Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 13.03.03 Энергетическое машиностроение

Наименование образовательной программы: Котлы, камеры сгорания и парогенераторы АЭС

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Химия

> Москва 2024

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

Сведения о владельце ЦЭП МЭИ

Владелец Пуцылов И.А.

Идентификатор R2ab9c545-PutsylovIA-7a96334f

И.А. Пуцылов

СОГЛАСОВАНО:

Руководитель образовательной программы

Разработчик

К.А. Плешанов

Заведующий выпускающей кафедрой

a recognitional state	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»	
	Сведения о владельце ЦЭП МЭИ		
	Владелец	Плешанов К.А.	
NOM &	Идентификатор	R002eb276-PleshanovKA-9092810	

К.А. Плешанов

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

1. ОПК-3 Способен применять соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач

ИД-7 Демонстрирует понимание химических процессов

и включает:

для текущего контроля успеваемости:

Форма реализации: Письменная работа

- 1. Тест: «Растворы электролитов», контрольная работа «Растворы электролитов», защита лабораторных работ по разделу 4, выполнение и защита расчетных заданий по разделу 4 (Тестирование)
- 2. Тесты: «Гальванические элементы», «Электролиз», «Коррозия металлов». Коллоквиум «Электрохимические процессы», защита лабораторных работ по разделу 5, выполнение и защита расчетных заданий по разделу 5 (Тестирование)
- 3. Тесты: «Химическая термодинамика и равновесие», «Химическая кинетика». Коллоквиум «Термодинамика и кинетика химических реакций», защита лабораторных работ по разделу 3, выполнение и защита расчетных заданий по разделу 3. (Тестирование)
- 4. Тесты: «Химический эквивалент», «Электронное строение атомов», «Химическая связь», «Комплексные соединения», «Межмолекулярные взаимодействия». Контрольная работа «Строение вещества», защита лабораторных работ по разделу «Введение. Основные законы химии» и разделам 1 и 2, выполнение и защита расчетных заданий по разделам 1 и 2. (Тестирование)

БРС дисциплины

1 семестр

	Веса контрольных мероприятий, %				
Doower wyswymwyy	Индекс	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	1	2	3	4
	Срок КМ:	4	8	12	16
Введение. Основные законы химии.					
Введение. Основные законы химии.		+			
Основные положения квантово-механической модели строения атома. Принципы формирования электронной структуры атомов. Периодическая система элементов и периодический закон.		+			

Типы химической связи. Структуры и свойства молекул,				
комплексных соединений. Межмолекулярные взаимодействия.				
Типы химической связи. Структуры и свойства молекул,	+			
комплексных соединений. Межмолекулярные взаимодействия.	+			
Общие закономерности химических процессов. Основные				
понятия и законы химической термодинамики. Химическое				
равновесие. Основные понятия и законы химической кинетики.				
Простые и сложные реакции, катализ.				
Общие закономерности химических процессов. Основные				
понятия и законы химической термодинамики. Химическое				
равновесие. Основные понятия и законы химической кинетики.		+		
Простые и сложные реакции, катализ.				
Свойства растворов электролитов и неэлектролитов. Равновесие				
в растворах электролитов. Определение рН растворов сильных и				
слабых электролитов, гидролиз солей.				
Свойства растворов электролитов и неэлектролитов. Равновесие				
в растворах электролитов. Определение рН растворов сильных и			+	
слабых электролитов, гидролиз солей.				
Электрохимические процессы. Потенциалы металлических и				
газовых электродов. Химические источники тока.				
Гальванический элемент. Электролиз и его применение.				
Коррозия металлов. Защита от коррозии				
Электрохимические процессы. Потенциалы металлических и				
газовых электродов. Химические источники тока.				
Гальванический элемент. Электролиз и его применение.				+
Коррозия металлов. Защита от коррозии				
Bec KM:	25	25	25	25

