрузке (1 - возможна перегрузка механизма СН по технологии; 2 - возможна перегрузка механизма СН в режиме пуска и самозапуска ЭД 6 кВ; 3 - механизм СН не подвержен перегрузке) - 2;

Параметры сети 6/10 кВ

Ном. напряжение сети - 6 кВ; Ікз min(3)=9.3 кА; Характеристика кабельной сети:

Суммарная протяженность кабельных линий сети 6 кВ составляет 20 км. Указан % от нее для кабелей различного сечения.

 $120~\rm{mm}2$ - $10~\rm{\%}$; $120~\rm{mm}2$ - $30~\rm{\%}$; $95~\rm{mm}2$ - $50~\rm{\%}$. Длина КЛ до защищаемого ЭД $200~\rm{m}$, сечение $150~\rm{mm}2$ ktt= $150~\rm{/}~1$.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка «ОТЛИЧНО» выставляется студенту, правильно выполнившему задание, который показал при ответе на вопросы, что владеет материалом изученной дисциплины, свободно применяет свои знания для объяснения различных явлений и решения задач.

Оценка: 4

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка «ХОРОШО» выставляется студенту, правильно выполнившему задание и в основном правильно ответившему на вопросы, но допустившему при этом непринципиальные ошибки.

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка «УДОВЛЕТВОРИТЕЛЬНО» выставляется студенту, который в ответах на вопросы допустил существенные и даже грубые ошибки, но затем исправил их сам, но либо наметил правильный путь его выполнения.

Оценка: 2

Описание характеристики выполнения знания: Оценка «НЕУДОВЛЕТВОРИТЕЛЬНО» выставляется студенту, который: а) не ответил на вопросы и не смог решить, либо наметить правильный путь решения задания; б) при ответе на вопросы обнаружил незнание большого раздела учебной программы.

КМ-4. Релейная защита трансформатора

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 15

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Работа выполняется индивидуально по вариантам заданий.

Краткое содержание задания:

Контрольная работа ориентирована на контроль умения выполнять расчет уставок защит трансформатора.

Контрольные вопросы/задания:

Контрольные вопросы/задания:	
Знать: Объем и виды устройств	1. Как выбираются параметры срабатывания
РЗА, а также методику выбора	максимальной токовой защиты трансформатора от
параметров срабатывания	внешних КЗ?
защиты шин РУ 110-220 кВ.	2. Какие требования предъявляются к
·	чувствительности защит трансформатора,
	действующих при внутренних и внешних КЗ?
	3. При какой номинальной мощности трансформатора
	применяется токовая отсечка?
Знать: Расчетные режимы и	1.При каких условиях может применяться
±	дифференциальная защита трансформатора?
методику выбора параметров срабатывания устройств РЗ	
J 1	2.В каком случае должна устанавливаться защита
трансформаторов 10/0,4 кВ.	нулевой последовательности в нулевом проводе
	трансформатора?
	3.В каких случаях должна быть предусмотрена
	установка предохранителей на стороне высшего
	напряжения понижающего трансформатора?
	4.На какое количество фаз и с какой стороны
	трансформатора устанавливается защита от
	перегрузки?
	5. Как определяется первичный расчетный ток
	срабатывания защиты от однофазных замыканий на
	землю?
	6. Каков принцип работы логической защиты шин?
	7.Применяется ли защита от витковых замыканий в
	обмотках трансформатора с номинальной мощностью
	менее 1 МВт.
Уметь: Выполнять расчет	1.1)Выполнить расчет уставок защит трансформатора
параметров срабатывания	собственных нужд 6/0,4 кВ.
устройств РЗ трансформаторов	2)Произвести оценку чувствительности защит.
10/0,4 кВ.	Примечание:
	1.Коэффициент трансформации ТТ 3О33 принять
	равным 30/1 А.
	2. Коэффициент возврата реле максимального типа
	принять равным 0,95.
	3. Низкоомное заземление нейтрали сети 6 кВ (RN =
	100 Ом).
	4.Кол-во параллельных линий n = 1.
	5.Удельные емкостные токи кабелей 6 кВ:
	Табл.1
	Сечение кабеля, мм2 70 95 120 150 185 240
	IС.УД, A 0,8 0,9 1,0 1,18 1,25 1,45
	6.На стороне 0,4 кВ от ТСН 6/0,4 кВ один ввод
	питания.
	Исходные данные
	TITITO HILLIA

