Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 15.03.03 Прикладная механика

Наименование образовательной программы: Динамика и прочность машин, приборов и аппаратуры

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Механика материалов и конструкций

Москва 2024

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Разработчик

Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»					
Сведения о владельце ЦЭП МЭИ					
Владелец	Позняк Е.В.				
Идентификатор	Rd1b94958-PozniakYV-2647307e				

Е.В. Позняк

СОГЛАСОВАНО:

Руководитель образовательной программы

Е.В. Позняк

Заведующий выпускающей кафедрой

NISO NE	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»			
1	Сведения о владельце ЦЭП МЭИ				
New	Владелец	Меркурьев И.В.			
	Идентификатор	Rd52c763c-MerkuryevIV-1e4a8830			

И.В. Меркурьев

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ОПК-9 Способен внедрять и осваивать новое технологическое оборудование ИД-1 Способен участвовать во внедрении и освоении нового оборудования и элементов конструкций в части обеспечения прочности, жесткости, устойчивости, долговечности и безопасности
- 2. ОПК-11 Способен выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, привлекать для их решения физико-математический аппарат и современные компьютерные технологии
 - ИД-1 Формулирует математическую постановку задач механики сплошной среды и деформируемого твердого тела применительно к объектам профессиональной деятельности
 - ИД-2 Способен получить аналитические решения ряда задач механики сплошной среды и деформируемого твердого тела
 - ИД-3 Определяет и проводит анализ параметров напряженно-деформированного состояния элементов конструкций, в том числе с применением собственноручно разработанных программных кодов
- 3. ПК-1 Готов участвовать в расчетах с элементами научных исследований деталей машин, узлов и конструкций с целью обеспечения их прочности, жесткости, устойчивости, долговечности, безопасности и надежности
 - ИД-2 Способен проводить проектные и/или проверочные расчеты объектов профессиональной деятельности на статические и/или динамические нагрузки ИД-5 Способен выполнить анализ результатов расчетов, сформулировать выводы и рекомендации, оформить научно-технический отчет

и включает:

для текущего контроля успеваемости:

Форма реализации: Письменная работа

- 1. Контрольная работа "Расчет вала на выносливость" (Контрольная работа)
- 2. Контрольная работа "Колебания и устойчивость" (Контрольная работа)
- 3. Контрольная работа «Осесимметричная деформация круговых цилиндрических оболочек и осесимметричный изгиб круговых пластин» (Контрольная работа)
- 4. Контрольная работа «Осесимметричная задача теории упругости» (Контрольная работа)
- 5. Контрольная работа «Расчет на прочность при кручении стержней. Расчет пружин» (Контрольная работа)
- 6. Контрольная работа «Расчет на прочность при прямом изгибе» (Контрольная работа)
- 7. Контрольная работа «Расчет статически неопределимых систем, работающих на изгиб» (Контрольная работа)
- 8. Контрольная работа «Расчет тонкостенных оболочек по безмоментной теории» (Контрольная работа)
- 9. Контрольная работа «Сложные виды деформации» (Контрольная работа)

10. Контрольная работа: «Расчеты на прочность при растяжении (сжатии) стержневых систем» (Контрольная работа)

БРС дисциплины

3 семестр

	контро	льных м	ероприя	ятий, %		
Раздел дисциплины	Индекс КМ:	KM-1	KM-2	KM-3	KM-4	KM-5
	Срок КМ:	4	8	6	12	16
Введение в курс. Расчеты при растяжени	и (сжатии)					
Общие понятия механики деформируемо тела.	+					
Расчеты при растяжении (сжатии)		+				
Сдвиг и кручение						
Кручение стержней кругового поперечно		+				
Расчет витых цилиндрических пружин р сжатия		+				
Изгиб стержней						
Расчеты на прочность при изгибе				+		
Перемещения при изгибе				+		
Сложные виды деформаций стержней						
Косой изгиб					+	
Сочетание изгиба с растяжением					+	
Сочетание изгиба с кручением стержня в сечения.	кругового				+	
Расчеты на прочность при циклически м напряжениях						
Расчеты на прочность при циклически меняющихся напряжениях						+
Напряженное состояние в точке. Критерии прочности						
Напряженное состояние в точке. Критер прочности				+		
	Вес КМ:	20	20	20	20	20

4 семестр

	Веса контрольных мероприятий, %						
Doower weever	Индекс	КМ-	КМ-	КМ-	КМ-	КМ-	
Раздел дисциплины	KM:	6	7	8	9	10	
	Срок КМ:	4	6	8	14	16	

Расчет статически неопределимых систем,					
работающих на изгиб					
Расчет статически неопределимых систем,	+				
работающих на изгиб	+				
Осесимметричная задача теории упругости					
Осесимметричная задача теории упругости		+			
Расчет тонкостенных оболочек					
Расчет тонкостенных оболочек по безмоментной			+		
теории			'		
Осесимметричная деформация круговых				+	
цилиндрических оболочек					
Осесимметричный изгиб круговых и кольцевых пластин					
Осесимметричный изгиб круговых и кольцевых				+	
пластин				+	
Устойчивость сжатых стержней					
Устойчивость сжатых стержней					+
Колебания механических систем					
Колебания механических систем					+
Bec KM:	20	20	20	20	20

\$Общая часть/Для промежуточной аттестации\$

БРС курсовой работы/проекта

4 семестр

	Bec	а контро	льных м	ероприя	тий, %	
Раздел дисциплины	Индекс	KM-1	KM-2	KM-3	KM-4	KM-5
т аздел дисциплины	KM:					
	Срок КМ:	4	6	8	12	15
Расчет статически неопределимой балки методом сил						
Расчет плоской рамы методом сил		+				
Осесимметричная задача теории упруго	Осесимметричная задача теории упругости					
Расчет тонкостенной оболочки по безмитеории	оментной		+			
Осесимметричная деформация цилиндр оболочки	Осесимметричная деформация цилиндрической			+		
Расчет круговой пластины при осесимметричном нагружении					+	
Устойчивость стержней					+	
Изгибные колебания вращающихся валов						+

Колебания стержней с распределенной массой					+
Bec KM:	30	20	15	20	15

3 семестр

	Веса контрольных мероприятий, %						
Раздел дисциплины	Индекс	КМ-	КМ-	КМ-	КМ-	КМ-	
газдел дисциплины	KM:	1	2	3	4	5	
	Срок КМ:	4	6	8	12	15	
Расчет статически определимой фермы		+					
Расчет ступенчатого стержня на растяжени квазистатическом нагружении	е при	+					
Определение монтажных и температурных напряжений в стержневых системах			+				
Расчет стержневых систем по предельному	октоянию у состоянию		+				
Кручение стержней кругового поперечного	сечения			+			
Проектирование витых цилиндрических пр растяжения-сжатия	ужин			+			
Изгиб балок из пластического материала					+		
Расчет плоской статически определимой расиловом и температурном воздействии	амы при				+		
Сложные виды деформации стержневых си					+		
Внецентренное нагружение стержней					+		
Расчет вала на выносливость						+	
	Bec KM:	20	20	15	20	25	