\$Общая часть/Для промежуточной аттестации\$

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	-	результаты обучения по	•
		дисциплине	
ОПК-3	ИД-70ПК-3 Демонстрирует	Знать:	Тесты: «Химический эквивалент», «Электронное строение атомов»,
	понимание химических	общие закономерности	«Химическая связь», «Комплексные соединения», «Межмолекулярные
	процессов	химических явлений и	взаимодействия». Контрольная работа «Строение вещества», защита
		процессов, основы	лабораторных работ по разделу «Введение. Основные законы химии»
		химической	и разделам 1 и 2, выполнение и защита расчетных заданий по разделам
		термодинамики, принципы	1 и 2. (Тестирование)
		термодинамических	Тесты: «Химическая термодинамика и равновесие», «Химическая
		расчетов	кинетика». Коллоквиум «Термодинамика и кинетика химических
		основные характеристики	реакций», защита лабораторных работ по разделу 3, выполнение и
		окислительно-	защита расчетных заданий по разделу 3. (Тестирование)
		восстановительных систем,	Тест: «Растворы электролитов», контрольная работа «Растворы
		классификацию	электролитов», защита лабораторных работ по разделу 4, выполнение
		электрохимических	и защита расчетных заданий по разделу 4 (Тестирование)
		систем, их практическое	Тесты: «Гальванические элементы», «Электролиз», «Коррозия
		использование	металлов». Коллоквиум «Электрохимические процессы», защита
		источники научно-учебной	лабораторных работ по разделу 5, выполнение и защита расчетных
		информации (учебники,	заданий по разделу 5 (Тестирование)
		справочники, базы	
		данных) по изученным	
		разделам дисциплины	
		основные закономерности	
		процессов коррозии	
		металлов и защиты	
		конструкционных	
		материалов от коррозии	

основы техники безопасности и правила проведения эксперимента в химической лаборатории основные кинетические законы и закономерности процессов, принципы кинетических расчетов свойства растворов и их основные характеристики, методы определения и оценки этих характеристик классификацию и свойства химических элементов и их соединений, взаимосвязь строения и свойств веществ основные законы и закономерности общей химии и методы обработки экспериментальных данных Уметь: обеспечивать соблюдение правил техники безопасности, использовать приемы первой помощи, методы защиты в условиях чрезвычайных ситуаций проводить химический эксперимент по заданной методике, обработку и

анализ полученных результатов с привлечением соответствующего математического аппарата демонстрировать базовые знания в области химии, выявлять химическую сущность проблем, возникающих в ходе профессиональной деятельности; применять для их разрешения основные законы естествознания, методы теоретического и экспериментального исследования, самостоятельно, пополнять и систематизировать приобретенные знания по дисциплине обеспечивать соблюдение экологической безопасности на производстве и планировать экозащитные мероприятия и мероприятия по энерго- и ресурсосбережению на производстве осуществлять поиск, хранение, обработку и

анализ информации из	
различных источников и	
баз данных по изученным	
разделам дисциплины,	
представлять ее в	
требуемом формате с	
использованием	
информационных,	
компьютерных и сетевых	
технологий	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Тесты: «Химический эквивалент», «Электронное строение атомов», «Химическая связь», «Комплексные соединения», «Межмолекулярные взаимодействия». Контрольная работа «Строение вещества», защита лабораторных работ по разделу «Введение. Основные законы химии» и разделам 1 и 2, выполнение и защита расчетных заданий по разделам 1 и 2.

