Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.04.02 Электроэнергетика и электротехника

Наименование образовательной программы: Электроэнергетические системы и сети, их режимы,

устойчивость, надежность и качество электрической энергии

Уровень образования: высшее образование - магистратура

Форма обучения: Очная

Оценочные материалы по дисциплине Методы математической оптимизации

Москва 2023

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

 Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

 Сведения о владельце ЦЭП МЭИ

 Владелец
 Шульженко С.В.

 Идентификатор
 Rdc34181f-ShulzhenkoSV-c0af1cca

СОГЛАСОВАНО:

Руководитель образовательной программы

Разработчик

NGSO SE	Подписано электрон	ной подписью ФГБОУ ВО «НИУ «МЭИ»	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Сведе	дения о владельце ЦЭП МЭИ	
NCM	Владелец	Кузнецов О.Н.	
	Идентификатор	Rf1ad9303-KuznetsovON-34bc149	

О.Н. Кузнецов

Шульженко

C.B.

Заведующий выпускающей кафедрой

NASO NE	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»			
THE STREET	Сведения о владельце ЦЭП МЭИ			
****	Владелец	Шаров Ю.В.		
МЭИ Ў	Идентификатор	R324da3b6-SharovYurV-0bb905bf		

Ю.В. Шаров

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-1 Способен участвовать в научно-исследовательской деятельности в сфере электроэнергетики
 - ИД-2 Умеет критически анализировать характеристики режимов современных электроэнергетических систем и сетей и возможности методов и средств их исследования
- 2. ПК-2 Способен участвовать в реализации технологических процессов объектов профессиональной деятельности
 - ИД-3 Владеет методами моделирования, расчёта, оптимизации и управления электроэнергетическими системами и сетями

и включает:

для текущего контроля успеваемости:

Форма реализации: Письменная работа

- 1. Интерполяция зависимостей (Контрольная работа)
 - 2. Применение метода динамического программирования (Контрольная работа)
 - 3. Численное дифференцирование (Контрольная работа)
 - 4. Численное интегрирование (Контрольная работа)

БРС дисциплины

1 семестр

	Веса контрольных мероприятий, %				
Раздел дисциплины	Индекс	КМ-	КМ-	КМ-	КМ-
г аздел дисциплины	KM:	1	2	3	4
	Срок КМ:	4	8	12	15
Интерполяция зависимостей					
Интерполяционные полиномы Лагранжа и Ньютона		+			
Методы определения интегралов					
Численное интегрирование		+	+	+	+
Решение задачи Коши для решения обыкновенных дифференциальных уравнений					
Численное дифференцирование		+	+	+	+
Метод динамического программирования					

Применение метода динамического программирования для поиска оптимальных решений	+	+	+	+
Bec KM:	25	25	25	25

\$Общая часть/Для промежуточной аттестации\$

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс компетенции	Индикатор	Запланированные результаты обучения по дисциплине	Контрольная точка
ПК-1	ИД-2 _{ПК-1} Умеет критически анализировать характеристики режимов современных электроэнергетических систем и сетей и возможности методов и средств их исследования	электроэнергетических систем Уметь:	Интерполяция зависимостей (Контрольная работа) Численное интегрирование (Контрольная работа) Численное дифференцирование (Контрольная работа) Применение метода динамического программирования (Контрольная работа)
ПК-2	ИД-3 _{ПК-2} Владеет методами моделирования, расчёта, оптимизации и управления электроэнергетическими системами и сетями	=	Интерполяция зависимостей (Контрольная работа)

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Интерполяция зависимостей

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Написание контрольной работы

Краткое содержание задания:

Отличия в построении интерполяционных полиномов по Лагранжу и Ньютону

Контрольные вопросы/задания:

топтрольные вопросы/задания:	
Знать: современные методы	1.
исследования режимов	1. 1. Какой из методов самый универсальный?
электроэнергетических систем	2. 2. Зачем в методе Ньютона используются два способа построения полинома?
	3. 3. Почему при выборе постоянного интерполяционного
	шага лучше использовать метод Ньютона?
Уметь: применять методы	1.1. Привести универсальные формулы для метода
создания и анализа моделей,	Лагранжа и метода Ньютона.
позволяющих прогнозировать	
свойства и поведение объектов	
электроэнергетики	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 85 Описание характеристики выполнения знания: Небольшие погрешности в написании контрольной работы

Оценка: 4

Нижний порог выполнения задания в процентах: 65 Описание характеристики выполнения знания: Не все особенности построения полиномов перечислены

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Работа не завершена, но то что написано соответствует истине

Оценка: 2

Описание характеристики выполнения знания: Ответ неверный

КМ-2. Численное интегрирование

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Написание контрольной работы

Краткое содержание задания:

Численное интегрирование

Контрольные вопросы/задания:

Знать: современные методы	1.
исследования режимов	1. 1. Отличия в определении интегралов по методу
электроэнергетических систем	прямоугольников и по методу трапеций
	2. 2. Суть метода Симпсона
	3. 3. Преимущество методов наивысшей алгебраической
	точности в определении интегралов перед методом
	Симпсона
Уметь: применять методы и	1.
алгоритмы, изученные в данной	1. 1. Записать основные уравнения для метода
дисциплине, для поиска	прямоугольников и метода трапеций.
оптимальных решений при	2. 2. Записать основное уравнение для метода Симпсона.
исследовании режимов	3. 3. Записать квадратурную формулу метода Чебышева.
электроэнергетических систем	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 85 Описание характеристики выполнения знания: Небольшие погрешности в ответах на вопросы.