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	_	результаты обучения по	
		дисциплине	
ОПК-9	ИД-10ПК-9 Способен	Знать:	Контрольная работа: «Расчеты на прочность при растяжении (сжатии)
	участвовать во внедрении	общие понятия механики	стержневых систем» (Контрольная работа)
	и освоении нового	деформируемого твердого	Контрольная работа «Сложные виды деформации» (Контрольная
	оборудования и элементов	тела, необходимые и	работа)
	конструкций в части	достаточные условия	
	обеспечения прочности,	статического равновесия;	
	жесткости, устойчивости,	метод сечений; понятия	
	долговечности и	внутренних силовых	
	безопасности	факторов, механических	
		напряжений и	
		деформаций; пределы	
		прочности, коэффициенты	
		запаса; виды расчетов на	
		прочность	
		Уметь:	
		определять и проводить	
		анализ параметров	
		напряженного состояния	
		элементов конструкций, в	
		том числе с применением	
		программных кодов,	
		разработанных в	
		программном комплексе	
		MATLAB;	
ОПК-11	ИД-10ПК-11 Формулирует	Знать:	Контрольная работа «Осесимметричная задача теории упругости»

	математическую	постановку	(Контрольная работа)
	постановку задач	осесимметричной задачи	Контрольная работа «Осесимметричная деформация круговых
	механики сплошной среды		цилиндрических оболочек и осесимметричный изгиб круговых
	и деформируемого	уравнения равновесия в	пластин» (Контрольная работа)
	твердого тела	напряжениях и	
	применительно к объектам	перемещениях, формулы	
	профессиональной	Ламе	
	деятельности	понятие краевого эффекта	
		при осесимметричной	
		деформации круговых	
		цилиндрических оболочек,	
		постановка граничных	
		условий, внутренние	
		силовые факторы и	
		условие прочности	
		Уметь:	
		проводить расчет на	
		прочность и жесткость	
		круговых цилиндрических	
		оболочек при	
		осесимметричном изгибе;	
		проводить расчеты	
		толстостенных цилиндров	
		под внутренним давлением	
		и вращающихся дисков	
ОПК-11	ИД-2 _{ОПК-11} Способен	Знать:	Контрольная работа "Колебания и устойчивость" (Контрольная работа)
	получить аналитические	понятие и условия	
	решения ряда задач	устойчивости сжатых	
	механики сплошной среды	стержней при продольном	
	и деформируемого	сжатии, решение задачи на	
	твердого тела	продольно-поперечный	
		изгиб стержня, формулы	
		Эйлера и Ясинского	

		Уметь: проводить расчет стержневых систем на	
		устойчивость;	
ОПК-11	ИД-Зопк-11 Определяет и проводит анализ параметров напряженно-деформированного состояния элементов конструкций, в том числе с применением собственноручно разработанных программных кодов	Знать: параметры напряженно- деформированного состояния при осесимметричном изгибе круговых и кольцевых пластин, постановка граничных условий, внутренние силовые факторы и условие прочности основы безмоментной теории тонкостенных оболочек вращения; параметры напряженно- деформированного состояния и условие прочности при осесимметричном нагружении газовым и гидростатическим давлением Уметь: проводить расчет на прочность тонкостенных оболочек по безмоментной теории; проводить расчет на	Контрольная работа «Расчет тонкостенных оболочек по безмоментной теории» (Контрольная работа) Контрольная работа «Осесимметричная деформация круговых цилиндрических оболочек и осесимметричный изгиб круговых пластин» (Контрольная работа)
		прочность при	

		осесимметричном изгибе	
		±	
		круговых и кольцевых	
THC 1	ин о	пластин;	IC D
ПК-1	$ИД-2_{\Pi K-1}$ Способен		Контрольная работа: «Расчеты на прочность при растяжении (сжатии)
	проводить проектные	<u> </u>	стержневых систем» (Контрольная работа)
	и/или проверочные	1	Контрольная работа «Расчет на прочность при кручении стержней.
	расчеты объектов	` /	Расчет пружин» (Контрольная работа)
	профессиональной	определение внутренних	Контрольная работа «Расчет на прочность при прямом изгибе»
	деятельности на	1 1	(Контрольная работа)
	статические и/или	определение параметров	Контрольная работа «Сложные виды деформации» (Контрольная
	динамические нагрузки	напряженно-	работа)
		деформированного	Контрольная работа "Расчет вала на выносливость" (Контрольная
		состояния и запись	работа)
		условия прочности;	Контрольная работа «Расчет статически неопределимых систем,
		монтажные и	работающих на изгиб» (Контрольная работа)
		температурные	Контрольная работа "Колебания и устойчивость" (Контрольная работа)
		напряжения; условия	
		совместности деформаций	
		и принцип расчета	
		статически-	
		неопределимых	
		стержневых систем	
		методы расчета	
		статически-	
		неопределимых	
		<u> </u>	
		=	
		1 -	
		1	
		-	
		неопределимых стержневых систем методы расчета статически- неопределимых стержневых систем при изгибе: метод сил и метод начальных параметров, постановка граничных условий основы расчета на прочность и жесткость при изгибе: определение	

внутренних усилий при прямом и косом поперечном изгибе и построение эпюр; геометрические характеристики сечения; условие прочности при прямом и косом изгибе; определение перемещений при изгибе с помощью интеграла Максвелла-Мора, метод начальных параметров основы расчета на прочность и жесткость при кручении: определение внутренних усилий при кручении и построение эпюр; определение параметров напряженнодеформированного состояния и запись условия прочности и жесткости; расчет и проектирование витых пружин основы расчетов на усталость; явление усталости; понятие предела выносливости; факторы, влияющие на выносливость элементов конструкций;

основы расчета на прочность при сложных видах деформации стержней: определение внутренних усилий и построение эпюр, определения напряженного состояния в точке, тензоров напряжений и деформаций, критерии прочности Треска-Сен-Венана, Губера-Мизеса, Mopa основы динамического анализа механических систем с сосредоточенными и распределенными параметрами Уметь: проводить расчет стержневых систем на прочность и жесткость при сложном нагружении; строить и анализировать графики внутренних силовых факторов и перемещений, в том числе с использованием программного комплекса MATLAB; проводить расчеты на прочность и жесткость

		статически неопределимых	
		балок;	
		проводить расчет на	
		прочность и жесткость	
		стержневых систем при	
		растяжении (сжатии);	
		проводить расчет на	
		прочность и жесткость	
		стержневых систем при	
		изгибе;	
		проводить расчеты	
		стержней на прочность и	
		жесткость при кручении;	
		проводить расчет вала на	
		выносливость;	
		проводить динамический	
		анализ систем с	
		сосредоточенными	
		параметрами, находить	
		собственные частоты и	
		формы колебаний, строить	
		амплитудно-частотные	
		характеристики	
ПК-1	ИД-5 _{ПК-1} Способен	Знать:	Контрольная работа «Сложные виды деформации» (Контрольная
	выполнить анализ	как провести статическую	работа)
	результатов расчетов,	и деформационную	Контрольная работа «Расчет статически неопределимых систем,
	сформулировать выводы и	проверку полученных	работающих на изгиб» (Контрольная работа)
	рекомендации, оформить	решений	
	научно-технический отчет	Уметь:	
		провести анализ	
		полученных результатов,	
		выполнить их проверку,	
		при необходимости	

сформулировать	
рекомендации, оформить	
результаты расчета	

II. Содержание оценочных средств. Шкала и критерии оценивания

3 семестр

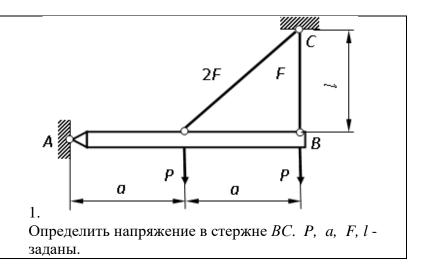
КМ-1. Контрольная работа: «Расчеты на прочность при растяжении (сжатии) стержневых систем»

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Продолжительность контроля составляет 90 минут. Работы выполняются