Формы реализации: Письменная работа

Тип контрольного мероприятия: Тестирование Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Работа выполняется по вариантам

билетов на лабораторном занятии

Краткое содержание задания:

Работа ориентирована на проверку знаний в области строения атомов, структуры молекул и комплексных соединений

Контрольные вопросы/задания:	
Знать: источники научно-	1. Комплексообразователь в соединении
учебной информации (учебники,	[V(NH3)5NO2]Br2 имеет заряд
справочники, базы данных) по	1) +4
изученным разделам	2) +2
дисциплины	3) +3
	4) +5
	Ответ 3
Знать: классификацию и	1. Краткая электронная конфигурация элемента сера
свойства химических элементов	S
и их соединений, взаимосвязь	1)3s13p4
строения и свойств веществ	2)3s13p5
	3)3s23p4
	4)3s23p6
	Ответ 3
	2. Краткая электронная конфигурация элемента
	марганец Mn
	1)4s24d5
	2)4d54s2
	3)3s23d5
	4)3d54s2
	Ответ 4
Знать: основные законы и	1.Возможные валентности элемента фосфор Р
закономерности общей химии и	1) B= 1; B*=5
методы обработки	2) B= 3; B*=5
экспериментальных данных	3) B= 3; B*=4,5
	4) B= 0; B*=5
	Ответ 2
	2.Возможные валентности элемента кобальт Со
	1) B= 0; B*=2,3,4,5
	2) B= 2; B*=5

	3) B= 3; B*=2,4,5 4) B= 3; B*=5 Otbet 1
Знать: основы техники безопасности и правила проведения эксперимента в химической лаборатории	 При образовании молекулы TlBr3 происходит гибридизация sp3 dsp. sp2 гибридизации нет Ответ 3

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-2. Тесты: «Химическая термодинамика и равновесие», «Химическая кинетика». Коллоквиум «Термодинамика и кинетика химических реакций», защита лабораторных работ по разделу 3, выполнение и защита расчетных заданий по разделу 3.

Формы реализации: Письменная работа

Тип контрольного мероприятия: Тестирование **Вес контрольного мероприятия в БРС:** 25

Процедура проведения контрольного мероприятия: Работа выполняется по вариантам

билетов на лабораторном занятии

Краткое содержание задания:

Работа ориентирована на знание законов и общих закономерностей химических явлений и процессов, основ химической термодинамики, принципов термодинамических расчетов; основ кинетических законов и закономерностей процессов, принципов кинетических расчетов.

Контрольные вопросы/задания:

Знать: общие закономерности	1. Установите, возможно, ли восстановление оксида
химических явлений и	железа (III) углеродом до сводного металла по
процессов, основы химической	уравнению Fe2O3 + 3C(графит) = 2Fe + 3CO при
термодинамики, принципы	температурах 298 и 1000 и стандартных состояниях

термодинамических расчетов	всех веществ. Примите, что энтальпия и энтропия
	реакции не зависят от температуры.
	2.Возможно ли самопроизвольное протекание
	реакции $H2(\Gamma) + I2(\kappa)=2HI(\Gamma)$ при температуре 400 K
	и стандартных состояниях компонентов?
	Рассчитайте стандартную энергию Гиббса реакции.
	Отв6,24 кДж/моль-процесс протекает
	самопроизвольно в прямом направлении.
Уметь: обеспечивать	1.Оксид серы (IV) количеством вещества 4 моль/л и
соблюдение правил техники	кислород количеством 2 моль/л смешаны в закрытой
безопасности, использовать	системе при давлении $P=3,039$ х 105 Па. К моменту
приемы первой помощи, методы	наступления равновесия в реакции 2SO2+ O2 = 2SO3
защиты в условиях	осталось 20% взятого SO2.
чрезвычайных ситуаций	Определить равновесные концентрации
	реагирующих веществ и давление в системе, при
	котором наступило равновесие.
Уметь: обеспечивать	1.Скорость реакции ацетона с йодом CH3COCH3 + I2
соблюдение экологической	® CH3COCH2I + HI прямо пропорциональна
безопасности на производстве и	концентрации ацетона и не зависит от концентрации
планировать экозащитные	йода. За какое время прореагирует 80% ацетона, если
мероприятия и мероприятия по	при этой же температуре концентрация его
энерго- и ресурсосбережению на	уменьшается вдвое за 30 минут?
производстве	

