Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 38.03.05 Бизнес-информатика

Наименование образовательной программы: Информационное и программное обеспечение бизнес-

процессов

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очно-заочная

Оценочные материалы по дисциплине Математическое и имитационное моделирование

Москва 2025

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

 Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

 Сведения о владельце ЦЭП МЭИ

 Владелец
 Шихин В.А.

 Идентификатор
 Rb9b22309-ShikhinVA-ab30e2ff

Разработчик

СОГЛАСОВАНО:

Руководитель образовательной программы

MOM H	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»		
	Сведения о владельце ЦЭП МЭИ		
	Владелец	Крепков И.М.	
	Идентификатор	R04da5bdb-KrepkovIM-33fe3095	

И.М. Крепков

В.А. Шихин

Заведующий выпускающей кафедрой

MOM ST	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»	
	Сведения о владельце ЦЭП МЭИ		
	Владелец	Невский А.Ю.	
	Идентификатор	R4bc65573-NevskyAY-0b6e493d	

А.Ю. Невский

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ОПК-1 Способен проводить моделирование, анализ и совершенствование бизнеспроцессов и информационно-технологической инфраструктуры предприятия в интересах достижения его стратегических целей с использованием современных методов и программного инструментария
 - ИД-1 Использует основы математики, вычислительной техники и программирования, моделирования
- 2. ОПК-4 Способен понимать принципы работы информационных технологий; использовать информацию, методы и программные средства ее сбора, обработки и анализа для информационно-аналитической поддержки принятия управленческих решений ИД-2 Проводит анализ информации и применяет современные системы принятия решений

и включает:

для текущего контроля успеваемости:

Форма реализации: Выполнение задания

1. Основы методологии моделирования (Тестирование)

Форма реализации: Письменная работа

- 1. Моделирование с использованием системы имитационного моделирования (Контрольная работа)
- 2. Основы имитационного моделирования (Контрольная работа)

Форма реализации: Смешанная форма

1. Математические модели (Контрольная работа)

БРС дисциплины

6 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Основы методологии моделирования (Тестирование)
- КМ-2 Математические модели (Контрольная работа)
- КМ-3 Основы имитационного моделирования (Контрольная работа)
- КМ-4 Моделирование с использованием системы имитационного моделирования (Контрольная работа)

Вид промежуточной аттестации – Экзамен.

	Веса конт	ольны	х мероі	прияти	й, %
Раздел дисциплины	Индекс	КМ-	КМ-	КМ-	КМ-
т аздел дисциплины	KM:	1	2	3	4
	Срок КМ:	5	7	11	15
Моделирование как метод анализа и оптимизации с	груктур и				
алгоритмов функционирования систем Постановка задач анализа и оптимизации структур д	пискъетии іх				
процессов и систем (ДС) и проблемы их решения.	цискретных				
Моделирование как метод получения достоверных ч	нисленных	+			
характеристик в системах автоматизированного упр					
Теоретические основы построения аналитических м					
дискретных процессов и систем массового обслужи	вания				
(CMO)					
Понятие системы и способы ее описания (вербальны алгоритмический, аналитический).	ыи,	+			
Классификация моделей и методов моделирования д	лискретных				
процессов и систем массового обслуживания	дискрепных				
Классификация СМО			+		
Классификация методов моделирования			+		
Построение аналитических моделей типовых схем С	СМО				
Решение систем уравнений для типовых схем ДП			+		
Применение методов теории массового обслуживан	ия для				
моделирования и анализа процессов в системах управления					
производственными процессами					
Применение аналитических моделей для расчета и а					
типовых структур производственных процессов и процессов управления.				+	
GPSS - язык и система имитационного моделирован	ия				
дискретных процессов: описание языка и алгоритма	работы с				
ним	•				
Обзор языков и систем имитационного моделирован					
дискретных процессов и их применение для модели				+	
структур и алгоритмов работы систем массового обслуживания.					
Построение GPSS-моделей типовых структур СМО и систем					
управления производственными процессами					
Разработка GPSS-моделей процессов					+
Особенности построения GPSS-моделей схем произ	вольной				
конфигурации на примерах систем управления					
произвождственными процессами Особенности построения моделей, сбора и обработк	•11				
статистических данных	A.F.I				+
, ,	Вес КМ:	25	25	25	25