индивидуально по вариантам заданий

Краткое содержание задания:

Письменная работа ориентирована на проверку знаний и умений, и применение их к решению задач по расчетам стержневых систем на растяжение-сжатие

контрольные вопросы/задания.	
Знать: общие понятия механики	1. Как вычислить изменения размеров стержня
деформируемого твердого тела,	длиной L прямоугольного сечения b,h при его
необходимые и достаточные	растяжении?
условия статического	2. Как определяется продольная и поперечная
равновесия; метод сечений;	температурная деформация стержня при его
понятия внутренних силовых	равномерном нагреве? Чему она равна в стержне,
факторов, механических	жестко защемленном на одном краю, по двум краям?
напряжений и деформаций;	3. Какие внутренние силовые факторы возникают в
пределы прочности,	элементах фермы? Как записать условие прочности?
коэффициенты запаса; виды	
расчетов на прочность	
Знать: основы расчета на	1.Как найти наиболее опасный элемент фермы?
прочность и жесткость при	
растяжении (сжатии):	
определение внутренних усилий	
и построение эпюр; определение	
параметров напряженно-	
деформированного состояния и	
запись условия прочности;	
монтажные и температурные	
напряжения; условия	
совместности деформаций и	
принцип расчета статически-	
неопределимых стержневых	
систем	

Уметь: проводить расчет на прочность и жесткость стержневых систем при растяжении (сжатии);

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оиенка: 4

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

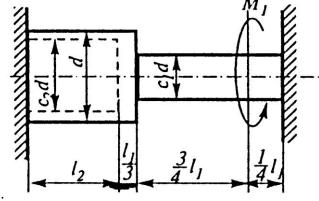
КМ-2. Контрольная работа «Расчет на прочность при кручении стержней. Расчет пружин»

Формы реализации: Письменная работа

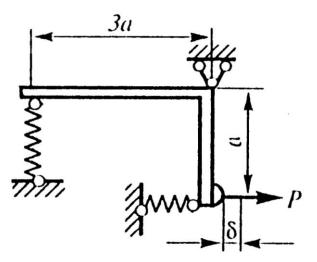
Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Продолжительность контроля составляет 90 минут. Работы выполняются индивидуально по вариантам заданий


Краткое содержание задания:

Письменная работа ориентирована на проверку знаний и умений, и применение их к решению задач по кручению стержней и расчету цилиндрических пружин


Знать:	основ	ы расчета	на	1.Записать закон Гука при сдвиге, пояснить входящие
прочност	ь и	жесткость	при	в него величины на примере кручения стержня
кручении	•	определ	іение	кругового сечения.
внутренн	ИХ	усилий	при	

кручении и построение эпюр; определение параметров напряженно-деформированного состояния и запись условия прочности и жесткости; расчет и проектирование витых пружин

Уметь: проводить расчеты стержней на прочность и жесткость при кручении;

Раскрыть статическую неопределимость, построить эпюру крутящих моментов. Из расчета на прочность определить допускаемое значение диаметра сечения d.

2. Из условия прочности определить допускаемое значение силы [Р].

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-3. Контрольная работа «Расчет на прочность при прямом изгибе»

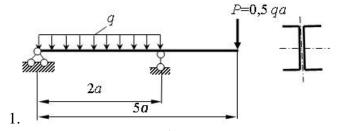
Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

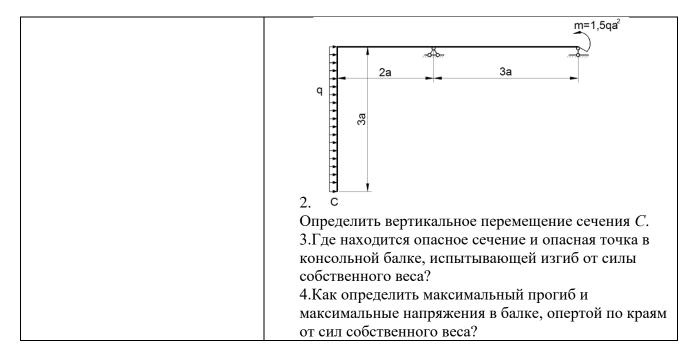
Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Продолжительность контроля составляет 90 минут. Работы выполняются индивидуально по вариантам заданий

Краткое содержание задания:


Письменная работа ориентирована на проверку знаний и умений, и применение их к решению задач расчета на прочность и жесткость при изгибе

Контрольные вопросы/задания:


Знать: основы расчета прочность и жесткость изгибе: определение внутренних усилий при прямом и косом поперечном изгибе и построение геометрические эпюр; характеристики сечения; условие прочности при прямом и косом изгибе; определение перемещений при изгибе помощью интеграла Максвелла-Mopa, метод начальных параметров

- 1. Дать определения видов изгиба: прямого, косого, чистого, поперечного. Привести примеры нагружения.
- 2.Привести дифференциальные зависимости между внутренними силовыми факторами при изгибе балки.

Уметь: проводить расчет на прочность и жесткость стержневых систем при изгибе;

Построить эпюру изгибающих моментов. Определить номер прокатного профиля швеллера.

Оценка: 5

Нижний порог выполнения задания в процентах: 70 Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-4. Контрольная работа «Сложные виды деформации»

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Продолжительность контроля составляет 90 минут. Работы выполняются индивидуально по вариантам заданий

Краткое содержание задания:

Письменная работа ориентирована на проверку знаний и умений, и применение их к решению задач расчета на прочность при сложных видах деформации

Знать:	основы	расчета	на	1. Как проверить прочность вала, нагруженного
--------	--------	---------	----	---

прочность при сложных видах деформации стержней: определение внутренних усилий и построение эпюр, определения напряженного состояния в точке, тензоров напряжений и деформаций, критерии прочности Треска-Сен-Венана, Губера-Мизеса, Мора	изгибающими и крутящими моментами? Как определить положение опасной точки?
Уметь: определять и проводить анализ параметров напряженного состояния элементов конструкций, в том числе с применением программных кодов, разработанных в программном комплексе МАТLAB;	1.Как определить опасные точки при косом изгибе балки прямоугольного сечения?
Уметь: проводить расчет стержневых систем на прочность и жесткость при сложном нагружении;	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Построить эпюры изгибающих и крутящих моментов. По критерию прочности Сен-Венана определить параметр внешней нагрузки.
Уметь: провести анализ полученных результатов, выполнить их проверку, при необходимости сформулировать рекомендации, оформить результаты расчета	1.Вывести формулу для эквивалентного момента по критерию Губера-Мизеса для стержня кругового поперечного сечения. 2.Вывести формулу для эквивалентного момента по критерию Треска-Сен-Венана для стержня кругового поперечного сечения.

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-5. Контрольная работа "Расчет вала на выносливость"

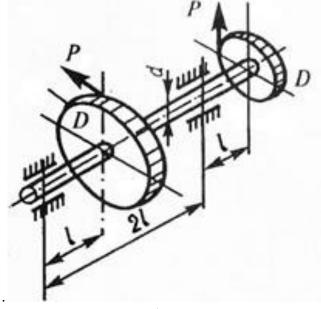
Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Продолжительность контроля составляет 90 минут. Работы выполняются индивидуально по вариантам заданий

Краткое содержание задания:


Письменная работа ориентирована на проверку знаний и умений, и применение их к решению задач расчета вала на выносливость

Контрольные вопросы/задания:

Знать	: основы	расчетов	на	1.Дать определение
устало	ость; явлені	ие устало	сти;	знакопеременному
понят	ие предела	выносливо	сти;	опасен?
факто	ры, вли	яющие	на	
вынос	сливость	элемен	ІТОВ	
конст	рукций;			

1. Дать определение знакопостоянному, знакопеременному циклам, какой из них наиболее опасен?