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-3. Тест: «Растворы электролитов», контрольная работа «Растворы электролитов», защита лабораторных работ по разделу 4, выполнение и защита расчетных заданий по разделу 4

Формы реализации: Письменная работа

Тип контрольного мероприятия: Тестирование **Вес контрольного мероприятия в БРС:** 25

Процедура проведения контрольного мероприятия: Работа выполняется по вариантам билетов на лабораторном занятии

Краткое содержание задания:

Работа ориентирована на изучение свойств растворов и их основных характеристик, методов определения и оценки этих характеристик.

Контрольные вопросы/задания:

Контрольные вопросы/задания:	
Знать: основные кинетические законы и закономерности процессов, принципы кинетических расчетов	1.Водородный показатель среды водного раствора электролита 0,01 М LiOH (уі =0,92) равен 1) 11,96 – среда кислая 2) 2,02 – среда кислая 3) 11,96 – среда щелочная 4) 2,02 – среда щелочная Ответ 3 2.Активность ионов H+ и OH- в водном растворе с рH=4,6 при 298 К равна 1) аH+=4.10-10; аОН-=4.10-10, моль/л 2) аH+=2,51.10-5; аОН-=4.10-10, моль/л 3) аH+=2,51.10-5; аОН-=2,51.10-5, моль/л 4) аН+=4.10-10; аОН-=2,51.10-5, моль/л Ответ 2
Знать: основные характеристики окислительно- восстановительных систем, классификацию электрохимических систем, их практическое использование	1. Реакция среды водного раствора Ca(OH)2 1) щелочная 2) кислая 3) нейтральная Ответ 1 2. Реакция среды водного раствора CaSO4 1) щелочная 2) кислая 3) нейтральная Ответ 3 3. Расположите вещества по мере уменьшения рН их водных растворов одинаковой концентрации 1) Рb(OH)2 – КОН – HI – NaCl - HCOOH 2) КОН - Pb(OH)2 - NaCl - HCOOH - HI 3) КОН – HI – NaCl - Pb(OH)2 – HCOOH 4) Рb(OH)2 – NaCl – HCOOH – HI Oтвет 2
Знать: свойства растворов и их основные характеристики, методы определения и оценки этих характеристик	 1.Реакция среды водного раствора CaCO3 1) щелочная 2) кислая 3) нейтральная Ответ 1
Уметь: демонстрировать базовые знания в области химии, выявлять химическую сущность проблем, возникающих в ходе профессиональной деятельности; применять для их разрешения основные законы естествознания, методы теоретического и экспериментального исследования, самостоятельно,	1.Водный раствор H2CO3 имеет рH=4,52 при молярной концентрации раствора 1) 0,002 моль/л 2) 0,08 моль/л 3) 0,05 моль/л 4) 0,034моль/л Ответ 1 2.Концентрация водного раствора FeCl3 с рH=3,0 составляет (Кд,3, Fe(OH)3 =1,35.10-12) 1) 0,056 моль/л

пополнять и систематизировать приобретенные знания по	2) 0,028 моль/л 3) 0,001 моль /л
дисциплине	4) 0,114 моль/л Ответ 3

Оиенка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оиенка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-4. Тесты: «Гальванические элементы», «Электролиз», «Коррозия металлов». Коллоквиум «Электрохимические процессы», защита лабораторных работ по разделу 5, выполнение и защита расчетных заданий по разделу 5

Формы реализации: Письменная работа

Тип контрольного мероприятия: Тестирование **Вес контрольного мероприятия в БРС:** 25

Процедура проведения контрольного мероприятия: Работа выполняется по вариантам

билетов на практическом занятии

Краткое содержание задания:

Работа ориентирована на основные характеристики окислительно-восстановительных систем, классификацию электрохимических систем, их практическое использование; основные закономерности процессов коррозии металлов и защиты конструкционных материалов от коррозии.