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	-	результаты обучения по	
		дисциплине	
ОПК-1	ИД-10ПК-1 Использует	Знать:	КМ-1 Основы методологии моделирования (Тестирование)
	основы математики,	термины и понятия	КМ-2 Математические модели (Контрольная работа)
	вычислительной техники и	моделирования	КМ-3 Основы имитационного моделирования (Контрольная работа)
	программирования,	дискретных процессов и	
	моделирования	систем, аксиоматику	
		разработки	
		математических и	
		имитационных моделей	
		технологических и	
		социально-экономических	
		процессов и систем	
		современные	
		методологические	
		принципы и программные	
		средства построения	
		математических и	
		имитационных моделей	
		оптимального управления	
		для непрерывных и	
		дискретных процессов, их	
		сравнительный анализ;	
		многокритериальные	
		методы принятия решений	
		Уметь:	
		применять математические	

	T		
		методы и имитационные	
		средства моделирования	
		для решения	
		нестандартных задач	
		совершенствования	
		производственных	
		процессов	
		использовать типовые	
		математические методы и	
		компьютерные средства	
		имитационного	
		моделирования для	
		решения	
		производственных и	
		социально-экономических	
		задач	
ОПК-4	ИД-2 _{ОПК-4} Проводит	Знать:	КМ-3 Основы имитационного моделирования (Контрольная работа)
	анализ информации и	математические и	КМ-4 Моделирование с использованием системы имитационного
	применяет современные	методологические	моделирования (Контрольная работа)
	системы принятия	обоснования применения	
	решений	аналитических и	
		имитационных моделей	
		для исследования	
		вариантов проектируемых	
		систем и анализа и	
		оптимизации управления	
		информационных систем и	
		систем массового	
		обслуживания типа	
		производственно-	
		технологических и	
		социально-экономических	
		процессов	

математические и имитационные методы моделирования производственнотехнологических и социально-экономических процессов и систем Уметь: логически обосновывать выбор и применение современных интеллектуальных технологий и компьютерных программных средств разработки математических и имитационных моделей непрерывных и дискретных процессов для сравнительного анализа вариантов проектирования и оптимального управления в информационных системах и системах массового обслуживания обосновывать выбор современных аналитических и имитационных моделей для исследования вариантов проектируемых

систем и анализа и	
оптимизации управления	
информационных систем и	
систем массового	
обслуживания типа	
производственно-	
технологических и	
социально-экономических	
процессов	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Основы методологии моделирования

Формы реализации: Выполнение задания

Тип контрольного мероприятия: Тестирование

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Тестирование проводится в компьютерном классе.

Краткое содержание задания:

Тест 1

Вопрос 4. Входящий поток заявок называется регулярным, если

- А) заявки поступают в систему в последовательные моменты времени независимо друг от друга;
- Б) заявки поступают в систему одна за другой через заранее заданные и строго определенные промежутки времени;
- В) вероятность поступления в систему за очень малый промежуток времени сразу двух или более заявок на обслуживание пренебрежимо мала по сравнению с вероятностью поступления только одной заявки.

Ответ В.

Bonpoc 5. Если максимальная длина очереди Lmax в системе массового обслуживания (СМО) равна некоторому положительному числу N0 > 0, то СМО называется:

- А) системой с ограниченной длиной очереди;
- Б) системой с отказами;
- В) системой с ограниченным временем ожидания.

Ответ А

Контрольные вопросы/задания:

Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки
Знать: термины и понятия моделирования дискретных	1.Входящий поток
процессов и систем, аксиоматику разработки	заявок называется потоком
математических и имитационных моделей	без последствия, если:
технологических и социально-экономических процессов	
и систем	

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-2. Математические модели

Формы реализации: Смешанная форма

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Тестирование и контрольная работа

проводятся в компьютерном классе.

Краткое содержание задания:

Принципы и методика построения аналитических моделей процессов в системах обслуживания

Контрольные вопросы/задания:

контрольные вопросы/задания.	
Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки
Знать: современные методологические принципы и	1.Какие условия должны
программные средства построения математических и	выполняться для построения
имитационных моделей оптимального управления для	аналитических моделей с
непрерывных и дискретных процессов, их	неограниченной очередью?
сравнительный анализ; многокритериальные методы	
принятия решений	
Уметь: использовать типовые математические методы и	1. Какие величины являются
компьютерные средства имитационного моделирования	исходными параметрами для
для решения производственных и социально-	моделирования систем
экономических задач	массового обслуживания
	(CMO)?

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "не зачтено" выставляется если задание не выполнено в отведенный срок или результат не соответствует заданию

КМ-3. Основы имитационного моделирования

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Контрольная работа проводится в компьютерном классе. Выполнение задания направлено на закрепление изученного материала по разделу.

Краткое содержание задания:

Разработать и исследовать GPSS-модель одноканальной СМО с тремя потоками заявок на входе, отличающимися типами приоритетов: с относительными и абсолютным приоритетами.