Уметь: проводить расчет вала на выносливость;

Построить эпюры изгибающих и крутящих моментов. По критерию прочности Сен-Венана определить параметр внешней нагрузки.

2.Как строится диаграмма предельных напряжений? Привести способы ее схематизации для определения

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

4 семестр

КМ-6. Контрольная работа «Расчет статически неопределимых систем, работающих на изгиб»

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Продолжительность контроля составляет 90 минут. Работы выполняются индивидуально по вариантам заданий

Краткое содержание задания:

Письменная работа ориентирована на проверку знаний и умений, и применение их к решению задач расчета статически неопределимых систем, работающих на изгиб

Знать: методы расчета	1.Записать канонические уравнения метода сил для
статически-неопределимых	дважды статически-неопределимой балки, пояснить
стержневых систем при изгибе:	их смысл и показать на схеме коэффициенты
метод сил и метод начальных	уравнений.
параметров, постановка	
граничных условий	
Знать: как провести статическую	1.Объяснить смысл канонических уравнений метода
и деформационную проверку	сил.
полученных решений	
Уметь: проводить расчеты на	/9
прочность и жесткость	26
статически неопределимых	
балок;	2a
	6
	1.

	Определить размеры поперечного сечения, если $a=1$ м, $[\sigma]=120$ МПа, $q=20$ кН/м. 2.Как провести деформационную проверку решения, полученного по методу сил? 3.Описать пошаговую процедуру метода сил.
Уметь: строить и анализировать графики внутренних силовых факторов и перемещений, в том числе с использованием	1. Как определить угол поворота на правом шарнирно-опертом краю балки с жестко защемленном левым краем и нагруженной сосредоточенной силой посередине?
программного комплекса MATLAB;	

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

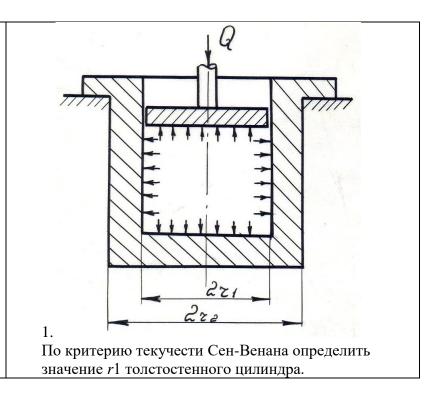
Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-7. Контрольная работа «Осесимметричная задача теории упругости»

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20


Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Продолжительность контроля составляет 90 минут. Работы выполняются индивидуально по вариантам заданий

Краткое содержание задания:

Письменная работа ориентирована на проверку знаний и умений, и применение их к решению осесимметричных задач теории упругости

Знать: постан	овку	1.Сформулировать граничные условия и привести
осесимметричной задачи теории		последовательность решения задачи для
упругости, уравно	ения	вращающегося кольцевого диска, жестко
равновесия в напряжения:	х и	скрепленного с валом.
перемещениях, формулы Лам	ie	

Уметь: проводить расчеты толстостенных цилиндров под внутренним давлением и вращающихся дисков

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если

большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-8. Контрольная работа «Расчет тонкостенных оболочек по безмоментной теории»

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Продолжительность контроля составляет 90 минут. Работы выполняются индивидуально по вариантам заданий

Краткое содержание задания:

Письменная работа ориентирована на проверку знаний и умений, и применение их к решению задач расчета тонкостенных оболочек

Контрольные вопросы/задания:

Знать: основы безмоментной теории тонкостенных оболочек вращения; параметры напряженно-деформированного состояния и условие прочности при осесимметричном нагружении газовым и гидростатическим давлением

Уметь: проводить расчет на прочность тонкостенных оболочек по безмоментной теории;

1. Какие линии на поверхности оболочек называют меридианами и параллелями? Какие напряжения возникают в тонкостенных оболочках вращения при действии равномерного внутреннего давления и как они распределены по толщине оболочки?

2. Что такое краевой эффект при осесимметричной деформации изгиба цилиндрической оболочки, длина волны краевого эффекта? Записать решение типа

Описание шкалы оценивания:

Оиенка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-9. Контрольная работа «Осесимметричная деформация круговых цилиндрических оболочек и осесимметричный изгиб круговых пластин»

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Продолжительность контроля составляет 90 минут. Работы выполняются индивидуально по вариантам заданий

Краткое содержание задания:

Письменная работа ориентирована на проверку знаний и умений, и применение их к решению задач по осесимметричному изгибу пластин

Контрольные вопросы/задания:	
Знать: понятие краевого эффекта при осесимметричной деформации круговых цилиндрических оболочек, постановка граничных условий, внутренние силовые факторы и условие прочности Знать: параметры напряженнодеформированного состояния при осесимметричном изгибе круговых и кольцевых пластин, постановка граничных условий, внутренние силовые факторы и условие прочности Уметь: проводить расчет на прочность и жесткость круговых цилиндрических оболочек при осесимметричном изгибе;	1.Дайте определение понятию краевого эффекта в круговой цилиндрической оболочке. При каких условиях возникает краевой эффект? 2.Какие внутренние усилия возникают в зоне краевого эффекта в круговой цилиндрической оболочке? Запишите соотношения дифференциальной связи между внутренними усилиями. 1.Осесимметричный изгиб круговых пластин. Основные предпосылки и гипотезы. Внутренние силовые факторы. Уравнения равновесия в усилиях. 2.Какие внутренние усилия возникают при осесимметричном изгибе круговой пластины? Перечислите типовые граничные условия. 1. Определить [р] по критерию Сен-Венана с учетом краевого эффекта. В качестве опасного рассматривать сечение в заделке. Принять: R=10 см, h=0.5 см, [σ]=250 МПа, v=0.3, E=200 ГПа. 1. Найти угол поворота φ ₀ торцевого сечения оболочки, используя теорию краевого эффекта. Принять: R=50 мм, h=100 мм, E=200 ГПа, v=0.3, q=200 н/м.
Уметь: проводить расчет на прочность при осесимметричном изгибе круговых и кольцевых пластин;	$\frac{p}{2r_1}$ 1. Определить максимальный прогиб кольцевой пластины.

Оценка: 5

Нижний порог выполнения задания в процентах: 70 Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-10. Контрольная работа "Колебания и устойчивость"

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Проводится в период аудиторных занятий. Продолжительность контроля составляет 90 минут. Работы выполняются индивидуально по вариантам заданий

Краткое содержание задания:

Письменная работа ориентирована на проверку знаний и умений, и применение их к решению задач колебаний и устойчивости стержней

Знать: понятие и условия	1. Что такой продольный изгиб стержня, гибкость
устойчивости сжатых стержней	стержня? В стержнях какой гибкости может
при продольном сжатии,	осуществляться продольный изгиб?
решение задачи на продольно-	
поперечный изгиб стержня,	
формулы Эйлера и Ясинского	
Знать: основы динамического	1. Как изменится частота собственных колебаний
анализа механических систем с	линейного осциллятора при увеличении его
сосредоточенными и	жесткости в два раза, при увеличении его массы в два

распределенными параметрами	раза?
Уметь: проводить расчет стержневых систем на устойчивость;	1. Из условия равноустойчивости поперечного сечения определить размер с. Из расчетов на устойчивость по коэффициенту продольного изгиба найти допускаемую силу.
Уметь: проводить динамический анализ систем с сосредоточенными параметрами, находить собственные частоты и формы колебаний, строить амплитудно-частотные характеристики	1. Вычислить частоты собственных плоских изгибных колебаний