Оценка: 4

Нижний порог выполнения задания в процентах: 65 Описание характеристики выполнения знания: Некоторые особенности пропущены при написании ответа

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Неполный ответ

Оценка: 2

Описание характеристики выполнения знания: Неверный ответ

КМ-3. Численное дифференцирование

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Написание контрольной работы

Краткое содержание задания:

Решение задачи Коши для решения обыкновенных дифференциальных уравнений

Контрольные вопросы/задания:

Знать: современны	іе методы	1.
исследования	режимов	1. 1. Основная идея всех методов Рунге-Кутта
электроэнергетических систем		2. 2. Отличия метода Рунге-Кутта 4-го порядка и метода
		Адамса
Уметь: применять	метолы и	1.

алгоритмы, изученные в данной		1. Записать основные формулы для метода Рунге-Кутта 1-
дисциплине, для поиска		го, 2-го и 4-го порядков.
оптимальных решений при	2.	2. Записать основную формулу для метода Адамса.
исследовании режимов		
электроэнергетических систем		

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 85 Описание характеристики выполнения знания: Небольшие погрешности в ответах

Оценка: 4

Нижний порог выполнения задания в процентах: 65 Описание характеристики выполнения знания: Некоторые характеристики методов не написаны

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Неполный ответ

Оценка: 2

Описание характеристики выполнения знания: Неверный ответ

КМ-4. Применение метода динамического программирования

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Написание контрольной работы

Краткое содержание задания:

Применение метода динамического программирования для поиска оптимальных решений

Контрольные вопросы/задания:

Знать: современные методы исследования режимов электроэнергетических систем	 1. 1. Взаимосвязь уравнений Эйлера-Лагранжа, Понтрягина и Гамильтона-Якоби-Беллмана 2. Применение метода Рикатти для определения коэффициентов усиления в АСУ
Уметь: применять методы и алгоритмы, изученные в данной дисциплине, для поиска оптимальных решений при исследовании режимов электроэнергетических систем	 1. 1. Записать уравнения Эйлера-Лагранжа, Понтрягина и Гамильтона-Якоби-Беллмана. 2. Записать уравнение Рикатти.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 85 Описание характеристики выполнения знания: Небольшие погрешности в написании контрольных работ

Оценка: 4

Нижний порог выполнения задания в процентах: 65 Описание характеристики выполнения знания: Не характеристики методов описаны

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Неполный ответ

Оценка: 2

Описание характеристики выполнения знания: Неверный ответ

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

1 семестр

Форма промежуточной аттестации: Зачет с оценкой

Процедура проведения

Каждый студент получает вопрос для письменного ответа. Распределение вопросов в случайном порядке.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД- $2_{\Pi K-1}$ Умеет критически анализировать характеристики режимов современных электроэнергетических систем и сетей и возможности методов и средств их исследования

Вопросы, задания

- 1.14. Приближенное дифференцирование (на основе интерполяционного полинома Лагранжа)
- 2.26. Пример определения оптимального управления, применение уравнения Рикатти
- 3.25. Дифференциальное уравнение Гамильтона-Якоби
- 4.24. Дифференциальное уравнение Беллмана
- 5.23. Функциональное уравнение Беллмана
- 6.22. Метод Адамса для решения дифференциальных уравнений
- 7.21. Применение метода Рунге-Кутта 4-го порядка точности для решения системы дифференциальных уравнений
- 8.20. Метод Рунге-Кутта 4-го порядка точности
- 9.19. Метод Рунге-Кутта 2-го порядка точности
- 10.18. Усовершенствование метода Эйлера для численного интегрирования дифференциальных уравнений
- 11.17. Численное интегрирование дифференциальных уравнений методом Эйлера
- 12.16. Интегрирование дифференциальных уравнений с помощью степенных рядов
- 13.15. Приближенное решение обыкновенных дифференциальных уравнений методом Пикара
- 14.28. Матричное уравнение Рикатти
- 15.13. Численное дифференцирование (на основе интерполяционных полиномов Ньютона)
- 16.12. Квадратурная формула Чебышева
- 17.11. Обобщенная формула численного интегрирования Ньютона-Котеса
- 18.10. Метод численного интегрирования метод Симпсона
- 19.9. Метод численного интегрирования метод трапеций
- 20.8. Метод численного интегрирования метод прямоугольников
- 21.27. Взаимосвязь уравнений Эйлера-Лагранжа, Понтрягина, Гамильтона-Якоби-Беллмана

