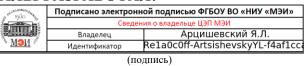
Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.04.02 Электроэнергетика и электротехника

Наименование образовательной программы: Релейная защита и автоматизация электроэнергетических

систем

Уровень образования: высшее образование - магистратура


Форма обучения: Очная

Оценочные материалы по дисциплине Автоматика электроэнергетических систем

Москва 2022

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Преподаватель (должность)

Я.Л. Арцишевский (расшифровка подписи)

СОГЛАСОВАНО:

Руководитель образовательной программы

(должность, ученая степень, ученое звание)

Заведующий выпускающей кафедры

(должность, ученая степень, ученое звание)

NOSO NOSO	Подписано электрон	ной подписью ФГБОУ ВО «НИУ «МЭИ»
	Сведе	ения о владельце ЦЭП МЭИ
	Владелец	Арцишевский Я.Л.
» <u>М≎И</u> «	Идентификатор	Re1a0c0ff-ArtsishevskyYL-f4af1cc

(подпись)

NGO NGE	ой подписью ФГБОУ ВО «НИУ «МЭИ»					
THE STREET STATE OF	Сведения о владельце ЦЭП МЭИ					
	Владелец	Волошин А.А.				
<u>M⊙M</u> ₹	Идентификатор	Ra915003b-VoloshinAA-408ebd73				
		`				

(подпись)

Я.Л. Арцишевский (расшифровка подписи)

А.А. Волошин (расшифровка подписи)

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-1 Способен вести разработку автоматических систем в электроэнергетике ИД-3 Способен производить расчеты параметров аварийных режимов
- 2. ПК-2 Способен использовать знания об автоматических устройствах в электроэнергетике в научной деятельности
 - ИД-1 Работает с отдельными видами автоматических устройств
 - ИД-4 Способен производить системный анализ действия релейной защиты а автоматики на энергообъекте

и включает:

для текущего контроля успеваемости:

Форма реализации: Защита задания

- 1. Защита ЛР (Лабораторная работа)
- 2. Защита ЛР 1 (Лабораторная работа)
- 3. Защита ЛР 2 (Лабораторная работа)

Форма реализации: Компьютерное задание

- 1. Контрольное мероприятие 1 (Тестирование)
- 2. Контрольное мероприятие 1 (Тестирование)
- 3. Контрольное мероприятие 2 (Тестирование)
- 4. Контрольное мероприятие 2 (Решение задач)
- 5. Контрольное мероприятие 3 (Тестирование)
- 6. Контрольное мероприятие 3 (Тестирование)

БРС дисциплины

2 семестр

	Веса контрольных мероприятий, %				й, %
Donwor www.www.v	Индекс	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	1	2	3	4
	Срок КМ:	6	10	14	16
Классификация релейной защиты и автоматики. Обз	вор				
устройств сетевой, противоаварийной и режимной а	втоматики				
Классификация релейной защиты и автоматики. Обз					
устройств сетевой, противоаварийной и режимной а		+	+		
Устройства сетевой автоматики. Назначение, Област	ГЬ				
применения, требования, принципы действия и алго					
функционирования.					
Устройства сетевой автоматики. Назначение, Област	ГЬ				
применения, требования, принципы действия и алго	ритмы		+	+	+

функционирования.				
Устройства режимной автоматики. Автоматическое				
регулирование напряжением и реактивной мощностью.				
Назначение, Область применения, требования, принципы				
действия и алгоритмы функционирования.				
Устройства режимной автоматики. Назначение, Область				
применения, требования, принципы действия и алгоритмы	+	+	+	+
функционирования.				
Устройства режимной автоматики. Автоматическое				
регулирование частотой и перетоками активной мощностью.	+	+		
Назначение, Область применения, требования, принципы				
действия и алгоритмы функционирования.				
Устройства технологической автоматики. Назначение, Область				
применения, требования, принципы действия и алгоритмы				
функционирования.				
Устройства технологической автоматики. Назначение, Область				
применения, требования, принципы действия и алгоритмы		+	+	
функционирования.				
Bec KM:	25	25	25	25

3 семестр

	Веса контрольных мероприятий, %					,)
D.,	Индекс	КМ-	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	КМ:	1	2	3	4	5
	Срок КМ:	6	10	14	15	16
Устройства и комплексы противоаварийной						
автоматики. Функции, назначения, требован	ия.					
Устройства и комплексы противоаварийной						
автоматики. Функции, назначения, требован	ия.		+		+	+
Автоматика предотвращения нарушения уст	ойчивости.					
Функции, назначения, требования.						
Локальная автоматика предотвращения нару						
устойчивости (ЛАПНУ). Назначение. Принц	ип	+	+		+	+
действия. Виды УВ.						
Централизованная система противоаварийно	ой	+	+		+	+
автоматики (ЦСПА).						干
Автоматика ограничения повышения напрях						
(АОПН). Автоматика ограничения снижения	I					
напряжения (АОСН).						
Автоматика ограничения повышения напрях	кения			+	+	
(АОПН).				'	'	
Автоматика ограничения снижения напряже	Р В В В В В В В В В В			+	+	
(AOCH).				'	'	
Автоматика ограничения перегрузки оборуд	ования					
(АОПО).						
Автоматика ограничения перегрузки оборуд			+	+		
(АОПО).				T		
Автоматика ограничения снижения частоты (АОСЧ).						
Автоматика ограничения повышения частот	ы (АОПЧ).					
Автоматика ограничения снижения частоты	(АОСЧ).			+	+	

Автоматика ограничения повышения частоты (АОПЧ).			+	+	
Автоматика ликвидации асинхронного режима (АЛАР).					
Автоматика ликвидации асинхронного режима (АЛАР).			+	+	
Вес КМ:	20	20	20	20	20

\$Общая часть/Для промежуточной аттестации\$

БРС курсовой работы/проекта

3 семестр

	Веса контрольных мероприятий, %					
Раздел дисциплины	Индекс	КМ-	КМ-	КМ-		
	KM:	1	2	3		
	Срок КМ:	1	8	16		
Разработка и согласование плана курсового проекта		+				
Разработка и отладка тестовой схемы энергосистемы для испытаний функции РЗА		+				
Разработка и отладка функции РЗА		+				
Тестовые испытания функции РЗА на схеме энергосисте			+			
	Bec KM:	10	40	50		

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции		результаты обучения по	
		дисциплине	
ПК-1	ИД-3 _{ПК-1} Способен	Знать:	Контрольное мероприятие 1 (Тестирование)
	производить расчеты	принципы работы систем	Контрольное мероприятие 2 (Тестирование)
	параметров аварийных	противоаварийной	Защита ЛР (Лабораторная работа)
	режимов	автоматики в	Контрольное мероприятие 2 (Решение задач)
		электроэнергетике	Защита ЛР 2 (Лабораторная работа)
		основные алгоритмы	
		противоаварийной	
		автоматики, используемые	
		на подстанции	
		назначение и область	
		применения систем	
		противоаварийной	
		автоматики	
		Уметь:	
		читать схемы	
		противоаварийной	
		автоматики	
		разрабатывать алгоритмы	
		противоаварийной	
		автоматики	
ПК-2	$ИД-1_{\Pi K-2}$ Работает с	Знать:	Контрольное мероприятие 3 (Тестирование)
	отдельными видами	влияние аварийных	Контрольное мероприятие 1 (Тестирование)
	автоматических устройств	режимов на параметры	Защита ЛР 2 (Лабораторная работа)
		работы ЭЭС	
		перечень возможных	

		нарушений на ПС	
		Уметь:	
		рассчитывать параметры	
		аварийного режима	
ПК-2	ИД-4 _{ПК-2} Способен	Знать:	Защита ЛР 1 (Лабораторная работа)
	производить системный	основные показатели	Защита ЛР 2 (Лабораторная работа)
	анализ действия релейной	качества работы	Контрольное мероприятие 3 (Тестирование)
	защиты а автоматики на	автоматики на	
	энергообъекте	энергообъекте	
		Уметь:	
		использовать данные	
		аварийного режима для	
		анализа алгоритмов	
		автоматики	

II. Содержание оценочных средств. Шкала и критерии оценивания

2 семестр

КМ-1. Контрольное мероприятие 1

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Компьютерное тестирование.

Краткое содержание задания:

Компьютерное тестирование.

Контрольные вопросы/задания:

Знать: назначение и область применения систем противоаварийной автоматики

- 1. Что понимается под небалансом мощности области регулирования?
- 1. Отклонение от планового баланса активной мощности области регулирования по любой причине, вызывающее отклонение частоты от заданного значения в синхронной зоне и отклонение внешнего перетока
- 2. Отклонения фактического баланса активной мощности области регулирования от планового в нормальном режиме работы энергосистемы, вызываемые непрогнозируемыми изменениями потребления активной мощности и отклонениями активной мощности.

Ответ: 1

- 2. Что понимается под нерегулярными отклонениями активной мощности?
- 1. 1. Отклонения перетока активной мощности в контролируемом сечении, вызываемые непрогнозируемыми изменениями потребления активной мощности и отклонениями активной мощности.
- 2. 2. Отклонение от планового баланса активной мощности области регулирования по любой причине, вызывающее отклонение частоты от заданного значения в синхронной зоне и отклонение внешнего перетока.
- 3. Ответ: 1

3. Что понимается под областью регулирования?

- 1. 1. Часть регулировочного диапазона генерирующего оборудования на загрузку или на разгрузку (соответственно резерв на загрузку и резерв на разгрузку), используемая для регулирования.
- 2. 2. Интервал допустимых нагрузок генерирующего оборудования по активной мощности для нормальных условий его эксплуатации, при которых параметры

- генерирующего оборудования находятся в допустимых пределах.
- 3. З. Синхронная зона, в которой осуществляется регулирование частоты, или часть синхронной зоны, в которой осуществляется регулирование внешнего перетока активной мощности.
- 4. Ответ: 3

4. Что понимается под регулировочным диапазоном?