Контрольные вопросы/задания:

понтроивные вопросы, задания.	
Знать: основные закономерности	1.Определите термодинамическую возможность
процессов коррозии металлов и	электрохимической коррозии изделия из латуни
защиты конструкционных	Zn/Cu в обескислороженном растворе 0,1 M NaCl
материалов от коррозии	при комнатной температуре. Напишите уравнения
	анодного и катодного процессов. Сколько и какого
	компонента разрушится, если в результате выделится
	5,6 мл водорода(н.у.) Ответ: Коррозия возможна с
	выделением водорода. Масса окисленного Zn равна
	16,4 мг.
	2. Определите возможность электрохимической
	коррозии изделия из углеродистой стали в растворе

	электролита 0,1 M FeCl2 при температуре 25 0C при
	парциальных давлениях газов pH2 =0,1 атм; pO2=0,9
	атм. Напишите уравнения анодного и катодного
	процессов. Отв. Коррозия возможна с кислородной
	Eэ = 1,37 (O2/ Fe) ; 0,247 В (H+/Fe) и водородной E э
	=0,247 B (H+/Fe) деполяризацией
Уметь: осуществлять поиск,	1. Рассчитайте ЭДС Mn/Си гальванического элемента
хранение, обработку и анализ	при 298 К и активности потенциалопределяющих
информации из различных	ионов катода 10-4 моль/л, анода 10-2 моль/л.
источников и баз данных по	Составьте уравнения электродных процессов и
изученным разделам	токообразующей реакции.
дисциплины, представлять ее в	2. Рассчитайте время, необходимое для получения 10
требуемом формате с	г Ni- металлического покрытия на железной детали
использованием	электролизом водного раствора NiSO4 при токе,
информационных,	равном 5 А и катодном выходом по току, равном
компьютерных и сетевых	65%. Предложите подходящий материал анода.
технологий	Напишите уравнения электродных процессов.
	Ответ: 168,6 минут, анод – никелевый
Уметь: проводить химический	1. Рассчитайте ЭДС элемента, в котором при 298 К
эксперимент по заданной	установилось равновесие:
методике, обработку и анализ	Zn + Sn2 + = Zn2 + + Sn при активности ионов цинка
полученных результатов с	$0{,}0001$ моль/л, , активности ионов олова $0{,}01$
привлечением соответствующего	моль/л. Составьте уравнения электродных
математического аппарата	процессов. Отв. 0,686 В.

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

1 семестр

Форма промежуточной аттестации: Зачет с оценкой

Пример билета

1.В гальваническом элементе протекает токообразующая реакция Fe + 2Ag + = Fe2 + + 2Ag

Напишите уравнения анодной и катодной полуреакций. Рассчитайте ЭДС данного элемента для активностей потенциалопределяющих ионов 0,001 и T=298К. Рассчитайте массы веществ, которые претерпевают превращение на катоде и аноде Γ Э при его разряде током 2 А в течение 1,5 часов при выходе по току 100 %.

- 2. Рассчитайте константу равновесия этой реакции п.1 при 298 K двумя способами. Напишите выражение для Kc. Как меняется выход продуктов с ростом температуры?
- 3. Рассчитайте pH 0,001 M водного раствора AgNO3. Напишите уравнения реакции гидролиза по всем ступеням. Усилит или ослабит гидролиз добавление в указанный раствор а) воды, б) понижение T?
- 4. Напишите процессы, идущие при электрохимической коррозии Fe- пластины в растворе KNO3. Сколько граммов металла разрушится, если на катодных участках выделилось 1,1мл водорода и поглотилось 22,4 мл кислорода?
- 5. Напишите уравнения реакций, идущих при приливании к разбавленному раствору AgNO3 избытка водного раствора аммиака. Какой механизм образования связей, структура и свойства образовавшегося комплексного иона?