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

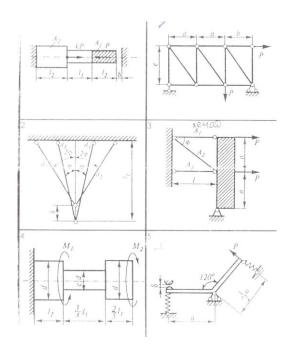
Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

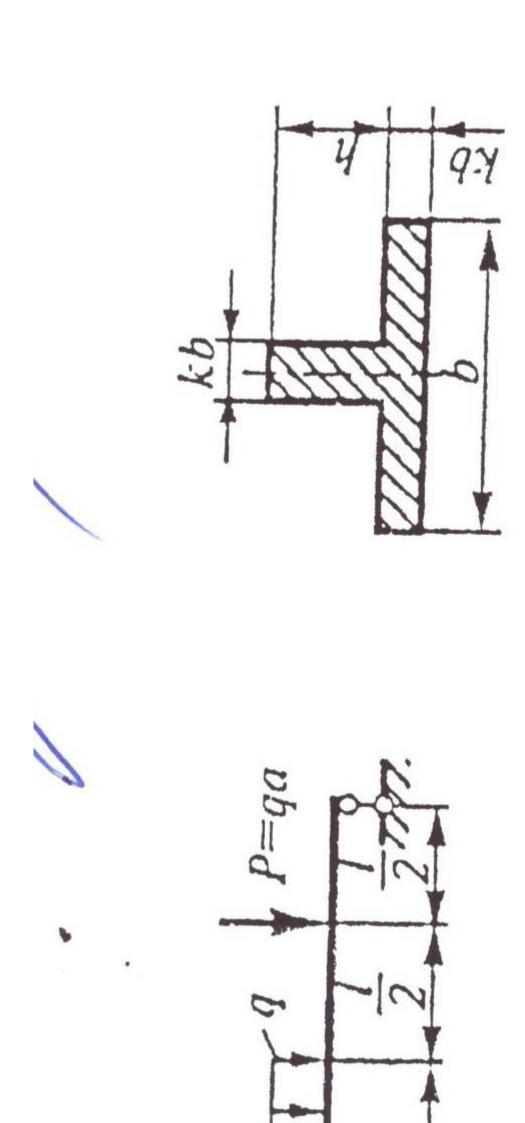
Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

Для курсового проекта/работы

3 семестр


І. Описание КП/КР


Курсовой проект "РАСЧЕТЫ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ ЭЛЕМЕНТОВ МАШИНОСТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ" представляет собой большую задачу по

учебному кейсу, охватывающую несколько расчетов с выбором варианта проектного решения: расчет стержневых систем на растяжение-сжатие, кручение, изгиб, сложные виды деформаций, на выносливость при циклическом нагружении. Задание состоит из двух частей, каждая из которых выполняется и защищается отдельно.

II. Примеры задания и темы работы

Пример задания

Тематика КП/КР:

РАСЧЕТЫ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ ЭЛЕМЕНТОВ МАШИНОСТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ (расчеты стержневых систем на растяжение-сжатие, кручение, изгиб, сложные виды деформаций, на выносливость при циклическом нагружении)

КМ-1. Оценка выполнения задачи КП № 1, 2 Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка 5 («отлично»), если задание получено с опозданием не более чем на 2 недели

Оиенка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка 4 («хорошо»), если задание получено с опозданием не более чем на 3 недели

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка 3 («удовлетворительно»), если задание получено с опозданием более чем на 3 недели

Оценка: 2

Описание характеристики выполнения знания: Оценка 2 («неудовлетворительно»), если задание не выполнено

КМ-2. Оценка выполнения задач КП № 3, 4 Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка 5 («отлично»), если задание получено с опозданием не более чем на 2 недели

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка 4 («хорошо»), если задание получено с опозданием не более чем на 3 недели

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка 3 («удовлетворительно»), если задание получено с опозданием более чем на 3 недели

Оценка: 2

Описание характеристики выполнения знания: Оценка 2 («неудовлетворительно»), если задание не выполнено

КМ-3. Оценка выполнения задачи КП № 5, 6 Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка 5 («отлично»), если задание получено с опозданием не более чем на 2 недели

Оиенка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка 4 («хорошо»), если задание получено с опозданием не более чем на 3 нелели

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка 3 («удовлетворительно»), если задание получено с опозданием более чем на 3 недели

Оценка: 2

Описание характеристики выполнения знания: Оценка 2 («неудовлетворительно»), если задание не выполнено

КМ-4. Оценка выполнения задач КП № 7, 8 Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка 5 («отлично»), если задание получено с опозданием не более чем на 2 недели

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка 4 («хорошо»), если задание получено с опозданием не более чем на 3 недели

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка 3 («удовлетворительно»), если задание получено с опозданием более чем на 3 недели

Оценка: 2

Описание характеристики выполнения знания: Оценка 2 («неудовлетворительно»), если задание не выполнено

КМ-5. Оценка выполнения задач КП № 9, 10, 11 Описание шкалы оценивания

Оценка: 5

Описание характеристики выполнения знания:

Оценка: 4

Описание характеристики выполнения знания:

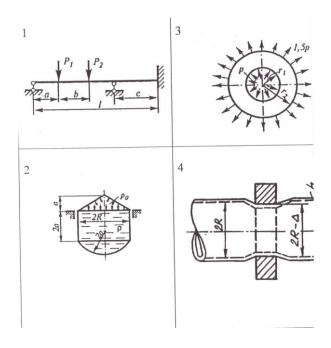
Оценка: 3

Описание характеристики выполнения знания:

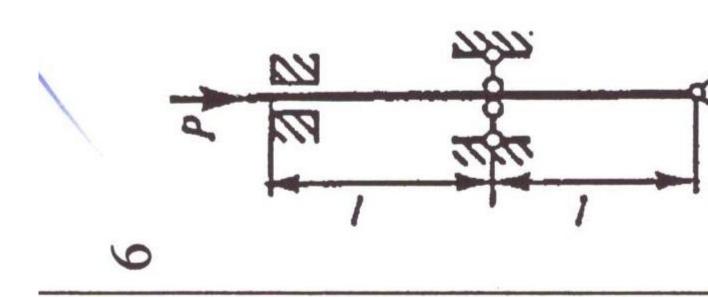
Оценка: 2

Описание характеристики выполнения знания:

4 семестр


І. Описание КП/КР

Курсовой проект "ПРОЧНОСТЬ, УСТОЙЧИВОСТЬ, КОЛЕБАНИЯ ЭЛЕМЕНТОВ МАШИНОСТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ" представляет собой большую задачу по учебному кейсу, охватывающую несколько расчетов с выбором варианта проектного


решения: по расчетам на прочность, жесткость и устойчивость при силовом и температурном нагружении статически неопределимых балок и рам; толстостенных трубопроводов; тонкостенных оболочек вращения, рассчитываемых по безмоментной теории и при осесимметричном изгибе; круговых и кольцевых пластин. Динамические задачи рассматриваются на примерах определения критических скоростей вращающихся валов и собственных частот изгибных колебаний стержней с распределенной массой.