Контрольные вопросы/задания:

контрольные вопросы/задания:		
Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки	
Знать: математические и методологические обоснования	1.В чём сходство и различие	
применения аналитических и имитационных моделей	понятия СОБЫТИЕ в	
для исследования вариантов проектируемых систем и	аналитических и	
анализа и оптимизации управления информационных	имитационных моделях	
систем и систем массового обслуживания типа	CMO?	
производственно-технологических и социально-		
экономических процессов		
Уметь: применять математические методы и	1.Приведите примеры	
имитационные средства моделирования для решения	трёх признаков	
нестандартных задач совершенствования	классификации систем типа	
производственных процессов	CMO.	
Уметь: логически обосновывать выбор и применение	1.Что такое простейший	
современных интеллектуальных технологий и	поток, какими тремя	
компьютерных программных средств разработки	свойствами он должен	
математических и имитационных моделей непрерывных	характеризоваться?	
и дискретных процессов для сравнительного анализа		
вариантов проектирования и оптимального управления в		
информационных системах и системах массового		
обслуживания		

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-4. Моделирование с использованием системы имитационного моделирования

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: контрольная работа проводится в

компьютерном классе.

Краткое содержание задания:

Разработать и исследовать GPSS-модель одноканальной СМО с тремя потоками заявок на входе, отличающимися типами приоритетов: с отностиельными и абсолютным приоритетами.

Контрольные вопросы/задания:

Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки
Знать: математические и имитационные методы моделирования производственно- технологических и социально-экономических процессов и систем	1.Привести примеры имитации равновероятного распределения.?
Уметь: обосновывать выбор современных аналитических и имитационных моделей для исследования вариантов проектируемых систем и анализа и оптимизации управления информационных систем и систем массового обслуживания типа производственнотехнологических и социально-экономических процессов	1.Модель турникета на футбольном стадионе Зрители подходят к турникету футбольного стадиона каждые 7±7 секунд и встают в очередь, в которой находятся до тех пор, пока не пройдут на стадион. Проход через турникет занимает 5±3 секунды. Требуется определить время, необходимое для того, чтобы через турникет прошло 300 человек.

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

6 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

		Утверждаю:
	ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 20	Зав. каф. БИТ
ниу мэи	Кафедра Безопасности и информационных технологий	А.Ю.Невский
пиу мэи	Дисциплина «Математическое и имитационное	
	моделирование»	Протокол №
		« <u>»</u> 2021 г.

- 1. Последовательность действий построения аналитической модели СМО по схеме, графу состояний, уравнений Колмогорова, решения системы уравнений: на примере 2-хканальной СМО без отказа
- 2. Средства языка GPSS, предназначенные для моделирования циклов и замкнутых структур в алгоритмах производственных процессов .
- 3. Задача. Построить GPSS-модель МКУ с ограниченной очередью заявок на входе. Исходные данные задать с учётом ненасыщенности режима работы МКУ.

Дорошенко А.Н.

Процедура проведения

Экзамен проводится в письменной форме по билетам согласно программе экзамена.

- I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины
- **1. Компетенция/Индикатор:** ИД- $1_{O\Pi K-1}$ Использует основы математики, вычислительной техники и программирования, моделирования

Вопросы, задания

- 1.10. Основные положения (аксиомы) аналитического метода теории массового обслуживания (ТМО), в чём и на каких этапах проявляются эти положения при построении формул для расчета характеристик СМО методами ТМО.
- 2.11. Сравнение методов математического и имитационного моделирования по области применения, по критериям сложности построения модели и точности вычисления характеристик моделируемой системы, по адекватности модели реальному объекту или процессу.
- 3.13. Сравнительный анализ двух принципов имитационного моделирования систем во времени: по интервалам времени и по событиям. Средства GPSS, реализующие событийный принцип моделирования.

Материалы для проверки остаточных знаний

1.Определить, какую модель можно представить математической моделью объекта Ответы:

- а) описание объекта математическими средствами, позволяющее выводить суждение о некоторых его свойствах при помощи формальных процедур
- б) любую символическую модель, содержащую математические символы
- в) представление свойств объекта только в числовом виде
- г) любую формализованную модель Верный ответ: a)
- **2. Компетенция/Индикатор:** ИД-2_{ОПК-4} Проводит анализ информации и применяет современные системы принятия решений