Sном= 1000 кВА; Lкаб=300 м; Sкаб - 3x150 мм2; $I(3)K1max = 3 \kappa A;$ $I(3)K2min = 2 \kappa A;$ I(3)К1min.(дуговое) = 0,5 кA; I(1)К1min (дуговое) = 0,4 кA; $kTT 6\kappa B=150 / 1; kTT N=1000 / 1; kTT 0.4\kappa B=2000 /$ 1: $\Delta t = 0.5 c$ Ісм.макс (0,4) = 2500 A; tcм.макс (0,4) = 0.3 c; kC3 = 2.6; kcx = 1; tсобств.выкл= 0,2 c; tвозвр.рз= 0,2 c; tзап.= 0,5 c; tош УРОВ = 0.2 c: kote TO = 1.3; kex = 1; kote MT3 = 1.2; $kote T3H\Pi =$ kote YPOB = 0.9; kote 3O33 = 1.2; kb = 5; Суммарная протяженность кабельных линий сети 6/10 кB составляет 20 км. Указан % от нее для кабелей различного сечения. 120 mm2 - 20 %; 150 mm2 - 30 %; 95 mm2- 50 %.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка «ОТЛИЧНО» выставляется студенту, правильно выполнившему задание, который показал при ответе на вопросы, что владеет материалом изученной дисциплины, свободно применяет свои знания для объяснения различных явлений и решения задач.

Оценка: 4

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка «ХОРОШО» выставляется студенту, правильно выполнившему задание и в основном правильно ответившему на вопросы, но допустившему при этом непринципиальные ошибки.

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка «УДОВЛЕТВОРИТЕЛЬНО» выставляется студенту, который в ответах на вопросы допустил существенные и даже грубые ошибки, но затем исправил их сам, но либо наметил правильный путь его выполнения.

Оценка: 2

Описание характеристики выполнения знания: Оценка «НЕУДОВЛЕТВОРИТЕЛЬНО» выставляется студенту, который: а) не ответил на вопросы и не смог решить, либо наметить правильный путь решения задания; б) при ответе на вопросы обнаружил незнание большого раздела учебной программы.

КМ-5. Дифференциальна защита шин

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Работа выполняется индивидуально по вариантам заданий.

Краткое содержание задания:

Контрольная работа ориентирована на контроль умения выполнять расчет уставок ДЗШ.

Контрольные вопросы/задания:

Знать: Объем и	виды устройств
РЗА, а также м	етодику выбора
параметров	срабатывания
защиты шин РУ 110-220 кВ.	

- 1.В каком случае нужно применять специальную защиту шин от K3?
- 2.Зачем применяется режим опробования?
- 3. Как применяется режим опробования шин?
- 4.Для чего используется очувствление в ДЗШ?
- 5. Каковы условия применения защиты шин от КЗ защитами элементов, связывающих источник(и) питания с защищаемыми шинами и подключенных к этим шинам (см. рисунок ниже)?
- 6.Для чего нужны функциональные органы избирательный орган №1 (ИО1), избирательный орган №2 (ИО2) и пусковой орган (ПО) в дифференциальной защите шин?
- 7. Каковы случаи правильного подключения ДЗШ к кернам ТТ? Стрелка рядом с керном ТТ указывает положительное направление мгновенного вторичного тока этого керна ТТ. Дифференциальный ток ДЗШ равен сумме мгновенных вторичных токов кернов ТТ, подключенных к этой ДЗШ.
- 8. Какие особенности условий работы нужно учитывать при осуществлении дифференциальных токовых защит шин?
- 9. Какие существуют два основных способа защиты шин от КЗ?
- 10.Опробование с открытым плечом ДЗШ подразумевает включение защитой ДЗШ в свою зону защиты опробуемого элемента ЭЭС (защищаемые шины, или присоединения, подключенные к защищаемым шинам), используя вывод токов выключателей опробуемого элемента из расчета дифференциального тока этой ДЗШ, и действие этой ДЗШ только на те выключатели, через которых течет мощность к опробуемому элементу?

Уметь: Выполнять расчет параметров срабатывания защиты шин РУ 110-220 кВ.