Материалы для проверки остаточных знаний

1. Методы численного интегрирования расставить в порядке увеличения погрешности вычисления

Ответы:

1. Метод прямоугольников, метод трапеций, метод Симпсона, метод Чебышева, метод Ньютона-Котеса, 2. Метод Симпсона, метод Чебышева, метод Ньютона-Котеса, метод

трапеций, метод прямоугольников 3. Метод Чебышева, метод Симпсона, метод Ньютона-Котеса, метод трапеций, метод прямоугольников 4. Метод Чебышева, метод Ньютона-Котеса, метод Симпсона, метод трапеций, метод прямоугольников 5. Метод Ньютона-Котеса, метод прямоугольников, метод Симпсона, метод Чебышева, метод трапеций

Верный ответ: 4

2. Методы приближенного решения дифференциальных уравнений расставить в порядке уменьшения погрешности вычислений

Ответы

1. Метод Пикара, метод применения степенных рядов, метод Эйлера, метод Рунге-Кутта 1-го порядка, метод Рунге-Кутта 4-го порядка, метод Рунге-Кутта 2-го порядка, метод Рунге-Кутта 1-го порядка, метод Эйлера, метод Рунге-Кутта 2-го порядка, метод Рунге-Кутта 4-го порядка, метод Адамса 3. Метод применения степенных рядов, метод Пикара, метод Рунге-Кутта 1-го порядка, метод Эйлера, метод Адамса, метод Рунге-Кутта 2-го порядка, метод Рунге-Кутта 4-го порядка, метод Эйлера, метод Пикара, метод Рунге-Кутта 2-го порядка, метод Пикара, метод Рунге-Кутта 1-го порядка, метод Адамса, метод Рунге-Кутта 2-го порядка, метод Рунге-Кутта 4-го порядка 5. Метод Пикара, метод Пикара, метод Рунге-Кутта 2-го порядка, метод Эйлера, метод Рунге-Кутта 1-го порядка, метод Рунге-Кутта 2-го порядка, метод Рунге-Кутта 4-го порядка, метод Рунге-Кутта 2-го порядка, метод Рунге-Кутта 1-го порядка, метод Эйлера, метод Рунге-Кутта 2-го порядка, метод Рунге-Кутта 1-го порядка, метод Эйлера, метод Рунге-Кутта 2-го порядка, метод Рунге-Кутта 1-го порядка, метод Эйлера, метод Рунге-Кутта 2-го порядка, метод Рунге-Кутта 1-го порядка, метод Эйлера, метод Пикара, метод Рунге-Кутта 2-го порядка, метод Рунге-Кутта 1-го порядка, метод Эйлера, метод Пикара, метод Рунге-Кутта 2-го порядка, метод Рунге-Кутта 4-го порядка, метод Рунге-Кутта 2-го порядка, метод Рунге-Кутта 4-го порядка, метод Рунге-Кутта 4-го порядка, метод Рунге-Кутта 4-го порядка

Верный ответ: 2 и 5

2. Компетенция/Индикатор: ИД-3_{ПК-2} Владеет методами моделирования, расчёта, оптимизации и управления электроэнергетическими системами и сетями

Вопросы, задания

- 1.7. Определение собственных чисел и собственных значений матрицы
- 2.6. Обратное интерполирование
- 3.5. Оценка погрешности интерполяционных полиномов Ньютона
- 4.4. Оценка погрешности интерполяционного полинома Лагранжа
- 5.3. Второй интерполяционный полином Ньютона
- 6.2. Первый интерполяционный полином Ньютона
- 7.1. Интерполяционный полином Лагранжа

Материалы для проверки остаточных знаний

1. Что такое "обратное интерполирование"?

Ответы:

1. Определение значений точек интерполяции по заданным значениям функции. 2. Определение значений функции вне диапазона точек интерполяции. 3. Определение с помощью экстраполяции значений функции. 4. Определение значений функции по заданным значениям точек интерполяции

Верный ответ: 1

2. Какие условия определяет "принцип оптимальности Беллмана"?

Ответы

1. Условие линейности целевой функции 2. Условие отсутствия последействия 3. Условия отсутствия последействия и аддитивности целевой функции 4. Условие деления управления процессами на равные отрезки

Верный ответ: 3

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 85 Описание характеристики выполнения знания: Небольшие погрешности в ответе на вопросы

Оценка: 4

Нижний порог выполнения задания в процентах: 65 Описание характеристики выполнения знания: Не все характеристики описаны используемых методов

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Неполный ответ

Оценка: 2

Описание характеристики выполнения знания: Неверный ответ

III. Правила выставления итоговой оценки по курсу

Итоговая оценка по Барс-структуре + оценка по зачету.