Процедура проведения

Проводится в письменной форме по билетам в виде подготовки и изложения развернутого ответа

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-7_{ОПК-3} Демонстрирует понимание химических процессов

Вопросы, задания

- 1.На основании расчета энергии Гиббса процесса: $CuO(\kappa) + HCl(p) = CuCl2(p) + H2O(ж)$ сделайте вывод о том, защищает ли оксид Cu металлическую деталь от воздействия кислоты в условиях, близких к стандартным.
- 2. Напишите электронные формулы атомов, образующих молекулы C12, GeCl2, CoCl2. Покажите механизм образования указанных молекул, определите полярность каждой молекулы.
- 3. Рассчитайте pH раствора 0,03M H2SO4. Будет ли протекать процесс гидролиза соли, образованной взаимодействием NH4OH и H2SO4? Напишите уравнение процесса гидролиза, дайте качественную оценку pH раствора соли. Как будет изменяться pH раствора соли при увеличении концентрации?
- 4.Кинетика реакции первого порядка $A(\Gamma) \to 2B(\Gamma)$ изучалась манометрическим методом. Начальное состояние системы вещество A с давлением 40 кПа. Через 11,5 мин общее давление в системе увеличилось до 60 кПа. Рассчитайте константу скорости реакции

5. Рассчитайте энергию активации Еа процесса окисления Си, если при повышении температуры от 30 до 80 оС скорость реакции возросла в 800 раз.

Материалы для проверки остаточных знаний

1.Напишите электронные формулы атомов, образующих молекулы Cl2 , GeCl2 , CoCl2 . Покажите механизм образования указанных молекул, определите полярность каждой молекулы

Ответы:

Использовать таблицу Менделеева для написания электронных формул элементов, правила определения валентности элементов, определять пространственную структуру молекул по методу валентных связей, полярность связей и молекул, правила определения структуры и свойств комплексных соединений

Верный ответ: C1...3S23p5; Gе...4S24p2; Co...3d74S2; молекула Cl2—линейная, неполярная; моле-кула GeI2—угловая, полярная; молекула CoI2 --- линейная, неполярная.

2. Рассчитайте pH раствора 0,03M H2SO4. Будет ли протекать процесс гидролиза соли, образованной взаимодействием NH4OH и H2SO4? Напишите уравнение процесса гидролиза, дайте качественную оценку pH раствора соли. Как будет изменяться pH раствора соли при увеличении концентрации?

Ответы:

Использовать теорию сильных и слабых электролитов для расчетов водородного показатели среды.

Верный ответ: pH=1,3; $NH4++H2O \leftrightarrow NH4OH+H+$; pH < 7, среда кислая; при увеличении концентра-ции соли среда станет более кислой, pH уменьшится.

3.Кинетика реакции первого порядка $A(\Gamma) \to 2B(\Gamma)$ изучалась манометрическим методом. Начальное состояние системы — вещество A с давлением 40 кПа. Через 11,5 мин общее давление в системе увеличилось до 60 кПа. Рассчитайте константу скорости реакции

Ответы:

Общие законы химической кинетики, зависимость скорости реакции от концентрации реагентов, зависимость скорости реакции от температуры.

Верный ответ: 0,001 с-1

4. Какие реакции будут иметь место на нерастворимых графитовых электродах при электролизе а) расплава CaCl2, б) водного раствора СaCl2? Напишите уравнения процессов на электродах для случаев а) и б). Сколько времени потребуется для выделения на катоде вещества, массой 4 г при протекании тока 1 А для случаев а) и б)?

Ответы:

Законы электрохимических процессов: уравнение Нернста, закон Фарадея.

Верный ответ: а) 5,36 ч; б) 107,2 ч.

II. Описание шкалы оценивания

Оценка: зачтено

Описание характеристики выполнения знания: Работа выполнена верно или с несущественными недостатками

Оценка: не зачтено

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

ІІІ. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.