- 1. 1. Часть регулировочного диапазона генерирующего оборудования на загрузку или на разгрузку (соответственно резерв на загрузку и резерв на разгрузку), используемая для регулирования.
- 2. 2. Интервал нагрузок генерирующего оборудования по активной мощности для нормальных условий его эксплуатации, при которых параметры генерирующего оборудования находятся в допустимых пределах.
- 3. З. Синхронная зона, в которой осуществляется регулирование частоты, или часть синхронной зоны, в которой осуществляется регулирование внешнего перетока активной мощности.
- 4. Ответ: 2

5. Регулирование частоты и перетоков активной мощности должно осуществляться ... ?

- 1. 1. по частоте действием систем первичного регулирования, по перетокам активной мощности совместным действием систем вторичного и третичного регулирования.
- 2. 2. по частоте совместным действием систем первичного и вторичного регулирования, по перетокам активной мощности действием систем третичного регулирования.
- 3. 3. совместным действием систем первичного (общего и нормированного), вторичного и третичного регулирования.
- 4. Ответ 3.
 - 6. Регулирование частоты и перетоков активной мощности в ЕЭС России, осуществляемое для восстановления израсходованных вторичных резервов и последующей оперативной коррекции диспетчерских графиков это ...?
- 1. 1. нормированное вторичное регулирование
- 2. 2. общее третичное регулирование
- 3. 3. общее вторичное регулирование
- 4. 4. нормированное первичное регулирование
- 5. 5. нормированное третичное регулирование
- 6. 6. вторичное регулирование
- 7. 7. общее первичное регулирование.
- 8. 8. первичное регулирование

- 9. 9. третичное регулирование
- 10. Ответ: 9

7. Что понимается под вторичным регулированием частоты и перетоков активной мощности (вторичное регулирование)?

- 1. 1. Процесс автоматического изменения мощности генерирующего оборудования под действием первичных регуляторов, вызванный изменением частоты и направленный на уменьшение этого изменения.
- 2. 2. Процесс автоматического или оперативного изменения активной мощности генерирующего оборудования для восстановления заданного значения частоты или заданного значения перетока мощности
- 3. 3. Процесс изменения активной мощности генерирующего оборудования в целях восстановления резервов регулирования.
- 4. Ответ: 2

8. Какова цель третичного регулирования?

- 1. 1. Поддержание заданных величин резервов вторичного регулирования, их восстановления в процессе регулирования частоты и перетоков активной мощности.
- 2. 2. Выявление и ликвидация внутренних небалансов мощности области регулирования.
- 3. З. Компенсация нерегулярных отклонений мощности, компенсация расчетных небалансов активной мощности в областях регулирования и обеспечение ликвидации возможной перегрузки контролируемых сечений.
- 4. Ответ: 1.

5.

9. Как должно осуществляться регулирование частоты и перетоков активной мощности?

- 1. 1. Действием диспетчеров операционных зон.
- 2. 2. Совместным действием систем общего и нормированного первичного регулирования.
- 3. 3. Посредством первичного (общего и нормированного), вторичного и третичного регулирования.
- 4. Ответ: 3.
 - 10.Вторичное регулирование должно осуществляться оперативно либо автоматически (с использованием систем автоматического регулирования частоты и перетоков мощности AP4M) ... ?
- 1. 1. выделенными для этих целей электростанциями.
- 2. 2. всеми электростанциями
- 3. Ответ: 1

Описание шкалы оценивания:

Оиенка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 75 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-2. Контрольное мероприятие 2

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Компьютерное тестирование.

Краткое содержание задания:

Компьютерное тестирование.

Контрольные вопросы/задания:

Знать: принципы работы систем противоаварийной автоматики в электроэнергетике

1.В общем первичном регулировании часты должны участвовать ...

- 1. 1. Только тепловые электрические станции
- 2. 2. Все генерирующее оборудование
- 3. З. Все генерирующее оборудование за исключением АЭС и ТЭЦ с поперечными связями
- 4. 4. Все генерирующее оборудование за исключением АЭС с реакторами БН и РБМК
- 5. Ответ: 4
- 6.

2. Что понимается под зоной нечувствительности первичного регулирования?

- 1. 1. Задаваемая величина отклонения частоты от номинального значения, при котором не требуется первичное регулирование. При заданном значении частоты минимальное значение «мертвой полосы» первичного регулирования равно зоне нечувствительности первичного регулирования.
- 2. 2. Максимальная величина изменения частоты вращения турбин от любого ее исходного значения в любом направлении ее изменения, при которой не гарантируется участие генерирующего оборудования в первичном регулировании. Зона нечувствительности первичного регулирования складывается из максимальной погрешности измерения частоты вращения турбин и нечувствительности первичных регуляторов.

- 3. Ответ: 2.
 - 3. Что понимается под «мертвой полосой» первичного регулирования?
- 1. 1. Задаваемая величина отклонения частоты от номинального значения, при котором не требуется первичное регулирование. При заданном значении частоты минимальное значение «мертвой полосы» первичного регулирования равно зоне нечувствительности первичного регулирования.
- 2. 2. Максимальная величина изменения частоты вращения турбин от любого ее исходного значения в любом направлении ее изменения, при которой не гарантируется участие генерирующего оборудования в первичном регулировании. Зона нечувствительности первичного регулирования складывается из максимальной погрешности измерения частоты вращения турбин и нечувствительности первичных регуляторов.
- 3. Ответ: 1.
 - 4. Каким образом энергоблок должен реагировать на отклонения частоты за пределы «мёртвой полосы» первичного регулирования?
- 1. 1. Энергоблок должен выдавать требуемую первичную мощность независимо от изменений частоты
- 2. 2. Энергоблок должен выдавать требуемую первичную мощность с учетом изменения величины отклонения частоты
- 3. Ответ: 2
 - 5.Измерения каких величин могут использоваться в РЧВ и в ЧК регулятора мощности энергоблока в качестве сигналов по частоте...?
- 1. 1. Только частота вращения турбины
- 2. 2. Частота электрического тока
- 3. 3. Частота вращения турбины и/или частота электрического тока
- 4. Ответ: 1

6. Что такое коррекция по частоте?

- 1. 1. задаваемый для области регулирования коэффициент линейной зависимости суммарной первичной мощности и изменения мощности потребления области регулирования от отклонения частоты
- 2. 2. величина изменения регулируемого параметра (активной мощности генерирующего оборудования, внешнего перетока области регулирования) относительно заданного значения, обусловленная отклонением частоты от заданного значения
- 3. Ответ: 2
 - 7. Быстрое изменение моментов вращения турбин

энергоблоков на электростанциях в зависимости от направления и величины отклонения скорости вращения турбин от заданной, инициируемое регуляторами скорости вращения турбин относится к ... ?

- 1. 1. первичному регулированию частоты.
- 2. 2. вторичному регулированию частоты.
- 3. 3. третичному регулированию частоты.
- 4. Ответ: 1.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-3. Зашита ЛР

Формы реализации: Защита задания

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Защита лабораторных работ

Краткое содержание задания:

- 1) Изучить принцип действия АРВ МТ
- 2) Проверить устойчивость АСР при всех вариантах подключения каналов стабилизации:
- a) APH:
- б) АРН + каналы внутренней стабилизации (по производной тока ротора и амплитуде напряжения статора);
- в) АРН + каналы внешней стабилизации (по отклонению, производной частоты статора);
- Γ) APH + каналы внутренней стабилизации + каналы внешней стабилизации (по отклонению, производной частоты статора);

Оценить запасы устойчивости для всех ситуаций подключения каналов.

- 3) Оценить качество регулирования, для этого:
- а) определить Wpa3(p) и W3aм(p) для заданных режимных параметров (Приложение П3.3).
- б) оценить запасы устойчивости по амплитуде DA и фазе Dj, длительность переходного процесса tnn, колебательность M, перерегулирование s (для амплитуды U), (приложение $\Pi3.5$).
- 4) Реализовать тестовые возмущения:
- Ступенчатое изменение уставки по напряжению сертифицируемого APB на $\pm 5\%$ от номинального значения;

- Однофазное короткое замыкание (длительностью 0,03с) на шинах электрической станции;
- Ступенчатое изменение напряжения на шинах электрической станции путем подключения емкости к шинам электрической станции.
- Отключение параллельной линии.
- 5) Проанализировать полученные осциллограммы амплитуды и частоты напряжения на шинах генератора:
- определить изменение качества регулирования при добавлении каналов стабилизации: длительность переходного процесса, коэффициент затухания, перерегулирование, колебательность переходного процесса.
- 6). Сделать выводы

Контрольные вопросы/задания:

Знать: основные алгоритмы противоаварийной автоматики, используемые на подстанции 1.Функция автоматического регулятора возбужд СГ. 2.Необходимость установки системного	ения
используемые на подстанции 2.Необходимость установки системного	
стабилизатора PSS.	
3.Пояснить выбор типа регулятора АРН.	
4.Определение основных характеристик переход	Іного
процесса (ПП).	
5.Применение корневого критерия качества ПП	В
лабораторной работе.	
6.Применение частотного критерия качества ПП	В
лабораторной работе.	
7. Определение запасов устойчивости по корнево	му
критерию качества ПП.	
8. Определение запасов устойчивости по частотн	ому
критерию качества ПП.	
9.Понятие колебательности в корневом критери	И
качества ПП.	
10.Понятие колебательности в частотном критер	ии
качества ПП.	ļ
11.Сопоставление характеристик ПП, получення	JΙΧ
двумя критериями качества ПП.	