1.Выбрать уставки избирательных и пусковых реле, а также реле контроля исправности цепей тока ТТ (К) дифференциальной токовой защита двойной системы шин 110 кВ (см. рисунок) с фиксированным распределением элементов по данным: а) максимальный ток нагрузки наиболее нагруженного элемента 500 А; б) токораспределение при внешнем трехфазном и однофазном КЗ (точка К1) в максимальном режиме приведено на рисунке, при этом в скобках указаны полные токи при однофазном КЗ. В минимальном режиме токи при трехфазном и однофазном КЗ на одной из систем шин 110 кВ соответственно равны: I(3)к.мин = 6000 А и I(1)к.мин = 3900 А, nт = 800/5.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка «ОТЛИЧНО» выставляется студенту, правильно выполнившему задание, который показал при ответе на вопросы, что владеет материалом изученной дисциплины, свободно применяет свои знания для объяснения различных явлений и решения задач.

Оценка: 4

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка «ХОРОШО» выставляется студенту, правильно выполнившему задание и в основном правильно ответившему на вопросы, но допустившему при этом непринципиальные ошибки.

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка «УДОВЛЕТВОРИТЕЛЬНО» выставляется студенту, который в ответах на вопросы допустил существенные и даже грубые ошибки, но затем исправил их сам, но либо наметил правильный путь его выполнения.

Оиенка: 2

Описание характеристики выполнения знания: Оценка «НЕУДОВЛЕТВОРИТЕЛЬНО» выставляется студенту, который: а) не ответил на вопросы и не смог решить, либо наметить правильный путь решения задания; б) при ответе на вопросы обнаружил незнание большого раздела учебной программы.

КМ-6. Автоматический ввод резерва

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Проводится в период аудиторных

занятий. Работа выполняется индивидуально по вариантам заданий.

Краткое содержание задания:

Контрольная работа ориентирована на контроль умения выполнять расчет уставок АВР.

Контрольные вопросы/задания:

Знать: Объем и виды устройств	1. Каковы требования, предъявляемые к АВР?
РЗА, а также методику выбора	2.В чем преимущества и недостатки
параметров срабатывания	электромеханических АВР на контакторах?
релейной защиты РУ 6-35 кВ,	3.В чем преимущества и недостатки
присоединений 6-35 кВ и	электромеханических АВР на автоматических
автоматики в системах	выключателях с электроприводом?
электроснабжения.	4.В чем преимущества и недостатки
	электромеханических АВР на управляемых
	переключателях с электроприводом?
	5.В чем заключается явное и не явное резервирование
	ABP?
	6. Каков принцип действия одностороннего и
	двухстороннего АВР?
	7.Для чего используется орган минимального

напряжения в устройстве АВР?

	8. Для чего используется орган максимального напряжения в устройстве ABP?
	9.Должно ли время срабатывания АВР превышать
	максимальное время срабатывания защиты элементов
	сети НН и ВН, на которых при КЗ напряжение на
	секции шин снижается ниже напряжения
	срабатывания ПОН?
Уметь: Выполнять расчет	1.Выбрать параметры срабатывания АВР.
параметров срабатывания	Исходные данные:
релейной защиты РУ 6-35 кВ,	Uном = 35 к B ;
присоединений 6-35 кВ и	tc.3. Makc = 0.5 c.
автоматики в системах	
электроснабжения.	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка «ОТЛИЧНО» выставляется студенту, правильно выполнившему задание, который показал при ответе на вопросы, что владеет материалом изученной дисциплины, свободно применяет свои знания для объяснения различных явлений и решения задач.

Оценка: 4

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка «ХОРОШО» выставляется студенту, правильно выполнившему задание и в основном правильно ответившему на вопросы, но допустившему при этом непринципиальные ошибки.

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка «УДОВЛЕТВОРИТЕЛЬНО» выставляется студенту, который в ответах на вопросы допустил существенные и даже грубые ошибки, но затем исправил их сам, но либо наметил правильный путь его выполнения.

Оценка: 2

Описание характеристики выполнения знания: Оценка «НЕУДОВЛЕТВОРИТЕЛЬНО» выставляется студенту, который: а) не ответил на вопросы и не смог решить, либо наметить правильный путь решения задания; б) при ответе на вопросы обнаружил незнание большого раздела учебной программы.

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

2 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

- 1. Комплект защит шин РУ 6-35 кВ (в том числе ВВ 6-35 кВ)?
- 2. Автоматический ввод резерва. Характеристика, принцип реализации, выбор уставок?
- 3. Задача. Произвести расчет уставок защит электродвигателя 10 кВ.