Вопросы, задания

- 1.1. Понятие марковского процесса, его роль в построении ТМО
- 2.2. Понятие простейшего потока событий (например, входного потока заявок в СМО), его свойства и роль этих свойств при построении аналитической модели СМО.
- 3.3. Аксиомы теории массового обслуживания (TMO) требования к случайным потокам событий: ординарность, стационарность, без последействия. В чём проявляются эти положения при решении задач расчета характеристик СМО?
- 4.**4.** Классификация моделей СМО по признакам применительно к задачам анализа дискретных процессов и систем.
- 5.**5.** Алгоритм построения аналитической модели СМО по графу состояний системы: Варианты представления графа состояний для одноканальных и многоканальных СМО с отказами.
- 6.**6.** Алгоритм построения аналитической модели СМО по графу состояний системы: Варианты представления графа перехода для одноканальных СМО без отказов и с ограниченной очередью. .
- 7.7. Принципы построения аналитических моделей систем массового обслуживания, алгоритм построения системы уравнений Колмогорова.
- 8.8. Перечень характеристик типовых устройств обслуживания заявок, принципы построения для них уравнений с помощью аналитических моделей.
- 9.9. Виды приоритетов в СМО. Принципы обслуживания заявок с приоритетами в одноканальных СМО.
- 10.12. Виды приоритетов в СМО. Принципы обслуживания заявок с приоритетами в одноканальных СМО
- 11.14. Понятие модельного времени, способ задания длительности моделирования, средства имитации интервалов времени в системе GPSS.
- 12.15. Понятие транзакта, его назначение, атрибуты транзакта. Средства в GPSS, обеспечивающие порождение заявок (транзактов) и задание им определенных индивидуальных свойств.
- 13.**16.**Параметры транзакта: назначение, задание их количества, средства задания значения параметру и его изменение в процессе моделирования. Примеры применения параметров транзакта в моделях
- 14.17. Алгоритм перемещения транзакта по блокам GPSS-программы.
- 15.18. Принципы работы моделирующего алгоритма в системе GPSS: списки событий и режимы выбора транзактов из списков
- 16.19. Понятие стандартного числового атрибута (СЧА) в GPSS и применение СЧА при моделировании и исследовании характеристик объектов обслуживания.
- 17.20. Стандартные числовые и логические атрибуты объектов типа FACILITY. Применение этих атрибутов при моделировании структур и алгоритмов функционирования экономических систем.
- 18. 21. Стандартные числовые и логические атрибуты объектов типа STORAGE и применение этих атрибутов при моделировании структур и алгоритмов функционирования экономических систем.

- 19.22. Средства языка GPSS, предназначенные для моделирования циклов и замкнутых структур в алгоритмах производственных процессов.
- 20.23. Применение логических ключей при моделировании зависимых процессов на GPSS. вычислительных систем и сетей.
- 21.24.Средства моделирования ветвящихся и циклических процессов на языке GPSS и применение этих средств.
- 22.25.Средства языка GPSS, позволяющие имитировать параллельные процессы.
- 23.26.Средства синхронизации процессов на языке GPSS и применение этих средств для моделирования на примере технологических процессов или процессов в ЭВМ, ВС и в сетях.
- 24.27. Понятие функции в GPSS, примеры её применения в моделях.
- 25.28. Средства языка GPSS, реализующие имитацию дисциплин FIFO, LIFO обслуживания заявок в системах. Примеры применения этих дисциплин при моделировании в производственно-технологических процессах, в бытовых ситуациях и т.д..
- 26.29. Понятие синхронизации процессов, их виды и средства языка GPSS, позволяющие имитировать синхронизацию дискретных процессов.
- 27.30. Блок SELECT как средство выбора направления перемещения транзакта в текущий момент времени моделирования, варианты выбора условия перемещения транзакта (примеры его применения).
- 28.31. Средства сбора и обработки статистических результатов моделирования в системе GPSS
- 29.32. Средства моделирования ветвящихся процессов на языке GPSS и применение этих средств при моделировании сетевых структур.
- 30.33. Стандартные числовые атрибуты очереди и их применение в GPSS-моделях.
- 31.34. Моделирование на языке GPSS системы взаимосвязанных потоков (на примере транспортных задач типа такси-пассажиры или взаимодействия двух вычислительных процессов, выполнение одного из которых зависит от состояния выполнения другого).

Материалы для проверки остаточных знаний

1. Какие величины являются исходными параметрами для моделирования систем массового обслуживания (СМО)?

Ответы:

- 1. среднее число заявок, поступающих в систему (1);
- 2. среднее значение экономического показателя за определенный промежуток времени (Ycp);
- 3. средний размер товарного запаса (Q/2);
- 4. среднее количество требований, обслуживаемых в системе одним каналом в единицу времени (m);
- 5. средний гарантированный выигрыш игрока А
- 6. среднее число каналов в системе

Верный ответ: 1) 4)

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и экзаменационной составляющих.