Описание шкалы оценивания:

Оиенка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-4. Контрольное мероприятие 3

Формы реализации: Компьютерное задание **Тип контрольного мероприятия**: Тестирование **Вес контрольного мероприятия в БРС**: 25

Процедура проведения контрольного мероприятия: Компьютерное тестирование

Краткое содержание задания:

Провести тестирование

Контролі	ьные вопр	осы/задания:		
Знать: режимов ЭЭС	влияние на парам	аварийных етры работы	1.	1. Назовите назначение автоматического регулирования напряжения и реактивной мощности: 1. сохранение или повышение статической устойчивости электропередач в нормальных режимах работы;
				2. повышение динамической устойчивости электроэнергетической системы в аварийных режимах; 3. предотвращение развития колебаний роторов турбогенераторов в нормальном режиме и обеспечение быстрого затухания (демпфирование) их качаний, возникающих в послеаварийном режиме; 4. обеспечение требуемого напряжения у потребителей; 5. ликвидация нарушения динамической устойчивости электроэнергетической системы в аварийной режиме; 6. все перечисленное. Ответ: 1,2,3,4 2.Назовите технические средства автоматического регулирования реактивной мощности в энергосистеме:
			1.	1. автоматическое регулирование возбуждения синхронных генераторов электростанций;
				 регулирование возбуждения синхронных компенсаторов; автоматическое регулирование реактивной мощности статических источников реактивной мощности;
				 4. регулирование возбуждения синхронных электродвигателей; 5. автоматическое регулирование коэффициента трансформации трансформаторов с устройствами РПН;
				6. все перечисленные технические средства. Ответ: 1,2,3,4 3.Источником постоянного тока возбуждения синхронного генератора в электромашинной системе возбуждения синхронных генераторов является:
			1.	1. индукторный синхронный генератор переменного тока;

- 2. 2. электрическая машина постоянного тока;
 - 3. обращенный многополюсный генератор с вращающимся (расположенным на одном валу синхронного генератора) диодный выпрямитель
 - 4. вспомогательный синхронный генератор Ответ: 2
 - 4.Для чего применяется форсировка возбуждения генераторов?
- 1. 1. для регулирования перетоков реактивной мощности.
 - 2. для регулирования напряжения
 - 3. для предотвращения нарушения динамической устойчивости генераторов электростанций.

Ответ: 3

- 5.Использование регулирующего воздействия по производной напряжения в APB сильного действия позволяет:
- 1. 1. позволяет повысить устойчивость процесса регулирования, особенно в режиме холостого хода СГ;
 - 2. повысить устойчивость замкнутой автоматической системы регулирования, включающей нагруженную электропередачу, обеспечивая затухание электромеханических переходных процессов.

Ответ: 1

- 6. Производная тока или изменение и производная частоты совместно с производной напряжения позволяют:
- 1. 1. позволяет повысить устойчивость процесса регулирования, особенно в режиме холостого хода СГ;
 - 2. повысить устойчивость замкнутой автоматической системы регулирования, включающей нагруженную электропередачу, обеспечивая затухание электромеханических переходных процессов. Ответ: 2.

7. Какие регулирующие воздействия не используются в APB сильного действия:

- 1. 1. отклонение напряжения от заданной величины;
- 2. 2. первая производная напряжения;
 - 3. первая и вторая производные тока линии электропередачи;
 - 4. изменение и первая производная частоты;
 - 5. все перечисленные используются.

Ответ 5.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 75 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

3 семестр

КМ-1. Контрольное мероприятие 1

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Компьютерное тестирование

Краткое содержание задания:

Провести компьютерное тестирование

Контрольные вопросы/задания:

		сы/задания.	1 1
_	речень	возможных	1. Автоматическое противоаварийное управление в
нарушений н	на ПС		энергосистеме реализуется посредством ПА,
			обеспечивающей выполнение следующих функций
			(выберите правильный ответ (ы)):
			1. 1. Предотвращение нарушения устойчивости;
			2. Предотвращение недопустимой по величине и
			длительности токовой нагрузки ЛЭП и
			электросетевого оборудования;
			3. Ограничение повышения частоты;
			4. Ограничения перетоков активной мощности в
			контролируемом сечении;
			5. Все перечисленные.
			Ответ: 1,2,3
			2.Выбор настройки автоматики разгрузки при
			отключении ЛЭП и сетевого или генерирующего
			осуществляется по условию:
			1. 1. Выбор уставок органов контроля предшествующей
			мощности (КПР) и управляющих воздействий по условию
			обеспечения статической устойчивости с нормативным
			запасом в послеаварийном режиме;
			2. Проверка сохранения устойчивости в
			переходных процессах;
			3. Выбор уставок органов контроля предшествующей
			мощности (КПР) и управляющих воздействий по
			условию обеспечения статической устойчивости с
			нормативным запасом в нормальном режиме.
			Ответ: 1,2
			3.Выберите управляющие воздействия от устройств
			автоматики ограничения перегрузки оборудования:
			17

1. 1. Все перечисленные.

- 2. Отключение нагрузки потребителей;
- 3. Автоматическая загрузка генераторов;
- 4. Изменение режима работы или эксплуатационного состояния средств компенсации реактивной мощности;
- 5. Изменение топологии электрической сети, обеспечивающее перераспределение потоков мощности и ликвидацию перегрузки элемента сети;
- 6. Отключение перегружаемого элемента сети с запретом АПВ;
- 7. Длительная разгрузка турбин блоков ТЭС и АЭС;
- 8. Отключение генераторов ТЭС, ГЭС и АЭС.

Ответ: 1

- 4. Выберите управляющие воздействия от устройств автоматики ограничения снижения частоты напряжения:
- 1. 1. Отключение нагрузки потребителей;
 - 2. Изменение режима работы или эксплуатационного состояния средств компенсации реактивной мощности;
 - 3. Изменение топологии электрической сети, обеспечивающее перераспределение потоков мощности и ликвидацию перегрузки элемента сети:
 - 4. Автоматическая загрузка генераторов;
 - 5. Включение шунтирующих реакторов;
 - 6. Все перечисленные.

Ответ: 1,2,3

- 5.Выберите правильное определение термина частичное контролируемое сечение:
- 1. 1. Совокупность элементов одной или нескольких связей, одновременное отключение которых не приводит к разделению энергосистемы на две изолированно работающие части.
 - 2. Совокупность элементов одной или нескольких связей, одновременное отключение которых приводит к разделению энергосистемы на две изолированно работающие части.

Ответ: 1.

- 6.Величина аварийно допустимого перетока активной мощности в контролируемом сечении определяется критериями:
- 1. 1. нормального режима, установленными для основных параметров электроэнергетического режима (P, U, I);
 - 2. послеаварийного режима (после нормативных возмущений), установленными для основных параметров электроэнергетического режима (P, U, I); 3. для всех перечисленных режимов.

Ответ: 1

- 7. Выберите критерии определения аварийного допустимого перетока в сечении:
- 1. Обеспечение нормативного коэффициента запаса статической апериодической устойчивости по активной мощности в контролируемом сечении в нормальной (ремонтной) схеме 8%;
- 2. Обеспечение нормативного коэффициента запаса статической устойчивости по напряжению в узлах нагрузки в нормальной (ремонтной) схеме 10%;
- 3. Отсутствие нарушения динамической устойчивости при нормативных возмущениях;
- 4. Обеспечение нормативного коэффициента запаса статической апериодической устойчивости по активной мощности в контролируемом сечении в послеаварийных режимах при нормативных возмущениях 8%;
- 5. Обеспечение нормативного коэффициента запаса статической устойчивости по напряжению в узлах нагрузки в послеаварийных режимах при нормативных возмущениях 10%.

Ответ: 1,2

- 8. Выберите критерии определения максимального допустимого перетока в сечении:
- 1. Все перечисленные;
- 2. Обеспечение нормативного коэффициента запаса статической апериодической устойчивости по активной мощности в контролируемом сечении в нормальной (ремонтной) схеме 20%;
- 3. Обеспечение нормативного коэффициента запаса статической устойчивости по напряжению в узлах нагрузки в нормальной (ремонтной) схеме 15%;
- 4. Отсутствие нарушения динамической устойчивости при нормативных возмущениях;
- 5. Обеспечение нормативного коэффициента запаса статической апериодической устойчивости по активной мощности в контролируемом сечении в послеаварийных режимах при нормативных возмущениях 8%

Ответ: 1

Описание шкалы оценивания:

Оиенка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-2. Зашита ЛР 1

Формы реализации: Защита задания

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Защита лабораторных работ

Краткое содержание задания:

1) Изучить принцип работы тестовой схемы, реализованной в Matlab.

- 2) Изменить параметры схемы согласно варианту. Предоставить в отчет расчет параметров линии, а также приложить фотографии с установленными параметрами в соответствующих блоках.
- 3) Необходимо снять осциллограммы токов, напряжений, напряжения прямой последовательности и активной мощности согласно рисунку 1. Все снятые характеристики необходимо приложить в отчет.
- 4) По полученным графикам сделать выводы о функционировании энергосистемы. Оформить предварительный отчет.

Контрольные вопросы/задания:

Знать: основные показатели	1.Предназначение функции автоматика разгрузки при
качества работы автоматики на	коротких замыканиях
энергообъекте	2.Выполнение каких функций должна обеспечивать
	автоматика разгрузки при коротких замыканиях?
	3.Посредством измерения каких параметров следует
	осуществлять контроль предшествующего режима?
Уметь: использовать данные	1.Путем непосредственного и прямого измерения
аварийного режима для анализа	каких параметров во время короткого замыкания
алгоритмов автоматики	следует выполнять фиксацию тяжести короткого
	замыкания?

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оиенка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

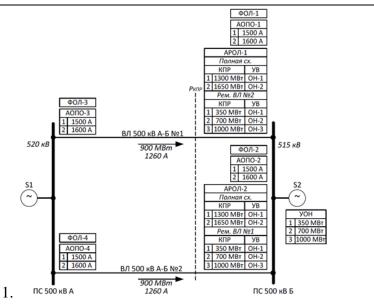
Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-3. Контрольное мероприятие 2

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Решение задач Вес контрольного мероприятия в БРС: 20


Процедура проведения контрольного мероприятия: Решение задачи

Краткое содержание задания:

Решить задачу.