II. Примеры задания и темы работы

Пример задания

Тематика КП/КР:

ПРОЧНОСТЬ, УСТОЙЧИВОСТЬ, КОЛЕБАНИЯ ЭЛЕМЕНТОВ

МАШИНОСТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ" (расчеты на прочность, жесткость и устойчивость при силовом и температурном нагружении статически неопределимых балок и рам; толстостенных трубопроводов; тонкостенных оболочек вращения, рассчитываемых по безмоментной теории и при осесимметричном изгибе; круговых и кольцевых пластин)

КМ-1. Оценка выполнения задачи КП № 1, 2 Описание шкалы оценивания

Оиенка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка 5 («отлично»), если задание получено с опозданием не более чем на 2 недели

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка 4 («хорошо»), если задание получено с опозданием не более чем на 3 недели

Оиенка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка 3 («удовлетворительно»), если задание получено с опозданием более чем на 3 недели

Оценка: 2

Описание характеристики выполнения знания: Оценка 2 («неудовлетворительно»), если задание не выполнено

КМ-2. Оценка выполнения задач КП № 3, 4 Описание шкалы оценивания

Оценка: 5

Описание характеристики выполнения знания:

Оценка: 4

Описание характеристики выполнения знания:

Оценка: 3

Описание характеристики выполнения знания:

Оценка: 2

Описание характеристики выполнения знания:

КМ-3. Оценка выполнения задачи КП № 5 Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка 5 («отлично»), если задание получено с опозданием не более чем на 2 недели

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка 4 («хорошо»), если задание получено с опозданием не более чем на 3 недели

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка 3 («удовлетворительно»), если задание получено с опозданием более чем на 3 недели

Оценка: 2

Описание характеристики выполнения знания: Оценка 2 («неудовлетворительно»), если задание не выполнено

КМ-4. Оценка выполнения задач КП№ 6, 7 Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка 5 («отлично»), если задание получено с опозданием не более чем на 2 недели

Оиенка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка 4 («хорошо»), если задание получено с опозданием не более чем на 3 недели

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка 3 («удовлетворительно»), если задание получено с опозданием более чем на 3 недели

Оценка: 2

Описание характеристики выполнения знания: Оценка 2 («неудовлетворительно»), если задание не выполнено

КМ-5. Оценка выполнения задач КП № 8, 9 Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка 5 («отлично»), если задание получено с опозданием не более чем на 2 недели

Оценка: 4

Нижний порог выполнения задания в процентах: 60

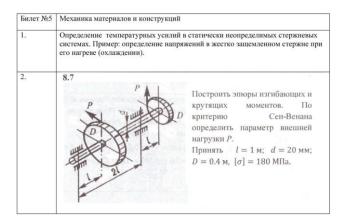
Описание характеристики выполнения знания: Оценка 4 («хорошо»), если задание получено с опозданием не более чем на 3 недели

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка 3 («удовлетворительно»), если задание получено с опозданием более чем на 3 недели

Оценка: 2


Описание характеристики выполнения знания: Оценка 2 («неудовлетворительно»), если задание не выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

3 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

Процедура проведения

Экзамен проводится в аудитории. Студент получает экзаменационный билет с заданием. На подготовку отводится 90 минут. Затем преподаватель проверяет подготовленный ответ и проводит устный опрос студента по изученному материалу.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД- $1_{O\Pi K-9}$ Способен участвовать во внедрении и освоении нового оборудования и элементов конструкций в части обеспечения прочности, жесткости, устойчивости, долговечности и безопасности

Вопросы, задания

- 1. Привести диаграммы растяжения, сжатия для пластичных и хрупких материалов. Дать определения предела пропорциональности предела текучести, предела прочности (временного сопротивления материалов).
- 2.Перечислите виды расчетов на прочность.
- 3. Дайте определение напряженно-деформированному состоянию конструкции.

Материалы для проверки остаточных знаний

- 1. Чем отличается чистый изгиб от поперечного? Ответы:
- 1. При чистом изгибе поперечные силы равны нулю, а при поперечном не равны.
- 2. При поперечном изгибе нагрузка на балку приложена в двух взаимно ортогональных плоскостях.
- 3. При чистом изгибе на балку действуют только внешние изгибающие моменты, а при поперечном еще и приводящие к изгибу силы.

Верный ответ: 1

- 2.Коэффициент Пуассона это отношение
 - Ответы:
- 1) абсолютной продольной деформации к поперечной
- 2) относительной поперечной деформации к относительной продольной деформации

- 3) продольных напряжений к поперечным напряжениям Верный ответ: 2
- 3.Указать условие прочности стержня кругового поперечного сечения при его нагружении крутящими и изгибающими моментами
 Ответы:

1. 1)

$$\sigma = \frac{\sqrt{{M_x}^2 + {M_y}^2 + {M_z}^2}}{\pi d^3 / 32} \le [\sigma]$$

2)

$$\sigma = \frac{{M_x}^2 + {M_y}^2 + {M_z}^2}{\pi d^3 / 32} \le [\sigma]$$

3)

$$\sigma = \frac{M_x + M_y + M_z}{\pi d^3 / 32} \le [\sigma]$$

Верный ответ: 1

2. Компетенция/Индикатор: ИД-2_{ПК-1} Способен проводить проектные и/или проверочные расчеты объектов профессиональной деятельности на статические и/или динамические нагрузки

Вопросы, задания

- 1.Записать условия прочности для стержня кольцевого сечения: при растяжении; при кручении; при внецентренном сжатии; при прямом изгибе.
- 2.Записать условия жесткости для прямого стержня, жестко защемленного с одного края при его растяжении, кручении, изгибе
- 3. Как изменится продольная деформация сжатого стержня кругового сечения, если в нем просверлить центральное отверстие по всей длине?
- 4. Как записать условие жесткости вала, нагруженного сосредоточенными крутящими моментами?

Материалы для проверки остаточных знаний

- 1. Чем отличается прямой изгиб от косого? Ответы:
- 1. При прямом изгибе поперечные силы равны нулю, а при косом не равны.
- 2. При косом изгибе нагрузка на балку приложена в двух взаимно ортогональных плоскостях, а при прямом изгибе нагрузка прикладывается так, что силовая плоскость проходит через одну из главных центральных осей сечения.
- 3. При прямом изгибе в сечениях балки возникают только изгибающие моменты, а при косом еще и поперечные силы.

Верный ответ: 2

2. При нагреве жестко-защемленного с двух сторон стержня в нем возникают

Ответы:

- 1. 1) сжимающие продольные усилия
 - 2) растягивающие продольные усилия
 - 3) усилия не возникают
 - 4) поперечные силы

Верный ответ: 1

3. Касательные напряжения при кручении стержня кругового сечения вычисляются по формуле

Ответы:

1)

$$\tau = \frac{N_z}{F}$$

2)

$$\tau = \frac{M_z}{J_p}r$$

$$\tau = \frac{M_z l}{G J_p}$$

4.Угол поворота поперечного сечения стержня при его кручении определяется Ответы:

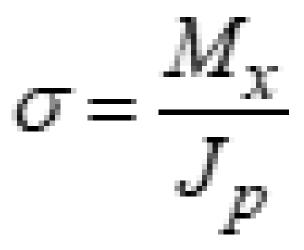
1)

$$\varphi = \frac{M_z l}{G J_p}$$

2)

$$\varphi = \frac{M_z}{J_p}$$

$$\varphi = \frac{M_z}{W_p}$$


5. Напряжения при прямом поперечном изгибе балок определяются по формуле Ответы:

1)

$$\sigma = -\frac{M_X}{J_X}y$$

2)

$$\sigma = \frac{M_{\chi}}{F}$$

6.Укажите рациональную форму поперечного сечения балки из пластичного материала при работе на изгиб

Ответы:

- 1. Круговое
- 2. Кольцевое
- 3. Квадратное коробчатое

Верный ответ: 3

7.Усталостное разрушение возникает при Ответы:

- 1) при больших статических нагрузках
- 2) при циклическом нагружении
- 3) при появлении текучести в материале

Верный ответ: 2

8.Перемещения при изгибе балки можно определить по формуле Ответы:

1. 1)

$$\Delta_K = \frac{M_X}{J_X} y$$

$$\Delta_K = \int \frac{M_p \overline{M_{1K}}}{EJ_r} dz$$

3)

$$\Delta_K = \frac{M_{\chi}l}{EJ_{\chi}}$$

Верный ответ: 2

9. Максимальные напряжения при косом изгибе балки двутаврового сечения определяем по формуле

Ответы:

1)

$$\sigma = \frac{M_x}{W_x} + \frac{M_y}{W_y}$$

2)

$$\sigma = \frac{M_x}{F} + \frac{M_y}{F}$$

3)

$$\sigma = \frac{M_x^2 + M_y^2}{W_x + W_y}$$

Верный ответ: 1

- 10. Наличие концентраторов напряжений Ответы:
- 1. 1) повышает предел выносливости детали
 - 2) снижает предел выносливости детали
 - 3) не влияет на величину предела выносливости детали

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. Не на все дополнительные вопросы получены верные ответы.

Оценка: 2

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

ІІІ. Правила выставления итоговой оценки по курсу

Итоговая оценка за дисциплину выставляется по результатам текущего контроля и промежуточной аттестации в балльно-рейтинговой системе. Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.

4 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

Процедура проведения

Экзамен проводится в аудитории. Студент получает экзаменационный билет с заданием. На подготовку отводится 90 минут. Затем преподаватель проверяет подготовленный ответ и проводит устный опрос студента по изученному материалу.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-1_{ОПК-11} Формулирует математическую постановку задач механики сплошной среды и деформируемого твердого тела применительно к объектам профессиональной деятельности

Вопросы, задания

1.Определение продольных и окружных усилий при осесимметричной изгибной деформации круговых цилиндрических оболочек. Определение напряжений от безмоментных усилий и изгибающих моментов

Материалы для проверки остаточных знаний

1.В закрытом толстостенном цилиндре, нагруженном внутренним давлением, продольные напряжения равны

Ответы:

1. 1)

$$\sigma_z = \frac{pr_1^2}{r_2^2 - r_1^2}$$

2)

$$\sigma_z = \frac{pr_2^2}{r_2^2 - r_1^2}$$

3)

$$\sigma_z = 0$$

Верный ответ: 1

2.Меридиональные напряжения в закрытой тонкостенной цилиндрической оболочке, нагруженной постоянным давлением, равны

Ответы:

1. 1)

$$\sigma_m = \frac{pR}{2h}$$

2)

$$\sigma_m = \frac{pR}{h}$$

3)

$$\sigma_m = \frac{pR}{4h}$$

Верный ответ: 1

3.Окружные напряжения в закрытой тонкостенной цилиндрической оболочке, нагруженной постоянным давлением, равны

Ответы:

1. 1)

$$\sigma_{\theta} = \frac{pR}{2h}$$

2)

$$\sigma_{\theta} = \frac{pR}{h}$$

3)

$$\sigma_{\theta} = \frac{pR}{4h}$$

Верный ответ: 2

4.Длина полуволны краевого эффекта цилиндрической оболочки при осесимметричном нагружении равна

Ответы:

1. 1)

$$\lambda = Rh$$

$$\lambda = 2, 5\sqrt{Rh}$$

$$\lambda = 2,5Rh$$

5. Напряжения от изгибающего момента при осесимметричной деформации цилиндрической оболочки равны

Ответы:

1. 1)

$$\sigma_{Mx} = \frac{6M_x}{h^2}$$

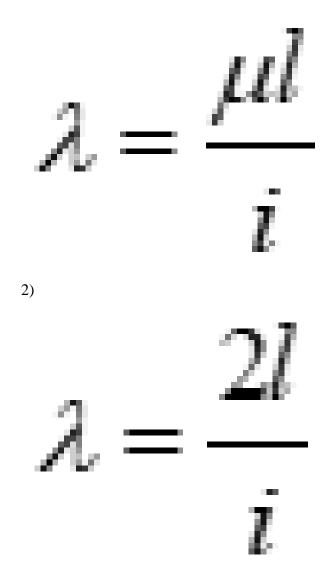
2)

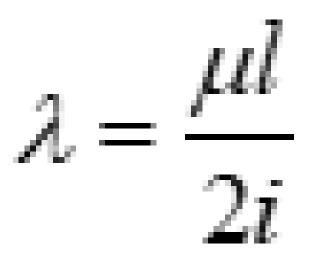
$$\sigma_{Mx} = \frac{M_x}{6h^2}$$

3)

$$\sigma_{Mx} = \frac{M_x}{h^2}$$

Верный ответ: 1


2. Компетенция/Индикатор: ИД-2_{ОПК-11} Способен получить аналитические решения ряда задач механики сплошной среды и деформируемого твердого тела


Вопросы, задания

- 1. Расчеты на устойчивость по коэффициенту продольного изгиба. Определение допускаемых внешних нагрузок и размеров сечений. Понятие о равноустойчивости и рациональных формах сечений сжатых стержней
- 2. Границы применимости формулы Эйлера. Понятие гибкости стержня. Определение предельной гибкости стержня
- 3.Обобщение формулы Эйлера для различных случаев закрепления стержня
- 4.Вывод формулы Эйлера для критической силы шарнирно опертого стержня

Материалы для проверки остаточных знаний

- 1. Гибкость стержня рассчитывается по формуле: Ответы:
- 1. 1)

2. Критическая сила для длинного тонкого стержня с гибкостью, превышающей предельную, вычисляется по формуле

Ответы:

1. 1)

$$P_{\kappa p} = \frac{\pi^2 E J_{\min}}{(\mu l)^2}$$

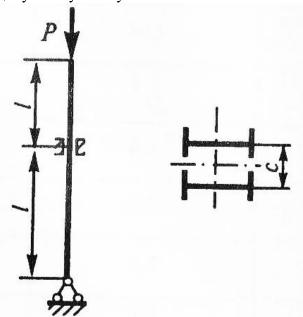
$$P_{\kappa p} = (a - b\lambda_{\max})F$$

3)

$$P_{\kappa p} = \sigma_T F$$

Верный ответ: 1

3. Если ось ОУ направлена по стенке двутавра, а ось ОХ параллельна полкам, то потеря устойчивости жестко защемленного с двух сторон стержня двутаврового сечения будет происходить


Ответы:

- 1. 1) Относительно оси Oy
 - 2) Относительно оси Ох
 - 3) В произвольной плоскости Верный ответ: 1

3. Компетенция/Индикатор: ИД-3_{ОПК-11} Определяет и проводит анализ параметров напряженно-деформированного состояния элементов конструкций, в том числе с применением собственноручно разработанных программных кодов

Вопросы, задания

- 1.1. Расчет статически неопределимых систем, работающих на изгиб по методу сил. Основная система и требования, предъявляемые к ней. Канонические уравнения метода сил. Определение коэффициентов.
- 2. Какие линии на поверхности оболочек вращения называют меридианами и параллелями? Какие напряжения возникают в тонкостенных оболочках вращения при действии равномерного внутреннего давления и как они распределены по толщине оболочки?
- 3. Задача. Из условия равноустойчивости поперечного сечения определить размер c. Из расчётов на устойчивость по коэффициенту продольного изгиба определить допускаемую силу

- 2. Решение для прогибов при осесимметричном изгибе круговых пластин. Постановка граничных условий. Построение решения для сплошной пластины, нагруженной равномерным давлением
- 3.Вывод уравнений равновесия в перемещениях при осесимметричном изгибе круговых пластин
- 4. Осесимметричный изгиб круговых пластин. Основные предпосылки и гипотезы. Внутренние силовые факторы. Уравнения равновесия в усилиях
- 5. Уравнение Лапласа для произвольных тонкостенных оболочек вращения. Уравнение равновесия для отсеченной части оболочки
- 6. Расчет тонкостенных оболочек по безмоментной теории. Определение окружных и меридиональных напряжений в замкнутых цилиндрических и сферических оболочках. Расчет деформаций
- 7. Напряжения и деформации во вращающемся тонкостенном кольце. Определение напряжений и деформаций в сплошном вращающемся диске
- 8.Соотношения для деформаций в окружном и радиальном направлениях для осесимметричной задачи теории упругости. Уравнение равновесия в перемещениях для элемента цилиндра, нагруженного давлением

9.Осесимметричная задача теории упругости. Тензор напряжений в цилиндрической системе координат. Уравнение равновесия в напряжениях для элемента цилиндра, нагруженного давлением

Материалы для проверки остаточных знаний

- 1. Уравнение осесимметричного изгиба кольцевой пластины имеет порядок Ответы:
- 1. 1) 2
 - 2) 4
 - 3)6

Верный ответ: 2

2. Граничные условия для определения постоянных интегрирования сплошной круговой пластины, нагруженной равномерным давлением и жестко защемленной по внешнему краю, имеют вид

Ответы:

1. 1)

$$w(R) = 0; \frac{dw}{dr}(R) = 0$$

2)

$$w(R) = 0; \frac{d^2w}{dr^2}(R) = 0$$

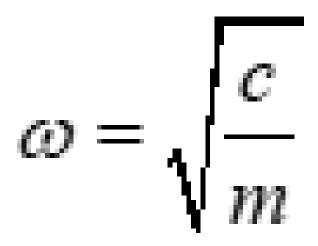
3)

$$\frac{dw}{dr}(R) = 0; \frac{d^3w}{dr^3}(R) = 0$$

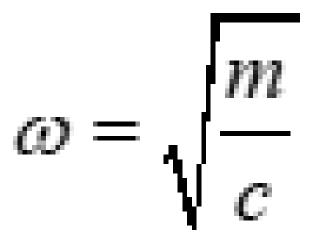
Верный ответ: 1

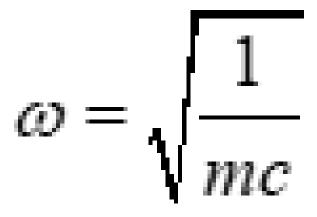
4. Компетенция/Индикатор: ИД- $2_{\Pi K-1}$ Способен проводить проектные и/или проверочные расчеты объектов профессиональной деятельности на статические и/или динамические нагрузки

Вопросы, задания


- 1.Вынужденные колебания механических систем с конечным числом степеней свободы. Амплитуды вынужденных колебаний. Динамический коэффициент
- 2.Определение частот собственных колебаний простейших механических систем с одной и двумя степенями свободы
- 3. Уравнения собственных колебаний систем с конечным числом степеней свободы и его решение. Частотное уравнение
- 4.Свободные и вынужденные колебания механических систем. Частота и период собственных колебаний. Вывод уравнения собственных колебаний линейного осциллятора и его решение

- 5.Изгибные колебания вращающихся валов с несбалансированными дисками. Понятие о критических скоростях вращающихся валов
- 6.Свободные колебания стержней с распределенной массой. Уравнение изгибных колебаний. Граничные условия. Частоты собственных колебаний шарнирно-опертого стержня


Материалы для проверки остаточных знаний


1. Частота колебаний массы m, закрепленной на упругой опоре жесткостью c равна Ответы:

1. 1)

2)

2.Резонанс механической системы сопровождается

- 1) существенным ростом амплитуды колебаний
- 2) равенством нулю частот колебаний системы
- 3) равенством нулю амплитуды колебаний Верный ответ: 1
- **5. Компетенция/Индикатор:** ИД- $5_{\Pi K-1}$ Способен выполнить анализ результатов расчетов, сформулировать выводы и рекомендации, оформить научно-технический отчет

Вопросы, задания

- 1. Вывод уравнений равновесия в перемещениях при осесимметричной изгибной деформации круговых цилиндрических оболочек. Постановка граничных условий
- 2.Осесимметричная изгибная деформация круговых цилиндрических оболочек. Основные предпосылки и гипотезы. Внутренние силовые факторы. Уравнения равновесия в усилиях
- 3.Блок-схема определения напряжений и перемещений от центробежных сил в кольцевом вращающемся диске
- 4. Расчет статически неопределимых систем, работающих на изгиб по методу сил. Основная система и требования, предъявляемые к ней. Канонические уравнения метода сил. Определение коэффициентов канонических уравнений
- 5. Частное решение дифференциального уравнения осесимметричной изгибной деформации цилиндрической оболочки, его физический смысл. Решение типа краевого эффекта

Материалы для проверки остаточных знаний

1. Каноническое уравнение метода сил один раз статически неопределимой системы имеет вид

Ответы:

1. 1)

$$\delta_{11}X_1 + \Delta_{1p} = 0$$

$$\frac{X_1 l}{EF} + \Delta_{1p} = 0$$

3)

$$\frac{X_1M_1}{EJ_x} + \Delta_{1p} = 0$$

Верный ответ: 1

- 2. Коэффициенты канонического уравнения метода сил вычисляются Ответы:
- 1. 1) по формуле Максвелла-Мора
 - 2) по первой формуле Ламе
 - 3) из уравнений статического равновесия Верный ответ: 1
 - 3. Степень статической неопределимости равна Ответы:
- 1. 1) числу опорных реакций
 - 2) числу "лишних" связей в системе
 - 3) числу уравнений статического равновесия Верный ответ: 2
 - 4. Где находятся опасные точки в сечении толстостенного цилиндра, нагруженного внутренним давлением?

Ответы:

- 1. 1) на внутренней поверхности цилиндра
 - 2) на внешней поверхности цилиндра
 - 3) в средней точке толщины цилиндра Верный ответ: 1

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. Не на все дополнительные вопросы даны верные ответы.

Оценка: 2

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

III. Правила выставления итоговой оценки по курсу

Итоговая оценка выставляется по результатам текущего контроля и промежуточной аттестации в балльно-рейтинговой системе. Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.

Для курсового проекта/работы:

3 семестр

Форма проведения: Защита КП/КР

І. Процедура защиты КП/КР

Защита проходит в устной форме в виде беседы "вопрос-ответ" по выполненному курсовому проекту.

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные нелостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. Не на все дополнительные вопросы получены верные ответы.

Оценка: 2

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

ІІІ. Правила выставления итоговой оценки по курсу

Итоговая оценка по дисциплине выставляется с учетом текущей успеваемости и промежуточной аттестации в балльно-рейтинговой системе.

4 семестр

Форма проведения: Защита КП/КР

І. Процедура защиты КП/КР

Защита проходит в устной форме в виде беседы "вопрос-ответ" по выполненному курсовому проекту.

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. Не на все дополнительные вопросы даны верные ответы.

Оценка: 2

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

III. Правила выставления итоговой оценки по курсу

Итоговая оценка по дисциплине выставляется с учетом текущей успеваемости и промежуточной аттестации в балльно-рейтинговой системе.