Процедура проведения

Проводится в письменной и устной форме по билетам в виде решения задачи и изложения развернутого ответа на вопросы по юилету. Время на выполнение экзаменационного задания/подготовку ответа -60 минут.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-3_{ПК-1} Выбирает электрооборудование для проектов систем электроснабжения объекта

Вопросы, задания

- 1.РЗ трансформатора 10/0,4 кВ?
- 2.Комплект защит шин РУ 6-35 кВ (в том числе ВВ 6-35 кВ)?
- 3. Автоматический ввод резерва. Характеристика, принцип реализации, выбор уставок?
- 4. Автоматическое повторное включение. Характеристика, принцип реализации, выбор уставок?
- 5. Автоматическая частотная разгрузка. Характеристика, принцип реализации, выбор уставок?
- 6.Токовая ступенчатая защита линии от междуфазных КЗ?
- 7. Дистанционная защита линии?
- 8. Токовая защита нулевой последовательности для линий электропередач?
- 9. Релейная защита трансформатора 10/0,4 кВ.
- 10.Защита шин 110-220 кВ?

Материалы для проверки остаточных знаний

1. Что характеризует коэффициент схемы (Ксх)

Ответы:

а. отношение тока в реле при разных видах КЗ b. отношение тока в реле ко вторичному току ТТ с. отношение тока возврата реле к току срабатывания d. отношение тока в реле при КЗ к току срабатывания реле

Верный ответ: b. отношение тока в реле ко вторичному току ТТ

2. Что понимается под «отказом срабатывания» защиты

Ответы:

а. излишнее срабатывание при внешнем КЗ b. отказ срабатывания при внутреннем КЗ c. все перечисленное d. ложное срабатывание в режиме без КЗ

Верный ответ: b. отказ срабатывания при внутреннем КЗ

3. Что понимается под «ложным» срабатыванием защиты

Ответы:

а. срабатывание во всех случаях, кроме внутренних КЗ b. срабатывание при внешних КЗ c. срабатывание в режиме без КЗ

Верный ответ: с. срабатывание в режиме без КЗ

4. Дифференциальная защита ЭД 6(10) кВ применяется в качестве:

Ответы:

а. резервной защита от междуфазных коротких замыканий для ЭД мощностью менее 5 МВт b. основной защиты от междуфазных коротких замыканий для ЭД мощностью более 5 МВт c. защиты от однофазных замыканий на землю для ЭД мощностью более 2 МВт d. основной защиты от междуфазных коротких замыканий для ЭД мощностью более 2 МВт

Верный ответ: b. основной защиты от междуфазных коротких замыканий для ЭД мощностью более 5 МВт

5.Выберите неверное утверждение. Защита от перегрузки предусматривается с действием на отключение для ЭД:

Ответы:

а. с особо тяжелыми условиями пуска и самозапуска b. подверженных перегрузке по технологическим причинам с. перегрузка которых является недопустимой d. перегрузка которых возможна при чрезмерном увеличении длительности пускового периода при понижении напряжения питающей сети

Верный ответ: а. с особо тяжелыми условиями пуска и самозапуска 6.Выберите верное утверждение:

Ответы:

а. первая ступень защиты минимального напряжения действует на отключение неответственных двигателей b. вторая ступень защиты минимального напряжения действует на сигнал при исчезновении напряжения с выдержкой времени 3 с. с. вторая ступень защиты минимального напряжения действует на отключение ответственных двигателей без выдержки времени d. первая ступень защиты минимального напряжения действует на сигнал при снижении напряжения

Верный ответ: а. первая ступень защиты минимального напряжения действует на отключение неответственных двигателей

7. При расчете нагрузки на обмотку ТН, соединенной в звезду, потребление должно быть приведено к:

Ответы:

а.100 В для потребителей, включенных линейно и $100*\sqrt{3}$, для потребителей включенных фазно b.100 В для всех потребителей с.100 В для потребителей, включенных фазно и $100*\sqrt{3}$, для потребителей включенных линейно

Верный ответ: а.100 В для потребителей, включенных линейно и $100*\sqrt{3}$, для потребителей включенных фазно

8. Какой из приведенных ниже классов точности не используются для вторичных обмоток ТН:

Ответы:

a.5 b.1 c.0,5 d.3

Верный ответ: а.5

9. Какой режим работы ТН является предпочтительным?