Контрольные вопросы/задания:

Уметь: читать схемы противоаварийной автоматики

Условия задания:

При однофазном КЗ ф. «А» ВЛ 500 кВ А – Б № 2 отключилась с неуспешным ОАПВ действием ДФЗ. При этом по сообщению оперативного персонала исходя из местной сигнализации работала следующая ПА:

На ПС 500 кВ Б:

- ФОЛ-1;
- ФОЛ-2;
- AРОЛ-1 с формированием управляющего воздействия «OH-2»;
- APOЛ-2 с формированием управляющего воздействия «OH-2»;
- Работа УОН (отключились присоединения Ф-3, Ф-4);
- 1-я ступень АОПО-1 с действием на сигнал;
- 2-я ступень АОПО-1 с действием на отключение ВЛ 500 кВ А − Б № 1 с запретом ТАПВ (линия отключилась со стороны ПС 500 кВ Б без АПВ).

На ПС 500 кВ А:

1-я ступень АОПО-3 с действием на сигнал.

Настройка ПА:

АОПО-1, АОПО-2:

- 1 ступень: ток срабатывания 1500 А, выдержка

времени 2 с, действие на сигнал;

- 2 ступень: ток срабатывания 1600 A, выдержка времени 7 с, действие на отключение ВЛ с запретом ТАПВ со стороны ПС 500 кВ Б.

АОПО-3, АОПО-4:

- 1 ступень: ток срабатывания 1500 A, выдержка времени 2 с, действие на сигнал;
- 2 ступень: ток срабатывания 1600~A, выдержка времени 8~c, действие на отключение ВЛ с запретом ТАПВ со стороны ПС 500~kB~A.

АРОЛ-1 (АРОЛ-2):

- КПР: суммарная активная мощность ВЛ 500 кВ A - Б № 1 и ВЛ 500 кВ A - Б № 2. Время срабатывания и возврата ступеней КПР 5 с;

В полной схеме:

- 1-я ступень КПР: 1300 МВт с действием на «ОН-1» – отключение нагрузки объемом 350 МВт;
- 2-я ступень КПР: 1650 МВт с действием на «ОН-2» – отключение нагрузки объемом 700 МВт.

При ремонте ВЛ 500 кВ А – Б № 2 (№ 1):

- 1-я ступень КПР: 350 МВт с действием на «ОН-
- 1» отключение нагрузки объемом 350 МВт;
- 2-я ступень КПР: 700 МВт с действием на «ОН-
- 2» отключение нагрузки объемом 700 МВт.
- 3-я ступень КПР: 1000 MBт с действием на «ОН-3» – отключение нагрузки объемом 1000 MBт.

УОН ПС 500 кВ Б:

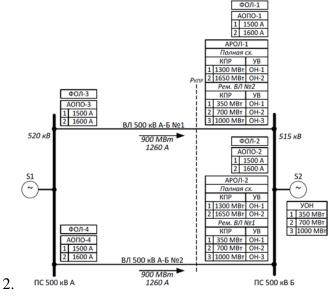
- «ОН-1»: присоединения Ф-1, Ф-2 суммарной мощностью 350 МВт;
- «ОН-2»: присоединения Ф-3, Ф-4 суммарной мощностью 350 МВт;
- «ОН-3»: присоединения Ф-5, Ф-6 суммарной мощностью 300 МВт;

При отключении нагрузки старшей очереди также отключается нагрузка всех младших очередей (с меньшим номером).

ФОЛ-1, ФОЛ-2, ФОЛ-3, ФОЛ-4:

Выдержка времени на формирование сигнала «Ремонт» для АРОЛ: 5 с.

Доаварийный переток по ВЛ 500 кВ А – Б № 1: 900 МВт;


Доаварийный переток по ВЛ 500 кВ А – Б № 2: 900 МВт:

Доаварийное напряжение на шинах ПС 500 кВ А: 520 кВ;

Доаварийное напряжение на шинах ПС 500 кВ Б: 515 кВ;

Напряжение на шинах ПС 500 кВ А после отключения ВЛ 500 кВ А – Б № 2: 515 кВ; Напряжение на шинах ПС 500 кВ Б после отключения ВЛ 500 кВ А – Б № 2: 512 кВ.

Укажите устройства ПА, которые работали неправильно (не в соответствии с заданной настройкой).

Условия задания:

При однофазном КЗ ф. «А» ВЛ 500 кВ А – Б № 2 отключилась с неуспешным ОАПВ действием ДФЗ. При этом по сообщению оперативного персонала исходя из местной сигнализации работала следующая ПА:

На ПС 500 кВ Б:

- ФОЛ-1;
- ФОЛ-2;
- AРОЛ-1 с формированием управляющего воздействия «OH-2»;
- APOЛ-2 с формированием управляющего воздействия «OH-2»;
- Работа УОН (отключились присоединения Ф-3, Ф-4);
- 1-я ступень АОПО-1 с действием на сигнал;
- 2-я ступень АОПО-1 с действием на отключение ВЛ 500 кВ A − B № 1 с запретом ТАПВ (линия отключилась со стороны ПС 500 кВ B без АПВ).

На ПС 500 кВ А:

- 1-я ступень АОПО-3 с действием на сигнал.

Настройка ПА:

АОПО-1, АОПО-2:

- 1 ступень: ток срабатывания 1500 A, выдержка времени 2 с, действие на сигнал;
- 2 ступень: ток срабатывания 1600 А, выдержка

времени 7 с, действие на отключение ВЛ с запретом ТАПВ со стороны ПС 500 кВ Б.

АОПО-3. АОПО-4:

- 1 ступень: ток срабатывания 1500 A, выдержка времени 2 с, действие на сигнал;
- 2 ступень: ток срабатывания 1600~A, выдержка времени 8~c, действие на отключение ВЛ с запретом ТАПВ со стороны ПС $500~\kappa B~A$.

АРОЛ-1 (АРОЛ-2):

- КПР: суммарная активная мощность ВЛ 500 кВ A - Б № 1 и ВЛ 500 кВ A - Б № 2. Время срабатывания и возврата ступеней КПР 5 с;

В полной схеме:

- 1-я ступень КПР: 1300 МВт с действием на «ОН-1» – отключение нагрузки объемом 350 МВт;
- 2-я ступень КПР: 1650 МВт с действием на «ОН-2» – отключение нагрузки объемом 700 МВт.

При ремонте ВЛ 500 кВ $A - Б N_2 2$ ($N_2 1$):

- 1-я ступень КПР: 350 МВт с действием на «ОН-1» – отключение нагрузки объемом 350 МВт;
- 2-я ступень КПР: 700 МВт с действием на «ОН-
- 2» отключение нагрузки объемом 700 МВт.
- 3-я ступень КПР: 1000 МВт с действием на «ОН-3» – отключение нагрузки объемом 1000 МВт.

УОН ПС 500 кB Б:

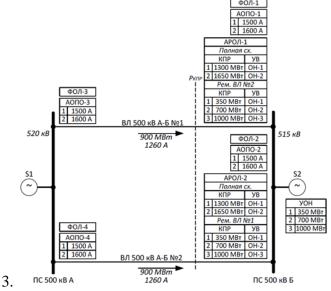
- «ОН-1»: присоединения Ф-1, Ф-2 суммарной мощностью 350 МВт;
- «ОН-2»: присоединения Ф-3, Ф-4 суммарной мощностью 350 МВт;
- «ОН-3»: присоединения Φ -5, Φ -6 суммарной мощностью 300 МВт;

При отключении нагрузки старшей очереди также отключается нагрузка всех младших очередей (с меньшим номером).

- ФОЛ-1, ФОЛ-2, ФОЛ-3, ФОЛ-4: Выдержка времени на формирование сигнала «Ремонт» для АРОЛ: 10 с.

Доаварийный переток по ВЛ 500 кВ А – Б № 1: 900 МВт;

Доаварийный переток по ВЛ 500 кВ А – Б № 2: 900 МВт;


Доаварийное напряжение на шинах ПС 500 кВ А: 520 кВ:

Доаварийное напряжение на шинах ПС 500 кВ Б: 515 кВ;

Напряжение на шинах ПС 500 кВ А после отключения ВЛ 500 кВ А – Б № 2: 515 кВ;

Напряжение на шинах ПС 500 кВ Б после отключения ВЛ 500 кВ А – Б № 2: 512 кВ.

Укажите устройства ПА, которые работали неправильно (не в соответствии с заданной настройкой).

Условия задания:

При однофазном КЗ ф. «А» ВЛ 500 кВ А – Б № 2 отключилась с неуспешным ОАПВ действием ДФЗ. При этом по сообщению оперативного персонала исходя из местной сигнализации работала следующая ПА:

На ПС 500 кВ Б:

- ФОЛ-1; ФОЛ-2;
- APOЛ-1 с формированием управляющего воздействия «OH-2»;
- APOЛ-2 с формированием управляющего воздействия «OH-2»;
- Работа УОН (отключились присоединения Ф-1, Ф-2, Ф-3, Ф-4);
- 1-я ступень АОПО-1 с действием на сигнал;
- 2-я ступень АОПО-1 с действием на отключение ВЛ 500 кВ A Б № 1 с запретом ТАПВ (линия отключилась со стороны ПС 500 кВ Б без АПВ).

На ПС 500 кВ А:

- 1-я ступень АОПО-3 с действием на сигнал;
- ФОЛ-3; ФОЛ-4.

Настройка ПА:

АОПО-1, АОПО-2:

- 1 ступень: ток срабатывания 1500 A, выдержка времени 2 с, действие на сигнал;
- 2 ступень: ток срабатывания $1600~\mathrm{A}$, выдержка времени $7~\mathrm{c}$, действие на отключение ВЛ с запретом ТАПВ со стороны ПС $500~\mathrm{kB}~\mathrm{E}$.

АОПО-3, АОПО-4:

- 1 ступень: ток срабатывания 1500 A, выдержка времени 2 с, действие на сигнал;
- 2 ступень: ток срабатывания $1600~\mathrm{A}$, выдержка времени $8~\mathrm{c}$, действие на отключение ВЛ с запретом ТАПВ со стороны ПС $500~\mathrm{kB}~\mathrm{A}$.

АРОЛ-1 (АРОЛ-2):

- КПР: суммарная активная мощность ВЛ 500 кВ A - Б № 1 и ВЛ 500 кВ A - Б № 2. Время срабатывания и возврата ступеней КПР 5 с;

В полной схеме:

- 1-я ступень КПР: 1300 МВт с действием на «ОН-1» – отключение нагрузки объемом 350 МВт;
- 2-я ступень КПР: $1650~\mathrm{MBt}$ с действием на «OH-2» отключение нагрузки объемом $700~\mathrm{MBt}$.

При ремонте ВЛ 500 кВ А – Б № 2 (№ 1):

- 1-я ступень КПР: 350 МВт с действием на «ОН-
- 1» отключение нагрузки объемом 350 МВт;
- 2-я ступень КПР: 700 МВт с действием на «ОН-
- 2» отключение нагрузки объемом 700 МВт.
- 3-я ступень КПР: 1000 МВт с действием на «ОН-3» – отключение нагрузки объемом 1000 МВт.

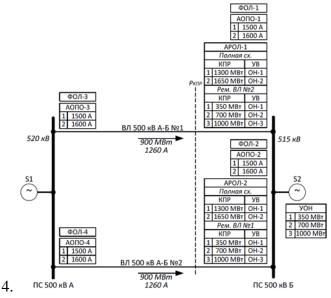
УОН ПС 500 кB Б:

- «ОН-1»: присоединения Ф-1, Ф-2 суммарной мощностью 350 МВт;
- «ОН-2»: присоединения Φ -3, Φ -4 суммарной мощностью 350 МВт;
- «ОН-3»: присоединения Ф-5, Ф-6 суммарной мощностью 300 МВт;

При отключении нагрузки старшей очереди также отключается нагрузка всех младших очередей (с меньшим номером).

- ФОЛ-1, ФОЛ-2, ФОЛ-3, ФОЛ-4: Выдержка времени на формирование сигнала «Ремонт» для АРОЛ: 10 с.

Доаварийный переток по ВЛ 500 кВ А – Б № 1: 900 МВт;


Доаварийный переток по ВЛ 500 кВ А – Б № 2: 900 МВт:

Доаварийное напряжение на шинах ПС 500 кВ А: 520 кВ;

Доаварийное напряжение на шинах ПС 500 кВ Б: 515 кВ;

Напряжение на шинах ПС 500 кВ А после отключения ВЛ 500 кВ А – Б № 2: 515 кВ; Напряжение на шинах ПС 500 кВ Б после отключения ВЛ 500 кВ А – Б № 2: 512 кВ.

Укажите устройства ПА, которые работали неправильно (не в соответствии с заданной настройкой).

Условия задания:

При однофазном КЗ ф. «А» ВЛ 500 кВ А – Б № 2 отключилась с неуспешным ОАПВ действием ДФЗ. При этом по сообщению оперативного персонала исходя из местной сигнализации работала следующая ПА:

На ПС 500 кВ Б:

- ФОЛ-1; ФОЛ-2;
- APOЛ-1 с формированием управляющего воздействия «OH-3»;
- APOЛ-2 с формированием управляющего воздействия «OH-2»;
- Работа УОН (отключились присоединения Ф-1, Ф-2, Ф-3, Ф-4, Ф-5, Ф-6);
- 1-я ступень АОПО-1 с действием на сигнал;
- 2-я ступень АОПО-1 с действием на отключение ВЛ 500 кВ А − Б № 1 с запретом ТАПВ (линия отключилась со стороны ПС 500 кВ Б без АПВ).

На ПС 500 кВ А:

- 1-я ступень АОПО-3 с действием на сигнал;
- ФОЛ-3; ФОЛ-4.

Настройка ПА:

АОПО-1, АОПО-2:

- 1 ступень: ток срабатывания 1500 A, выдержка времени 2 с, действие на сигнал;
- 2 ступень: ток срабатывания 1600~A, выдержка времени 7~c, действие на отключение ВЛ с запретом ТАПВ со стороны ПС 500~kВ Б.

АОПО-3, АОПО-4:

- 1 ступень: ток срабатывания 1500 A, выдержка времени 2 с, действие на сигнал;

- 2 ступень: ток срабатывания $1600~\mathrm{A}$, выдержка времени $8~\mathrm{c}$, действие на отключение ВЛ с запретом ТАПВ со стороны ПС $500~\mathrm{kB}~\mathrm{A}$.

АРОЛ-1 (АРОЛ-2):

- КПР: суммарная активная мощность ВЛ 500 кВ A - Б № 1 и ВЛ 500 кВ A - Б № 2. Время срабатывания и возврата ступеней КПР 5 с;

В полной схеме:

- 1-я ступень КПР: 1300 МВт с действием на «ОН-1» – отключение нагрузки объемом 350 МВт;
- 2-я ступень КПР: 1650 МВт с действием на «ОН-2» отключение нагрузки объемом 700 МВт.

При ремонте ВЛ 500 кВ $A - \mathcal{B} \stackrel{N_0}{\sim} 2 (\stackrel{N_0}{\sim} 1)$:

- 1-я ступень КПР: 350 МВт с действием на «ОН-
- 1» отключение нагрузки объемом 350 МВт;
- 2-я ступень КПР: 700 МВт с действием на «ОН-
- 2» отключение нагрузки объемом 700 МВт.
- 3-я ступень КПР: 1000 МВт с действием на «ОН-3» – отключение нагрузки объемом 1000 МВт.

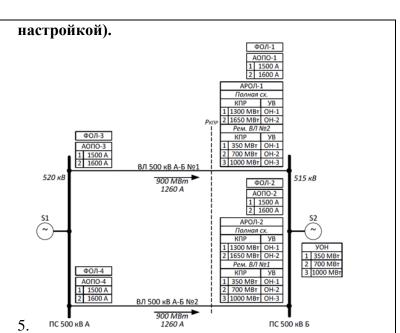
УОН ПС 500 кВ Б:

- «ОН-1»: присоединения Ф-1, Ф-2 суммарной мощностью 350 МВт;
- «ОН-2»: присоединения Ф-3, Ф-4 суммарной мощностью 350 МВт;
- «ОН-3»: присоединения Ф-5, Ф-6 суммарной мощностью 300 МВт;

При отключении нагрузки старшей очереди также отключается нагрузка всех младших очередей (с меньшим номером).

- ФОЛ-1, ФОЛ-2, ФОЛ-3, ФОЛ-4: Выдержка времени на формирование сигнала «Ремонт» для АРОЛ: 5 с.

Доаварийный переток по ВЛ 500 кВ А – Б № 1: 900 МВт;


Доаварийный переток по ВЛ 500 кВ А – Б № 2: 900 МВт;

Доаварийное напряжение на шинах ПС 500 кВ А: 520 кВ:

Доаварийное напряжение на шинах ПС 500 кВ Б: 515 кВ;

Напряжение на шинах ПС 500 кВ А после отключения ВЛ 500 кВ А – Б № 2: 515 кВ; Напряжение на шинах ПС 500 кВ Б после отключения ВЛ 500 кВ А – Б № 2: 512 кВ.

Укажите устройства ПА, которые работали неправильно (не в соответствии с заданной

Условия задания:

При однофазном КЗ ф. «А» ВЛ 500 кВ А – Б № 2 отключилась с неуспешным ОАПВ действием ДФЗ. При этом по сообщению оперативного персонала исходя из местной сигнализации работала следующая ПА:

На ПС 500 кВ Б:

- ФОЛ-1; ФОЛ-2;
- APOЛ-1 с формированием управляющего воздействия «OH-3»;
- APOЛ-2 с формированием управляющего воздействия «OH-2»;
- Работа УОН (отключились присоединения Ф-1, Ф-2, Ф-3, Ф-4, Ф-5, Ф-6);
- 1-я ступень АОПО-1 с действием на сигнал;
- 2-я ступень АОПО-1 с действием на отключение ВЛ 500 кВ А − Б № 1 с запретом ТАПВ (линия отключилась со стороны ПС 500 кВ Б без АПВ).

На ПС 500 кВ А:

- 1-я ступень АОПО-3 с действием на сигнал;
- ФОЛ-3; ФОЛ-4.

Настройка ПА:

АОПО-1, АОПО-2:

- 1 ступень: ток срабатывания 1500 A, выдержка времени 2 с, действие на сигнал;
- 2 ступень: ток срабатывания 1600~A, выдержка времени 7~c, действие на отключение ВЛ с запретом ТАПВ со стороны ПС $500~\kappa B~ E$.

АОПО-3, АОПО-4:

- 1 ступень: ток срабатывания 1500 A, выдержка времени 2 с, действие на сигнал;
- 2 ступень: ток срабатывания 1600 А, выдержка

времени 8 с, действие на отключение ВЛ с запретом ТАПВ со стороны ПС $500~{\rm kB}$ А.

АРОЛ-1 (АРОЛ-2):

- КПР: суммарная активная мощность ВЛ 500 кВ A - Б № 1 и ВЛ 500 кВ A - Б № 2. Время срабатывания и возврата ступеней КПР 5 с;

В полной схеме:

- 1-я ступень КПР: 1300 МВт с действием на «ОН-1» – отключение нагрузки объемом 350 МВт;
- 2-я ступень КПР: 1650 МВт с действием на «ОН-2» – отключение нагрузки объемом 700 МВт.

При ремонте ВЛ 500 кВ $A - \mathcal{E} N_2 2$ ($N_2 1$):

- 1-я ступень КПР: 350 МВт с действием на «ОН-
- 1» отключение нагрузки объемом 350 МВт;
- 2-я ступень КПР: 700 МВт с действием на «ОН-
- 2» отключение нагрузки объемом 700 МВт.
- 3-я ступень КПР: 1000 МВт с действием на «ОН-3» – отключение нагрузки объемом 1000 МВт.

УОН ПС 500 кB Б:

- «ОН-1»: присоединения Ф-1, Ф-2 суммарной мощностью 350 МВт;
- «ОН-2»: присоединения Ф-3, Ф-4 суммарной мощностью 350 МВт;
- «ОН-3»: присоединения Φ -5, Φ -6 суммарной мощностью 300 МВт;

При отключении нагрузки старшей очереди также отключается нагрузка всех младших очередей (с меньшим номером).

- ФОЛ-1, ФОЛ-2, ФОЛ-3, ФОЛ-4: Выдержка времени на формирование сигнала «Ремонт» для АРОЛ: 10 с.

Доаварийный переток по ВЛ 500 кВ А – Б № 1: 900 МВт;

Доаварийный переток по ВЛ 500 кВ А – Б № 2: 900 МВт:

Доаварийное напряжение на шинах ПС 500 кВ А: 520 кВ;

Доаварийное напряжение на шинах ПС 500 кВ Б: 515 кВ;

Напряжение на шинах ПС 500 кВ А после отключения ВЛ 500 кВ А – Б № 2: 515 кВ; Напряжение на шинах ПС 500 кВ Б после отключения ВЛ 500 кВ А – Б № 2: 512 кВ.

Укажите устройства ПА, которые работали неправильно (не в соответствии с заданной настройкой).

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-4. Зашита ЛР 2

Формы реализации: Защита задания

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Защита лабораторных работ

Краткое содержание задания:

- 1. Работа содержит:
- 2. 1) Ознакомление с работой в ПК Matlab;
 - 2) Исследование поведения алгоритмов АОСЧ в различных режимных ситуациях;
 - 3) Проверка алгоритмов АОСЧ.

Работа включает:

- 1) Предварительное теоретическое ознакомление с алгоритмами АОСЧ;
- 2) Экспериментальная работа в лаборатории;
- 3) Составление исполнительного отчета.

Контрольные вопросы/задания:

Знать: основные показатели	1.Для каких целей предназначен комплекс устройств
качества работы автоматики на	АОСЧ?
энергообъекте	2. Какие функции осуществляет комплекс устройств
-	АОСЧ?
	3. Что обеспечивает автоматический частотный ввод
	резерва?
	4.В каком порядке предусматривается отключение
	потребителей с
	помощью АЧР?
	5.С какой целью разгрузка предусматривает
	отключение потребителей?
	6.С какой целью используется частотное АПВ?
	7.Для чего применяется автоматическое выделение
	электростанций или
	генераторов со сбалансированной нагрузкой,
	выделение генераторов на питание СН?
	8.По каким параметрам действуют устройства

	АОСЧ? 9.Для каких целей предназначены устройства АОПЧ? 10.Какой район охватывает комплекс устройств АОПЧ?
Уметь: разрабатывать алгоритмы противоаварийной автоматики	1. Как устройства АОПЧ ликвидируют аварийный избыток активной мощности района? Приведите пример алгоритма действия АОПЧ в аварийной ситуации.
Уметь: рассчитывать параметры аварийного режима	1.В каких случаях действуют устройства АОПЧ? Рассчитайте параметры срабатывания АОПЧ для предложенной модели энергосистемы

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-5. Контрольное мероприятие 3

Формы реализации: Компьютерное задание Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Компьютерное тестирование

Краткое содержание задания:

Компьютерное тестирование

Контрольные вопросы/задания:

контрольные вопросы/задания.	
Знать: основные показатели	1. Можно реализовать функцию АРПМ в устройства
качества работы автоматики на	ЛАПНУ (выберите правильный ответ (ы)):
энергообъекте	1. 1. да;
	 2. нет; 3. допускается только на ЛЭП 110-220 кВ. Ответ: 1 2.Какие мероприятия применяются для защиты от перенапряжений в паузе неуспешного ОАПВ на ЛЭП 500 кВ и выше (выберите правильный ответ (ы)): 1. Отключение на время паузы ОАПВ группы ШР; 2. Использование компенсационных реакторов; 3. Использование предвключенных резисторов в линейные выключатели;

4. Все перечисленные.

Ответ: 1,2

- 3.Устройство АОПН ЛЭП должно обеспечивать (выберите правильный ответ (ы)):
- 1. пофазную фиксацию повышения действующего значения напряжения в соответствии с заложенной вольт-временной характеристикой;
- 2. пофазную фиксацию повышения амплитудного значения напряжения напряжения в соответствии с заложенной вольт-временной характеристикой;
- 3. пофазный контроль стока реактивной мощности с ЛЭП к шинам в измерительных органах ступеней АОПН с его блокировкой по факту отключенного положения выключателей «своей» стороны линии;

4. Всё перечисленное.

Ответ: 4

- 4.По принципу действия устройства АЛАР выявляют асинхронный режим (выберите правильный ответ (ы)):
- 1. 1. по току;
 - 2. по напряжению;
 - 3. по току с контролем знака активной мощности;
 - 4. по сопротивлению;
 - 5. по углу;
 - 6. по всем перечисленным параметрам.

Ответ: 1,2,3,4

- 5.Выберите управляющие воздействия от устройств АЛАР (выберите правильный ответ (ы)):
- 1. 1. отключение генерирующего оборудования;
 - 2. деление сети;
 - 3. ресинхронизация;
 - 4. все перечисленные.

Ответ: 1,2

- 6. Автоматика предотвращения нарушения устойчивости включает в себя (выберите правильный ответ (ы)):
- 1. 1. автоматика разгрузки при отключении линии электропередачи, сетевого и (или) генерирующего оборудования;
 - 2. автоматика разгрузки при перегрузке по мощности;
 - 3. автоматика разгрузки при коротких замыканиях;
 - 4. автоматика ликвидации асинхронного режима;
 - 5. автоматика ограничения перегрузки оборудования;
 - 6. все перечисленное.

Ответ: 1,2,3

- 7. Централизованная противоаварийная автоматика это ... ?
- 1. программно-аппаратный комплекс, предназначенный для автоматического вторичного регулирования частоты и перетоков активной

мощности в области регулирования либо ограничения путем дистанционного управления мощностью группы автоматизированных устройств; 2. устройство противоаварийной автоматики или комплекс противоаварийной автоматики, формирующий и реализующий противоаварийное управление на основе местной схемно-режимной карты;

3. комплекс противоаварийной автоматики, осуществляющий контроль электроэнергетического режима энергосистемы или ее части и выполняющий автоматический расчет параметров срабатывания входящих в указанный комплекс противоаварийной автоматики.

Ответ: 3.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90 Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 75 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Для курсового проекта/работы

3 семестр

І. Описание КП/КР

Целью КП является изучение и испытания реального устройства противоаварийной автоматики, используемое в ЕЭС России. В процессе КП студенты знакомятся с технической документацией на устройства ПА, программами параметрирования устройств ПА и программами проведения испытаний.

II. Примеры задания и темы работы

Пример задания

- 1. Изучить микропроцессорный терминал противоаварийной автоматика ТПА (производства ООО "Прософт-Системы"):
- 2. Изучение программного продукта параметрирования устройств ТПА "SoftConstuctor"
- 3. Изучить требования к функции ПА (АОСЧ, АРКЗ, АОПО, АОПН, ФОЛ) и методики испытаний.
- 4. Изучить и отладить алгоритм функции ПА в "SoftConstuctor".
- 5. Разработать модель в матлаб (за основу взять схему сети, приведенные в стандартах

по п. 3 настоящего задания).

- 6. Осуществить подключение ТПА к компьютеру.
- 7. Проверить работу функции ПА на модели сети в соответствии с программой испытаний, приведенной в СТО по п. 3 настоящего задания.
- 8. Подготовить отчет
- 9. Зашита.

Тематика КП/КР:

КМ-1. Получено задание Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка 5 («отлично»), если задание получено с опозданием не более чем на 2 недели

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка 4 («хорошо»), если задание получено с опозданием не более чем на 3 недели

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка 3 («удовлетворительно»), если задание получено с опозданием более чем на 3 недели

КМ-2. Выполнено 50% Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка 5 («отлично»), если задание получено с опозданием не более чем на 2 недели

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка 4 («хорошо»), если задание получено с опозданием не более чем на 3 недели

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка 3 («удовлетворительно»), если задание получено с опозданием более чем на 3 недели

КМ-3. Выполнено 100%, выход на защиту Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка 5 («отлично»), если задание получено с опозданием не более чем на 2 недели

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка 4 («хорошо»), если задание получено с опозданием не более чем на 3 недели

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка 3 («удовлетворительно»), если задание получено с опозданием более чем на 3 недели

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

2 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

- 1. Вторичное регулирование частоты и перетоков активной мощности. Назначение, требования. Система АРЧМ ГЭС. Системные устройства АРЧМ.
- 2. Условия точной синхронизации. Основные характеристики автоматических синхронизаторов СПВО и СПУО. Сравнение СПВО и СПУО.

Процедура проведения

Промежуточная аттестация по итогам освоения дисциплины: средняя оценка по всем оценочным средствам на каждой контрольной неделе. Оценки за все контрольные недели используется при допуске к зачету с оценкой. Оценка за зачет может быть выставлена по совокупности результатов КМ при условии выполнения каждого КМ с баллом не менее 3 до окончания теоретического обучения.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД- $3_{\Pi K-1}$ Способен производить расчеты параметров аварийных режимов

Вопросы, задания

- 1. Автоматика электроэнергетических систем. Функции, назначение. Виды управляющих воздействий.
- **2. Компетенция/Индикатор:** ИД- $1_{\Pi K-2}$ Работает с отдельными видами автоматических устройств

Вопросы, задания

- 1. Автоматическое регулирование возбуждения синхронных машин. Схема компаундирования. APB сильного действия. Назначение. Законы регулирования. Математические модели APB.
- 2.Вторичное регулирование частоты и перетоков активной мощности. Назначение, требования. Система АРЧМ ГЭС. Системные устройства АРЧМ.
- 3. Автоматический регулятор частоты вращения агрегатов. Распределение активных нагрузок между параллельно работающими агрегатами. Аварийное регулирование мощности паровых турбин.
- 4. Автоматическое регулирование частоты и активной мощности в электроэнергетических системах. Виды регулирование, назначение. Автоматическое регулирование частоты и активной мощности в электроэнергетических системах. Первичное регулирование частоты. Назначение, требования, характеристики.
- 5. Автоматическое регулирование частоты и активной мощности в электроэнергетических системах. Задачи и особенности. Частотные характеристики энергосистемы
- 6. Автоматический регулятор коэффициента трансформации с устройством регулирования под нагрузкой. Назначение, требования. Область применения. АРКТ с отрицательным статизмом регулирования напряжения по току нагрузки потребителя, по току нагрузки трансформатора.

- 7. Автоматическое распределение реактивной мощности между генераторами электрической станции с генераторами, работающими на общие шины через повышающие трансформаторы. Управление реактивной мощностью СГ путем изменения уставки APB.
- 8. Автоматическое регулирование напряжения и реактивной мощности электрической станции. Регулирующий эффект реактивной мощности нагрузки. Автоматическое распределение реактивной мощности между генераторами электрической станции.
- 9. Условия точной синхронизации. Основные характеристики автоматических синхронизаторов СПВО и СПУО. Сравнение СПВО и СПУО.
- 10. Автоматическое регулирование возбуждения синхронных машин. Системы возбуждения синхронных генераторов. Области применения, характеристики и предъявляемые требования.
- 11. Автоматическое регулирование напряжения и реактивной мощности. Технические средства.
- 12.АВР. Назначение, требования к устройствам АВР. Схема АВР. Выбор параметров настройки.
- 13.Сетевая автоматика. АПВ. Назначение, требования к устройствам АПВ. Схема АПВ для ВЛ с односторонним питанием. Выбор параметров настройки АПВ для ВЛ с односторонним питанием. Ускорение действия релейной защиты при АПВ. АПВ для ВЛ с двухсторонним питанием. Выбор параметров настройки АПВ для ВЛ с двухсторонним питанием.
- 14. Автоматическое включение синхронных генераторов на параллельную работу по способам ТАС и самосинхронизации. Области применения, особенности и сравнение способов синхронизации.

Материалы для проверки остаточных знаний

- 1. **Что понимается под небалансом мощности области регулирования?** Ответы:
- 1. Отклонение от планового баланса активной мощности области регулирования по любой причине, вызывающее отклонение частоты от заданного значения в синхронной зоне и отклонение внешнего перетока
- 2. Отклонения фактического баланса активной мощности области регулирования от планового в нормальном режиме работы энергосистемы, вызываемые непрогнозируемыми изменениями потребления активной мощности и отклонениями активной мощности.

Верный ответ: 1. Отклонение от планового баланса активной мощности области регулирования по любой причине, вызывающее отклонение частоты от заданного значения в синхронной зоне и отклонение внешнего перетока

2. Регулирование частоты и перетоков активной мощности должно осуществляться ... ?

Ответы:

- 1. 1. по частоте действием систем первичного регулирования, по перетокам активной мощности совместным действием систем вторичного и третичного регулирования.
- 2. 2. по частоте совместным действием систем первичного и вторичного регулирования, по перетокам активной мощности действием систем третичного регулирования.
- 3. 3. совместным действием систем первичного (общего и нормированного), вторичного и третичного регулирования.

Верный ответ: 3. совместным действием систем первичного (общего и нормированного), вторичного и третичного регулирования.

3. Что понимается под вторичным регулированием частоты и перетоков активной мощности (вторичное регулирование)?

Ответы:

- 1. 1. Процесс автоматического изменения мощности генерирующего оборудования под действием первичных регуляторов, вызванный изменением частоты и направленный на уменьшение этого изменения.
- 2. 2. Процесс автоматического или оперативного изменения активной мощности генерирующего оборудования для восстановления заданного значения частоты или заданного значения перетока мощности
- 3. 3. Процесс изменения активной мощности генерирующего оборудования в целях восстановления резервов регулирования.

Верный ответ: 2. Процесс автоматического или оперативного изменения активной мощности генерирующего оборудования для восстановления заданного значения частоты или заданного значения перетока мощности

4. Как должно осуществляться регулирование частоты и перетоков активной мошности?

Ответы:

- 1. 1. Действием диспетчеров операционных зон.
- 2. 2. Совместным действием систем общего и нормированного первичного регулирования.
- 3. 3. Посредством первичного (общего и нормированного), вторичного и третичного регулирования.

Верный ответ: 3. Посредством первичного (общего и нормированного), вторичного и третичного регулирования.

5.**В общем первичном регулировании часты должны участвовать ...** Ответы:

- 1. 1. Только тепловые электрические станции
- 2. 2. Все генерирующее оборудование
- 3. З. Все генерирующее оборудование за исключением АЭС и ТЭЦ с поперечными связями
- 4. 4. Все генерирующее оборудование за исключением АЭС с реакторами БН и РБМК

Верный ответ: 4. Все генерирующее оборудование за исключением АЭС с реакторами БН и РБМК

6.**Что понимается под зоной нечувствительности первичного регулирования?** Ответы:

- 1. 3адаваемая величина отклонения частоты от номинального значения, при котором не требуется первичное регулирование. При заданном значении частоты минимальное значение «мертвой полосы» первичного регулирования равно зоне нечувствительности первичного регулирования.
- 2. 2. Максимальная величина изменения частоты вращения турбин от любого ее исходного значения в любом направлении ее изменения, при которой не гарантируется участие генерирующего оборудования в первичном регулировании. Зона нечувствительности первичного регулирования складывается из максимальной погрешности измерения частоты вращения турбин и нечувствительности первичных регуляторов.

Верный ответ: 2. Максимальная величина изменения частоты вращения турбин от любого ее исходного значения в любом направлении ее изменения, при которой не гарантируется участие генерирующего оборудования в первичном регулировании.

Зона нечувствительности первичного регулирования складывается из максимальной погрешности измерения частоты вращения турбин и нечувствительности первичных регуляторов.

7.Быстрое изменение моментов вращения турбин энергоблоков на электростанциях в зависимости от направления и величины отклонения скорости вращения турбин от заданной, инициируемое регуляторами скорости вращения турбин относится к ...

Ответы:

- 1. 1. первичному регулированию частоты.
- 2. 2. вторичному регулированию частоты.
- 3. 3. третичному регулированию частоты.

Верный ответ: 1. первичному регулированию частоты.

8. Назовите назначение автоматического регулирования напряжения и реактивной мошности:

Ответы:

- 1. 1. сохранение или повышение статической устойчивости электропередач в нормальных режимах работы;
 - 2. повышение динамической устойчивости электроэнергетической системы в аварийных режимах;
 - 3. предотвращение развития колебаний роторов турбогенераторов в нормальном режиме и обеспечение быстрого затухания (демпфирование) их качаний, возникающих в послеаварийном режиме;
 - 4. обеспечение требуемого напряжения у потребителей;
 - 5. ликвидация нарушения динамической устойчивости электроэнергетической системы в аварийной режиме;
 - 6. все перечисленное.

Верный ответ: 1. сохранение или повышение статической устойчивости электропередач в нормальных режимах работы; 2. повышение динамической устойчивости электроэнергетической системы в аварийных режимах; 3. предотвращение развития колебаний роторов турбогенераторов в нормальном режиме и обеспечение быстрого затухания (демпфирование) их качаний, возникающих в послеаварийном режиме; 4. обеспечение требуемого напряжения у потребителей;

- 9.Для чего применяется форсировка возбуждения генераторов? Ответы:
- 1. 1. для регулирования перетоков реактивной мощности.
 - 2. для регулирования напряжения
 - 3. для предотвращения нарушения динамической устойчивости генераторов электростанций.

Верный ответ: 3. для предотвращения нарушения динамической устойчивости генераторов электростанций.

3. Компетенция/Индикатор: ИД-4_{ПК-2} Способен производить системный анализ действия релейной защиты а автоматики на энергообъекте

Материалы для проверки остаточных знаний

- 1. Какие регулирующие воздействия не используются в APB сильного действия: Ответы:
- 1. 1. отклонение напряжения от заданной величины;
- 2. 2. первая производная напряжения;
 - 3. первая и вторая производные тока линии электропередачи;
 - 4. изменение и первая производная частоты;
 - 5. все перечисленные используются.

Верный ответ: 5. все перечисленные используются.

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

III. Правила выставления итоговой оценки по курсу

Оценка за экзамен может быть выставлена по совокупности результатов КМ при условии выполнения каждого КМ с баллом не менее 3 до окончания теоретического обучения по следующей градации: Суммарная за все КМ 4.8-5.0 – за экзамен выставляется оценка 5 (отл); Суммарная за все КМ 3.8-4.7 – за экзамен выставляется оценка 4 (хор); Суммарная за все КМ менее 3.8 – экзамен по билетам.

3 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

- 1. Резонансные ВЛ с ШР. Возникновение опасных значение апериодической составляющей в токах, коммутируемых элегазовыми выключателями. Технические решения по обеспечению успешной коммутации ЭВ
- 2. Противоаварийная автоматика (ПА). Функции ПА, назначение. Виды управляющих воздействий. Требования к каналам связи для ПА.

Процедура проведения

Промежуточная аттестация по итогам освоения дисциплины: средняя оценка по всем оценочным средствам на каждой контрольной неделе. Оценки за все контрольные недели используется при допуске к зачету с оценкой. Оценка за зачет может быть выставлена по совокупности результатов КМ при условии выполнения каждого КМ с баллом не менее 3 до окончания теоретического обучения.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-3_{ПК-1} Способен производить расчеты параметров аварийных режимов

Вопросы, задания

- 1. Резонансные ВЛ с ШР. Возникновение опасных значение апериодической составляющей в токах, коммутируемых элегазовыми выключателями. Технические решения по обеспечению успешной коммутации ЭВ
- 2. Централизованная система противоаварийной автоматики (ЦСПА). Структура, функции ЦСПА. Функциональная схема ЦСПА верхнего уровня. Алгоритмы выбора управляющих воздействий
- 3.Схемы и режима работы энергосистемы. Виды перетоков в сечении. Критерии определения максимально допустимого перетока в сечении.

Материалы для проверки остаточных знаний

1. Автоматическое противоаварийное управление в энергосистеме реализуется посредством ПА, обеспечивающей выполнение следующих функций (выберите правильный ответ (ы)):

Ответы:

- 1. 1. Предотвращение нарушения устойчивости;
 - 2. Предотвращение недопустимой по величине и длительности токовой нагрузки ЛЭП и электросетевого оборудования;
 - 3. Ограничение повышения частоты;
 - 4. Ограничения перетоков активной мощности в контролируемом сечении;
 - 5. Все перечисленные.
 - Верный ответ: 1. Предотвращение нарушения устойчивости; 2. Предотвращение недопустимой по величине и длительности токовой нагрузки ЛЭП и электросетевого оборудования; 3. Ограничение повышения частоты;
 - 2. Выберите управляющие воздействия от устройств автоматики ограничения перегрузки оборудования:

Ответы:

1. 1. Все перечисленные.

- 2. Отключение нагрузки потребителей;
- 3. Автоматическая загрузка генераторов;
- 4. Изменение режима работы или эксплуатационного состояния средств компенсации реактивной мощности;
- 5. Изменение топологии электрической сети, обеспечивающее перераспределение потоков мощности и ликвидацию перегрузки элемента сети;
- 6. Отключение перегружаемого элемента сети с запретом АПВ;
- 7. Длительная разгрузка турбин блоков ТЭС и АЭС;

8. Отключение генераторов ТЭС, ГЭС и АЭС.

Верный ответ: 1. Все перечисленные.

3.Величина аварийно допустимого перетока активной мощности в контролируемом сечении определяется критериями:

Ответы:

1. 1. нормального режима, установленными для основных параметров электроэнергетического режима (P, U, I);

- 2. послеаварийного режима (после нормативных возмущений), установленными для основных параметров электроэнергетического режима (P, U, I);
- 3. для всех перечисленных режимов.
 - Верный ответ: 1. нормального режима, установленными для основных параметров электроэнергетического режима (P, U, I);
- 4. Выберите критерии определения максимального допустимого перетока в сечении: Ответы:

1. Все перечисленные;

- 2. Обеспечение нормативного коэффициента запаса статической апериодической устойчивости по активной мощности в контролируемом сечении в нормальной (ремонтной) схеме 20%;
- 3. Обеспечение нормативного коэффициента запаса статической устойчивости по напряжению в узлах нагрузки в нормальной (ремонтной) схеме 15%;
- 4. Отсутствие нарушения динамической устойчивости при нормативных возмущениях;
- 5. Обеспечение нормативного коэффициента запаса статической апериодической устойчивости по активной мощности в контролируемом сечении в послеаварийных режимах при нормативных возмущениях 8%

Верный ответ: 1. Все перечисленные;

- 5.Выберите критерии определения аварийного допустимого перетока в сечении: Ответы:
- 1. Обеспечение нормативного коэффициента запаса статической апериодической устойчивости по активной мощности в контролируемом сечении в нормальной (ремонтной) схеме 8%;
- 2. Обеспечение нормативного коэффициента запаса статической устойчивости по напряжению в узлах нагрузки в нормальной (ремонтной) схеме 10%;
- 3. Отсутствие нарушения динамической устойчивости при нормативных возмущениях;
- 4. Обеспечение нормативного коэффициента запаса статической апериодической устойчивости по активной мощности в контролируемом сечении в послеаварийных режимах при нормативных возмущениях 8%;
- 5. Обеспечение нормативного коэффициента запаса статической устойчивости по напряжению в узлах нагрузки в послеаварийных режимах при нормативных возмущениях 10%.

Верный ответ: 1. Обеспечение нормативного коэффициента запаса статической апериодической устойчивости по активной мощности в контролируемом сечении в нормальной (ремонтной) схеме 8%; 2. Обеспечение нормативного коэффициента запаса статической устойчивости по напряжению в узлах нагрузки в нормальной (ремонтной) схеме 10%;

6. Централизованная противоаварийная автоматика - это ... ?

Ответы:

1. программно-аппаратный комплекс, предназначенный для автоматического вторичного регулирования частоты и перетоков активной мощности в области регулирования либо ограничения путем дистанционного управления мощностью группы автоматизированных устройств;

- 2. устройство противоаварийной автоматики или комплекс противоаварийной автоматики, формирующий и реализующий противоаварийное управление на основе местной схемно-режимной карты;
- 3. комплекс противоаварийной автоматики, осуществляющий контроль электроэнергетического режима энергосистемы или ее части и выполняющий автоматический расчет параметров срабатывания входящих в указанный комплекс противоаварийной автоматики.

Верный ответ: 3. комплекс противоаварийной автоматики, осуществляющий контроль электроэнергетического режима энергосистемы или ее части и выполняющий автоматический расчет параметров срабатывания входящих в указанный комплекс противоаварийной автоматики.

2. Компетенция/Индикатор: ИД-4_{ПК-2} Способен производить системный анализ действия релейной защиты а автоматики на энергообъекте

Вопросы, задания

- 1. Автоматика разгрузки при снижении напряжения при близких КЗ (АР БКЗ) или затяжных КЗ (АР ЗКЗ). Автоматика разгрузки при перегрузке по мощности (АРПМ).
- 2. Автоматика ограничения перегрузки оборудования (АОПО). Назначение. Виды АОПО. Примеры алгоритмов
- 3. Резонансные ВЛ с ШР. Виды перенапряжений. Технические решения по исключению перенапряжений
- 4. Автоматика ограничения повышения напряжения (АОПН). Назначение. Пример алгоритма. УРОВ АОПН.
- 5. Автоматика ограничения снижения напряжения (АОСН). Назначение. Пример алгоритма
- 6. Устройство противоаварийной автоматики энергоузла (УПАЭ). Назначение. Принцип действия
- 7. Автоматика ликвидации асинхронного режима (АЛАР). Характерные признаки асинхронного режима. Виды АЛАР. Принцип действия. Примеры алгоритма.
- 8. Автоматика разгрузки при отлучении линии (АРОЛ). Принцип действия. Выбор параметров настройки
- 9. Локальная автоматика предотвращения нарушения устойчивости (ЛАПНУ). Назначение. Принцип действия. Виды УВ.
- 10.ФОЛ, ФОТ, ФОБ, ФОДЛ, ФОДТ. Требования к устройству. Пример алгоритма.
- 11. Противоаварийная автоматика (ПА). Функции ПА, назначение. Виды управляющих воздействий. Требования к каналам связи для ПА.
- 12. Автоматика ограничения снижения частоты (АОСЧ). Назначение. Принцип действия. Выбор параметров настройки. Примеры алгоритмов. Автоматика ограничения повышения частоты (АОПЧ). Примеры алгоритмов.

Материалы для проверки остаточных знаний

- 1. Устройство АОПН ЛЭП должно обеспечивать (выберите правильный ответ (ы)): Ответы:
- 1. пофазную фиксацию повышения действующего значения напряжения в соответствии с заложенной вольт-временной характеристикой;
- 2. пофазную фиксацию повышения амплитудного значения напряжения напряжения в соответствии с заложенной вольт-временной характеристикой;
- 3. пофазный контроль стока реактивной мощности с ЛЭП к шинам в измерительных органах ступеней АОПН с его блокировкой по факту отключенного положения выключателей «своей» стороны линии;
- 4. Всё перечисленное.

Верный ответ: 1. пофазную фиксацию повышения действующего значения напряжения в соответствии с заложенной вольт-временной характеристикой;

2.По принципу действия устройства АЛАР выявляют асинхронный режим (выберите правильный ответ (ы)):

Ответы:

- 1. 1. по току;
 - 2. по напряжению;
 - 3. по току с контролем знака активной мощности;
 - 4. по сопротивлению;
 - 5. по углу;
 - 6. по всем перечисленным параметрам.

Верный ответ: 1. по току; 2. по напряжению; 3. по току с контролем знака активной мощности; 4. по сопротивлению;

3. Можно реализовать функцию АРПМ в устройства ЛАПНУ (выберите правильный ответ (ы)):

Ответы:

- 1. 1. да;
 - 2. нет;
 - 3. допускается только на ЛЭП 110-220 кВ.

Верный ответ: 1. да;

4.Выберите управляющие воздействия от устройств АЛАР (выберите правильный ответ (ы)):

Ответы:

- 1. 1. отключение генерирующего оборудования;
 - 2. деление сети;
 - 3. ресинхронизация;
 - 4. все перечисленные.

Верный ответ: 1. отключение генерирующего оборудования; 2. деление сети;

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

III. Правила выставления итоговой оценки по курсу

Оценка за экзамен может быть выставлена по совокупности результатов КМ при условии выполнения каждого КМ с баллом не менее 3 до окончания теоретического обучения по следующей градации: Суммарная за все КМ 4.8-5.0-3а экзамен выставляется оценка 5 (отл); Суммарная за все КМ 3.8-4.7-3а экзамен выставляется оценка 4 (хор); Суммарная за все КМ менее 3.8-3кзамен по билетам.

Для курсового проекта/работы:

3 семестр

Форма проведения: Защита КП/КР

І. Процедура защиты КП/КР

1. Доклад 2. Демонстрация проведения испытаний устройства ПА 3. Ответы на вопросы

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 90 Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 75
Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

III. Правила выставления итоговой оценки по курсу