Ответы

а.Холостой ход b.Активная нагрузка, равная номинальной с.Активно-индуктивная нагрузка d.Короткое замыкание

Верный ответ: а.Холостой ход

10. Какие мероприятия предусмотрены, если расчетная мощность нагрузки на обмотку ТН превышает допустимое значение:

Ответы:

а.Использование дополнительного TH на отдельных присоединениях b.Использование приборов с меньшим энергопотреблением с.Замена кабелей на другие, с большим сечением d.Использование TH с большей мощностью

Верный ответ: b.Использование приборов с меньшим энергопотреблением 11.Какой режим работы ТТ является предпочтительным?

Ответы:

а.активная нагрузка равная номинальной b.холостой ход с.короткое замыкание d.активно-индуктивная нагрузка равная номинальной

Верный ответ: с.короткое замыкание

12.Для чего нужны функциональные органы избирательный орган №1 (ИО1), избирательный орган №2 (ИО2) и пусковой орган (ПО) в дифференциальной защите пин?

Ответы:

- а. ИО1(2) для сохранения электроснабжения потребителей неповрежденных шин при отделении шин на которых КЗ; ПО для отделения шин на которых КЗ когда ИО1 и ИО2 не могут правильно работать
- b. ИО1(2) для определения на какой шине есть К3, ПО для определения наличия К3 на системе(ах) шин для максимального количества возможных режимов
- с. ИО1 для отделения шин на которых К3, ИО2 для резервирования действия ИО1, ПО для пуска ИО1 и ИО2 при К3 на защищаемых шинах
- d. ИO1(2) для отделения только шин на которых K3, ΠO для отделения шин на которых K3 в режиме нарушения фиксации присоединений

Верный ответ: b. ИО1(2) — для определения на какой шине есть КЗ, ПО — для определения наличия КЗ на системе(ах) шин для максимального количества возможных режимов

13. Какая особенность не оказывает влияние на работу дифференциальных токовых защит шин?

Выберите один ответ:

Ответы:

- а. Высокая кратность тока при внешнем КЗ
- Режим опробования шин
- с. Перефиксация присоединений с одних шин на другие
- d. Изменение нагрузок присоединений шины при нормальной схеме ПС (ЭС)
- е. Неоднотипность ТТ
- f. Возможность повреждения во вторичных цепях TT

Верный ответ: d. Изменение нагрузок присоединений шины при нормальной схеме ПС (ЭС)

14.Зачем применяется режим опробования?

Выберите один ответ:

Ответы:

- а. Для опробования готовности к работе СВ или ШСВ, когда в нормальном режиме включается СВ или ШСВ
- b. Для подключения к ЭЭС элемента ЭЭС в первые разы после его ремонта, когда есть большая вероятность возникновения КЗ на этом элементе
- с. Для подключения к ЭЭС элемента ЭЭС, отделенного ранее от ЭЭС действием релейной защиты, когда есть большая вероятность включения этого элемента на неустранившееся КЗ
- d. Для опробования работы устройства P3A при изменении его уставок в нормальном режиме (при нормальной схеме ПС или ЭС)

Верный ответ: b. Для подключения к ЭЭС элемента ЭЭС в первые разы после его ремонта, когда есть большая вероятность возникновения КЗ на этом элементе 15.Выберете правильное утверждение. ЗОЗЗ ЭД действует:

Выберите один ответ:

Ответы:

- а. на отключение для ЭД мощностью более 5 МВт при токах замыкания на землю 10 А и более:
- b. с выдержкой времени 9 с на сигнал независимо от мощности ЭД при токах замыкания на землю не более 10 A.
- с. на отключение для ЭД мощностью до 2 МВт при токах замыкания на землю 10 А и менее:
- d. на отключение для ЭД мощностью более 2 МВт при токах замыкания на землю 5 A и более:

Верный ответ: d. на отключение для ЭД мощностью более 2 МВт при токах замыкания на землю 5 А и более;

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 90 Описание характеристики выполнения знания: Ответы даны верно, четко сформулированы, особенности практических решений указаны в достаточном для понимания функционирования объеме

Оценка: 4

Нижний порог выполнения задания в процентах: 80 Описание характеристики выполнения знания: Большинство ответов даны верно. В материалах ответа присутствуют незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Не менее половины ответов даны верно. В материалах ответа присутствуют незначительные недостатки и ошибки, которые студент смог самомстоятельно скорректировать

Оценка: 2

Описание характеристики выполнения знания: Менее половины ответов даны верно. Продемонмтрировано незнание базовых тезисов по изложенному материалу

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о бально-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих