Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 15.03.03 Прикладная механика

Наименование образовательной программы: Динамика и прочность машин, приборов и аппаратуры

Уровень образования: высшее образование - бакалавриат

Форма обучения: Очная

Оценочные материалы по дисциплине Физика

> Москва 2023

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Преподаватель (должность)

Г.С. Бочаров (расшифровка подписи)

СОГЛАСОВАНО:

Руководитель образовательной программы

(должность, ученая степень, ученое звание)

Заведующий выпускающей кафедры

(должность, ученая степень, ученое звание)

W.C. W.C. W.	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»		
1 HA THE STREET HAS	Сведения о владельце ЦЭП МЭИ			
	Владелец	Позняк Е.В.		
» <u>МэИ</u> «	Идентификатор	Rd1b94958-PozniakYV-2647307e		

(подпись)

NOSO NOSO	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»					
	Сведения о владельце ЦЭП МЭИ					
New	Владелец	Меркурьев И.В.				
	Идентификатор	Rd52c763c-MerkuryevIV-1e4a8830				
()						

(подпись)

Е.В. Позняк

(расшифровка подписи)

подписи)

И.В. Меркурьев (расшифровка

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ОПК-2 способностью представлять адекватную современному уровню знаний научную картину мира на основе знания основных положений, законов и методов естественных наук и математики
- 2. ОПК-3 способностью выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, привлекать для их решения физико-математический аппарат
- 3. ОПК-5 умением обрабатывать и представлять данные экспериментальных исследований
- 4. ПК-10 способностью составлять описания выполненных расчетно-экспериментальных работ и разрабатываемых проектов, обрабатывать и анализировать полученные результаты, готовить данные для составления отчетов и презентаций, написания докладов, статей и другой научно-технической документации

и включает:

для текущего контроля успеваемости:

Форма реализации: Письменная работа

- 1. Контрольная работа №1 «Механика» (Контрольная работа)
- 2. Контрольная работа №1 «Электростатика» (Контрольная работа)
- 3. Контрольная работа №2 «Магнетизм» (Контрольная работа)
- 4. Контрольная работа №2 «Термодинамика» (Контрольная работа)

Форма реализации: Устная форма

- 1. Защита лабораторных работ «Волновая оптика-2» (Лабораторная работа)
- 2. Защита лабораторных работ «Волновая оптика» (Лабораторная работа)
- 3. Защита лабораторных работ «Квантовые свойства света» (Лабораторная работа)
- 4. Защита лабораторных работ «Магнетизм-1» (Лабораторная работа)
- 5. Защита лабораторных работ «Механика-1» (Лабораторная работа)
- 6. Защита лабораторных работ «Механика-2» (Лабораторная работа)
- 7. Защита лабораторных работ «Механика-3» (Лабораторная работа)
- 8. Защита лабораторных работ «Механика-4» (Лабораторная работа)
- 9. Защита лабораторных работ «Механика-5» (Лабораторная работа)
- 10. Защита лабораторных работ «Термодинамика-1» (Лабораторная работа)
- 11. Защита лабораторных работ «Термодинамика-2» (Лабораторная работа)
- 12. Защита лабораторных работ «Электромагнитные колебания» (Лабораторная работа)
- 13. Защита лабораторных работ «Электростатика-1» (Лабораторная работа)
- 14. Защита лабораторных работ «Электростатика-2» (Лабораторная работа)

15. Защита лабораторных работ «Элементы квантовой механики и атомной физики» (Лабораторная работа)

БРС дисциплины

2 семестр

		Веса контрольных мероприятий, %								
Раздел	Индекс	КМ-	КМ-	КМ-	КМ-	КМ-	КМ-	КМ-	КМ-	КМ-
дисциплины	KM:	1	2	3	4	5	6	7	8	9
	Срок КМ:	2	4	6	8	10	12	16	11	15
Механика	Механика									
Поступательное движение		+	+	+					+	
Вращательное движение					+	+			+	
Молекулярная фі										
термодинамика										
Молекулярная фи						+	+			
термодинамика							T			T
	Bec KM:	8	8	8	8	8	8	8	22	22

3 семестр

		Веса контрольных мероприятий, %							
Раздел дисциплины	Индекс	KM-1	KM-2	KM-3	КМ-4	KM-5	KM-6		
газдел дисциплины	KM:								
	Срок КМ:	4	8	12	16	11	15		
Электричество									
Электричество	+	+			+				
Магнетизм, колебания и волны									
Магнетизм				+			+		
Колебания и волны					+				
	12	12	12	12	26	26			

4 семестр

	Веса контрольных мероприятий, %					
Раздел дисциплины	Индекс	KM-1	KM-2	KM-3	KM-4	
т аздел дисциплины	KM:					
	Срок КМ:	4	8	12	16	
Оптика						
Оптика		+	+			
Элементы квантовой механики и атомн						
Элементы квантовой механики и атомной физики				+	+	

Bec KM:	25	25	25	25
---------	----	----	----	----

Вес I \$Общая часть/Для промежуточной аттестации\$

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	_	результаты обучения по	•
		дисциплине	
ОПК-2	ОПК-2(Компетенция)	Знать:	Защита лабораторных работ «Механика-1» (Лабораторная работа)
	, ,	основные законы	Защита лабораторных работ «Механика-2» (Лабораторная работа)
		молекулярной физики и	Защита лабораторных работ «Механика-3» (Лабораторная работа)
		термодинамики	Защита лабораторных работ «Механика-4» (Лабораторная работа)
		основные законы	Защита лабораторных работ «Механика-5» (Лабораторная работа)
		классической механики	Защита лабораторных работ «Термодинамика-1» (Лабораторная
		Уметь:	работа)
		применять физические	Защита лабораторных работ «Термодинамика-2» (Лабораторная
		законы молекулярной	работа)
		физики и термодинамики	Контрольная работа №1 «Механика» (Контрольная работа)
		для решения типовых	Контрольная работа №2 «Термодинамика» (Контрольная работа)
		задач	
		применять физические	
		законы механики для	
		решения типовых задач	
ОПК-3	ОПК-3(Компетенция)	Знать:	Защита лабораторных работ «Электростатика-1» (Лабораторная
		основные законы теории	работа)
		колебаний и волн	Защита лабораторных работ «Электростатика-2» (Лабораторная
		основные законы физики	работа)
		магнитных явлений	Защита лабораторных работ «Магнетизм-1» (Лабораторная работа)
		основные законы теории	Защита лабораторных работ «Электромагнитные колебания»
		электричества	(Лабораторная работа)
		Уметь:	Контрольная работа №1 «Электростатика» (Контрольная работа)
		строить математические	Контрольная работа №2 «Магнетизм» (Контрольная работа)
		модели физических	

ОПК-5	ОПК-5(Компетенция)	явлений применять физические законы теории электричества для решения типовых задач применять физические законы теории магнетизма для решения типовых задач Знать: методы обработки результатов измерения физических величин элементарные основы квантовой механики и основные законы атомной физики Уметь: применять методы теоретического и экспериментального исследования физических явлений применять физические законы волновой и квантовой оптики для решения типовых задач	Защита лабораторных работ «Механика-4» (Лабораторная работа) Защита лабораторных работ «Механика-5» (Лабораторная работа) Защита лабораторных работ «Электростатика-1» (Лабораторная работа) Защита лабораторных работ «Электростатика-2» (Лабораторная работа) Контрольная работа №1 «Электростатика» (Контрольная работа) Защита лабораторных работ «Волновая оптика» (Лабораторная работа) Защита лабораторных работ «Волновая оптика-2» (Лабораторная работа) Защита лабораторных работ «Квантовые свойства света» (Лабораторная работа) Защита лабораторных работ «Элементы квантовой механики и атомной физики» (Лабораторная работа)
ПК-10	ПК-10(Компетенция)	Знать: основные законы волновой и квантовой оптики Уметь: представлять результаты экспериментальных	Защита лабораторных работ «Механика-1» (Лабораторная работа) Защита лабораторных работ «Механика-2» (Лабораторная работа) Защита лабораторных работ «Механика-3» (Лабораторная работа) Контрольная работа №1 «Механика» (Контрольная работа) Защита лабораторных работ «Волновая оптика» (Лабораторная работа) Защита лабораторных работ «Волновая оптика-2» (Лабораторная

O' IT' O' M 33 A. A.	исследований в виде отчетов, графиков, таблиц применять элементарные основы квантовой механики и физические ваконы атомной физики для решения типовых вадач	работа) Защита лабораторных работ «Квантовые свойства света» (Лабораторная работа) Защита лабораторных работ «Элементы квантовой механики и атомной физики» (Лабораторная работа)
----------------------	---	---

II. Содержание оценочных средств. Шкала и критерии оценивания

2 семестр

КМ-1. Защита лабораторных работ «Механика-1»

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 8

Процедура проведения контрольного мероприятия: Устный опрос по билетам

Краткое содержание задания:

Проверка знания методов обработки результатов измерения физических величин и умения их использовать

Контрольные вопросы/задания:

Знать: основные законы	1.Сформулируйте порядок статистической обработки
классической механики	результатов физического эксперимента.
Уметь: представлять результаты	1.Вычислите погрешность косвенного измерения.
экспериментальных	
исследований в виде отчетов,	
графиков, таблиц	

Описание шкалы опенивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 65

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-2. Защита лабораторных работ «Механика-2»

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 8

Процедура проведения контрольного мероприятия: Устный опрос по билетам

Краткое содержание задания:

Проверка знания основных законов механики поступательного движения и умения их использовать для решения задач

Знать: основные законы	1. Нарисуйте схему установки, укажите все
классической механики	действующие на каждое тело системы силы.
Уметь: представлять результаты	1. Брусок массой $m = 1$ кг лежит на горизонтальной
экспериментальных	плоскости. К бруску приложили силу $F = 4 \text{ H}$,
исследований в виде отчетов,	направленную под углом $a = \pi/6$ к горизонту.
графиков, таблиц	Коэффициент трения между телом и плоскостью μ =
	0,2. Определите ускорение бруска.

Оиенка: 5

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 65

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-3. Защита лабораторных работ «Механика-3»

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 8

Процедура проведения контрольного мероприятия: Устный опрос по билетам

Краткое содержание задания:

Проверка знания основных законов механики поступательного движения и умения их использовать для решения задач

Контрольные вопросы/задания:

Trong pour library suguing	
Знать: основные законы	1.При каких допущениях проводится вывод
классической механики	расчетного соотношения для ускорения из опытов по
	скольжению бруска?
Уметь: представлять результаты	1. Через неподвижный и невесомый блок перекинута
экспериментальных	нить, к концам которой привязаны два груза массой
исследований в виде отчетов,	m1 и $m2$. Ось блока прикреплена к потолку лифта,
графиков, таблиц	поднимающегося с ускорением $a0 = 1,2$ м/c2.
	Определите силу натяжения нити.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 65

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-4. Защита лабораторных работ «Механика-4»

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 8

Процедура проведения контрольного мероприятия: Устный опрос по билетам

Краткое содержание задания:

Проверка знания основных законов механики вращательного движения и умения их использовать для решения задач

Контрольные вопросы/задания:

Знать: методы обработки	1. Дайте определение момента силы относительно
результатов измерения	неподвижного полюса, относительно неподвижной
физических величин	оси.
Уметь: применять физические	1.На горизонтальную ось насажены маховик и легкий
законы механики для решения	шкив радиусом r . На шкив намотана нить, к концу
типовых задач	которой привязан груз массой т. Опускаясь
	равноускорено, груз прошел расстояние s за время t .
	Определить момент инерции I маховика.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 65

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-5. Защита лабораторных работ «Механика-5»

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 8

Процедура проведения контрольного мероприятия: Устный опрос по билетам

Краткое содержание задания:

Проверка знания основных законов механики вращательного движения и умения их использовать для решения задач

Контрольные вопросы/задания:

Знать: методы	обработки	1.С какой целью устанавливается безразличное
результатов	измерения	равновесие маятника Обербека в начале
физических величин	H	эксперимента? Какие результаты эксперимента и
		расчетов и каким образом изменятся, если это
		равновесие не установить?
Уметь: применять	физические	1.На массивный блок, насаженный на неподвижную
законы механики	для решения	ось, намотана нерастяжимая нить, к концу которой
типовых задач		прикреплен груз массой т. Ускорение груза при
		движении оказалось равным $a = 2$ м/c2. Найдите
		массу блока, считая его сплошным однородным
		цилиндром.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 65 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-6. Защита лабораторных работ «Термодинамика-1»

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 8

Процедура проведения контрольного мероприятия: Устный опрос по билетам

Краткое содержание задания:

Проверка знания основных законов молекулярной физики и термодинамики и умения их использовать для решения задач

Знать: основные законы	1.Сформулируйте определение молярной
молекулярной физики и	теплоемкости газа.
термодинамики	
Уметь: применять физические	1.Азот, занимающий при давлении р1 = 0,2 Мпа
законы молекулярной физики и	объем $V1 = 0.02$ м3, наревается изобарически так, что
термодинамики для решения	его объем увеличивается до $V2 = 0.03$ м3, затем
типовых задач	адиабатически сжимается до первоначального
	объема. Найдите работу газа, изменение внутренней
	энергии и количество теплоты в каждом процессе.

Оценка: 5

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 65

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-7. Защита лабораторных работ «Термодинамика-2»

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 8

Процедура проведения контрольного мероприятия: Устный опрос по билетам

Краткое содержание задания:

Проверка знания основных законов молекулярной физики и термодинамики и умения их использовать для решения задач

Контрольные вопросы/задания:

Знать: основные законы	1.Почему процесс кристаллизации происходит при
молекулярной физики и	постоянной температуре?
термодинамики	
Уметь: применять физические	1.В результате адиабатного расширения $m = 0,4$ кг
законы молекулярной физики и	аргона вдвое его температура стала равна $T = 500 \text{ K}$.
термодинамики для решения	Определите начальное давление газа, если его
типовых задач	начальный объем равен $V = 1$ м3.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 65

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оиенка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-8. Контрольная работа №1 «Механика»

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 22

Процедура проведения контрольного мероприятия: Выполнение письменной работы по

билетам.

Краткое содержание задания:

Проверка умения использовать законы механики для решения задач

Контрольные вопросы/задания:

контрольные вопросы/задания:	
Уметь: применять физические	1. Человек, стоящий на коньках на льду, бросает груз
законы механики для решения	со скоростью 10 м/с под углом 300 к горизонту.
типовых задач	Найдите работу, совершенную человеком при броске,
	если масса человека 60 кг, масса груза 2 кг. Трением
	пренебречь.
Уметь: представлять результаты	1.Тело массой m1 скользит по гладкой
экспериментальных	горизонтальной плоскости и въезжает на горку,
исследований в виде отчетов,	которая может скользить по плоскости. Масса горки
графиков, таблиц	m2 = 5 m1, высота горки $h = 0.5 м$. При какой
	минимальной начальной скорости тело сможет
	достичь вершины горки? Трение между телом и
	горкой отсутствует.
	2. Маховик со шкивом могут вращаться без трения
	относительно горизонтальной оси. Момент инерции
	системы маховик-шкив относительно оси вращения
	Io=0,5 кг×м2 . На шкив радиусом R = 4 см намотана
	нить, к концу которой привязан груз массой $m=500$ г.
	Груз устанавливают на высоте $h = 1$ м от пола.
	Сколько оборотов в секунду будет делать маховик в
	тот момент, когда груз коснется пола?

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 85 Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание

выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-9. Контрольная работа №2 «Термодинамика»

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 22

Процедура проведения контрольного мероприятия: Выполнение письменной работы по билетам.

Краткое содержание задания:

Проверка умения использовать законы молекулярной физики и термодинамики для решения задач

Контрольные вопросы/задания:

поптроивные вопросы, задания.	
Уметь: применять физические	1. Два моля идеального одноатомного газа совершают
законы молекулярной физики и	следующий замкнутый процесс: 1) изобарическое
термодинамики для решения	нагревание от $t1 = 27^{\circ}$ С до $t2 = 327^{\circ}$ С; 2)
типовых задач	изохорическое охлаждение до $t1; 3)$ изотермическое
	сжатие до первоначального состояния. Определите
	работу, совершенную газом в этом процессе и КПД
	цикла.

Описание шкалы оценивания:

Оиенка: 5

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 60 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

3 семестр

КМ-1. Защита лабораторных работ «Электростатика-1»

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 12

Процедура проведения контрольного мероприятия: Устный опрос по билетам

Краткое содержание задания:

Проверка знания методов измерения электрических величин и обработки результатов измерений и умения их использовать

топтропыные вопросы, задания.	
Знать: основные законы теории	1.Как с помощью осциллографа измерить период
электричества	колебаний?
Уметь: применять физические	1.По экрану осциллографа определено, что период
законы теории электричества для	сигнала составляет 6,2 дел. Коэффициент развертки
решения типовых задач	по горизонтальной оси $Xm = 0,1$ мс/дел. Определите
	период и частоту колебаний.

Уметь: строить математические	1.По экрану осциллографа определено, что
модели физических явлений	амплитуда сигнала составляет 2,2 дел. Коэффициент
	усиления по вертикальной оси $Ym = 0.5 \text{ B/дел}$.
	Определите амплитудное и действующее значение
	напряжения.
Уметь: применять методы	1.Проведите статистическую обработку
теоретического и	результатов прямых измерений.
экспериментального	
исследования физических	
явлений	

Оценка: 5

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 65

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

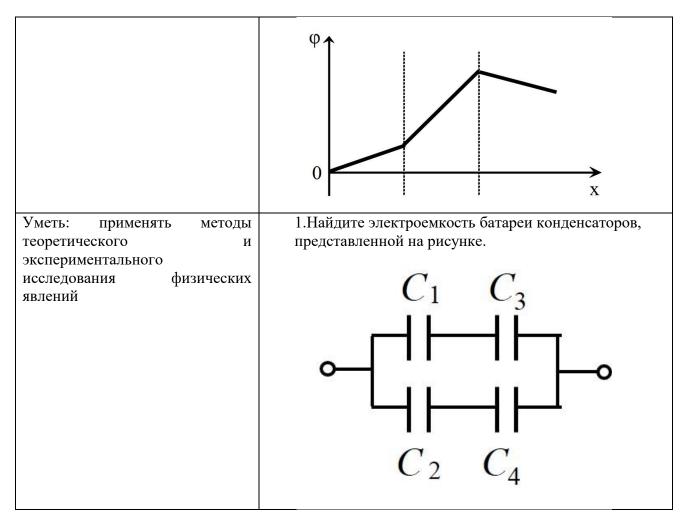
Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-2. Защита лабораторных работ «Электростатика-2»

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа


Вес контрольного мероприятия в БРС: 12

Процедура проведения контрольного мероприятия: Устный опрос по билетам

Краткое содержание задания:

Проверка знания основных законов электростатики и умения их использовать для решения задач

Знать: основные законы теории	1.Запишите выражение дифференциальной связи
электричества	между вектором напряженности электростатического
	поля и потенциалом? В чем заключается ее
	физический смысл?
Уметь: применять физические	1. Найдите разность потенциалов между точками 1 и
законы теории электричества для	2.
решения типовых задач	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Уметь: строить математические	1.По графику зависимости потенциала от координаты
модели физических явлений	постройте качестенно график зависимости проекции
	вектора напряженности от координаты. Поясните
	построения.

Оценка: 5

Нижний порог выполнения задания в процентах: 75 Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 65 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-3. Защита лабораторных работ «Магнетизм-1»

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 12

Процедура проведения контрольного мероприятия: Устный опрос по билетам

Краткое содержание задания:

Проверка знания основных законов магнетизма и умения их использовать для решения задач

Контрольные вопросы/задания:

Знать: основные законы физики	1.Изобразите на рисунке силы, действующие на
магнитных явлений	рамку с током в установке лабораторной работы.
Уметь: применять физические	1.Плоская квадратная рамка со стороной а находится
законы теории магнетизма для	в однородном магнитном поле с индукцией B . По
решения типовых задач	обмотке рамки, состоящей из N витков, протекает ток
	I. Определите вращающий момент, действующий на
	рамку, если линии индукции поля образуют с
	плоскостью рамки угол α

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 65

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-4. Защита лабораторных работ «Электромагнитные колебания»

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 12

Процедура проведения контрольного мероприятия: Устный опрос по билетам

Краткое содержание задания:

Проверка знания основных законов по теме "Электромагнитные колебания" и умения их использовать для решения задач.

Контрольные вопросы/задания:

Знать: основные законы теории	1.Из каких элементов состоит идеальный
колебаний и волн	колебательный контур? Объясните, как в нем
	возникают электрические колебания.

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 65

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-5. Контрольная работа №1 «Электростатика»

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 26

Процедура проведения контрольного мероприятия: Выполнение письменной работы по

билетам.

Краткое содержание задания:

Проверка умения использовать законы электростатики для решения задач

Контрольные вопросы/задания:	
Уметь: применять физические	1.Заряд Q равномерно распределен по кольцу радиуса
законы теории электричества для	R, выполненному из тонкой проволоки. На оси
решения типовых задач	кольца на расстоянии z от его центра находится
	точечный заряд q. Найдите силу, действующую со
	стороны кольца на точечный заряд.
Уметь: строить математические	1.Две бесконечные плоскости расположены на
модели физических явлений	расстоянии d и равномерно заряжены с
	поверхностными плотностями зарядов $s1 = s$ и $s2 = -$
	2s. Между ними находится слой диэлектрика (e = 2)
	толщиной $d/2$, вплотную прилегающий к первой
	плоскости. Ось х перпендикулярна плоскостям,
	начало координат совпадает с первой плоскостью.
	Определите и постройте на графиках зависимости
	Dx(x), $Ex(x)$, $Px(x)$, $j(x)$, приняв $j(0) = 0$. Определите
	поверхностную плотность зарядов на боковых
	поверхностях диэлектрика.
Уметь: применять методы	1.Тонкая бесконечно длинная нить равномерно
теоретического и	заряжена с линейной плотностью заряда τ и окружена
экспериментального	коаксиальным бесконечно длинным цилиндрическим
исследования физических	слоем из диэлектрика с относительной
явлений	диэлектрической проницаемостью е, (внутренний
	радиус слоя $R1$, наружный — $R2$). Найдите и
	постройте на графиках зависимости $Dr(r)$, $Er(r)$, $j(r)$,
	приняв $j(R1) = 0$. Определите поверхностную
	плотность связанного заряда на внешней поверхности
	диэлектрика.
	2.Сферический конденсатор (R1 и R2 известны)
	заряжен до разности потенциалов $\it U$ и отключен от
	источника. Найдите изменение электроемкости
	конденсатора и работу, совершаемую внешними
	силами при заполнении конденсатора диэлектриком с
	относительной диэлектрической проницаемостью е.

Оценка: 5

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-6. Контрольная работа №2 «Магнетизм»

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 26

Процедура проведения контрольного мероприятия: Выполнение письменной работы по

билетам.

Краткое содержание задания:

Проверка умения использовать законы магнетизма для решения задач

Контрольные вопросы/задания:

Уметь: применять физические	1.Длинный коаксиальный кабель состоит из
законы теории магнетизма для	сплошного проводника радиусом R1 и полой
решения типовых задач	тонкостенной оболочки радиусом R2> R1. Эта
	двухпроводная система обтекается током I.
	Плотность тока по сечению сплошного проводника
	постоянна. Определите значения магнитной
	индукции в зависимости от радиальной координаты r
	и постройте график зависимости $B(r)$

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 60

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

4 семестр

КМ-1. Защита лабораторных работ «Волновая оптика»

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Устный опрос по билетам

Краткое содержание задания:

Проверка знания основных законов волновой оптики и умения их использовать для решения задач

Контрольные вопросы/задания:

Знать: основные законы	1.Почему при наблюдении колец Ньютона в
волновой и квантовой оптики	отраженном свете центр интерференционной
	картины темный?
Уметь: применять физические	1.Приведите оптическую схему наблюдения колец
законы волновой и квантовой	Ньютона в отраженном свете. Выведите выражение
оптики для решения типовых	для радиусов темных колец
задач	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 65

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-2. Защита лабораторных работ «Волновая оптика-2»

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Устный опрос по билетам

Краткое содержание задания:

Проверка знания основных законов волновой оптики и умения их использовать для решения задач

Знать:	основные	законы	1. Какие источники света называют когерентными?
волновой и квантовой оптики		й оптики	
Уметь:	применять	физические	1. Найдите связь между фазовой скоростью υ и

законы волновой и квантовой	1 7 1
оптики для решения типовых	вид: $\upsilon = bk (b - \text{постоянная}, k - \text{волновое число})$
задач	

Оиенка: 5

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 65

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-3. Защита лабораторных работ «Квантовые свойства света»

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Устный опрос по билетам

Краткое содержание задания:

Проверка знания основных законов квантовых свойств света и умения их использовать для решения задач

Контрольные вопросы/задания:

Знать: элементарные основы	1. Нарисуйте примерный вид вольтамперной
квантовой механики и основные	характеристики фотоэлемента. Почему происходит
законы атомной физики	насыщение фототока?
Уметь: применять элементарные	1. Красная граница фотоэффекта для некоторого
основы квантовой механики и	металла $\lambda = 330$ нм. Чему равна работа выхода для
физические законы атомной	этого металла?
физики для решения типовых	
задач	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 65

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-4. Защита лабораторных работ «Элементы квантовой механики и атомной физики»

Формы реализации: Устная форма

Тип контрольного мероприятия: Лабораторная работа

Вес контрольного мероприятия в БРС: 25

Процедура проведения контрольного мероприятия: Устный опрос по билетам

Краткое содержание задания:

Проверка знания основных законов квантовой механики и атомной физики и умения их использовать для решения задач

Контрольные вопросы/задания:

Знать: элементарные основы	1.Почему для наблюдения дифракционных колец в
квантовой механики и основные	установке лабораторной работы № 57 использована
законы атомной физики	поликристаллическая плёнка, а не монокристалл?
Уметь: применять элементарные	1. Найдите длину волны де Бройля для электрона,
основы квантовой механики и	обладающего кинетической энергией 100 эВ
физические законы атомной	
физики для решения типовых	
задач	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 65

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

2 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

- 1. В сосуде находятся 0,1 моль углекислого газа и 6,4 г кислорода при температуре 400 К и давлении 0,1 МПа. Определите: объем сосуда; парциальное давление кислорода; внутреннюю энергию смеси газов; эффективную молярную массу смеси газов.
- 2. Ускорение материальной точки; нормальное и тангенциальное ускорения. Кинематический закон движения материальной точки в случае постоянного ускорения. Движение тел в поле силы тяжести. Границы применимости классического способа описания движения точки.
- 3. Сформулируйте основные положения молекулярно-кинетической теории. Дайте определение понятию «идеальный газ». Запишите основное уравнение молекулярно-кинетической теории для давления идеального газа.

Процедура проведения

1. Студент получает билет. 2. Готовиться к ответу в течение 1 часа, делая необходимые записи в листе ответа. 3. Отвечает на вопросы экзаменатору.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ОПК-2(Компетенция)

Вопросы, задания

- 1.1. В сосуде находятся 0,1 моль углекислого газа и 6,4 г кислорода при температуре 400 К и давлении 0,1 МПа. Определите: объем сосуда; парциальное давление кислорода; внутреннюю энергию смеси газов; эффективную молярную массу смеси газов.
- 2. Ускорение материальной точки; нормальное и тангенциальное ускорения. Кинематический закон движения материальной точки в случае постоянного ускорения. Движение тел в поле силы тяжести. Границы применимости классического способа описания движения точки.
- 3. Сформулируйте основные положения молекулярно-кинетической теории. Дайте определение понятию «идеальный газ». Запишите основное уравнение молекулярно-кинетической теории для давления идеального газа.

Материалы для проверки остаточных знаний

1.Тело бросили под углом к горизонту в поле силы тяжести. Укажите, какой закон сохранения выполняется (сопротивлением воздуха пренебречь)

Ответы:

выполняется закон сохранения импульса

выполняется закон сохранения механической энергии

выполняется закон сохранения момента импульса

не выполняется ни один из законов сохранения

Верный ответ: выполняется закон сохранения механической энергии

2.Опишите взаимное расположение графиков адиабаты и изотермы в PV-диаграмме. Ответы:

Адиабата параллельна изотерме

Адиабата идёт круче изотермы Графики не пересекаются Изотерма круче адиабаты

Верный ответ: Адиабата идёт круче изотермы

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 65

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.

3 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

- 1. По двум шинам, расположенным в одной плоскости с длинным прямолинейным проводом с силой тока *I* параллельно проводу скользит проводник длиной *I* со скоростью *u*. Концы шин замкнуты на сопротивление *R*. Расстояние от ближайшей шины до провода *x*о. Пренебрегая сопротивлением шин и проводника, определите силу индукционного тока и его направление.
 - 2. Электрический заряд и его основные свойства. Напряженность. Принцип суперпозиции и примеры его применения. Сила, действующая в электрическом поле на точечный и распределенный заряд.
 - 3. Вынужденные электромагнитные колебания. Явление резонанса (для последовательного колебательного контура).

Процедура проведения

1. Студент получает билет. 2. Готовиться к ответу в течение 1 часа, делая необходимые записи в листе ответа. 3. Отвечает на вопросы экзаменатору.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ОПК-2(Компетенция)

Материалы для проверки остаточных знаний

1. Магнитная проницаемость среды показывает....

Ответы:

Во сколько раз напряженность магнитного поля в вакууме больше напряженности в веществе

Во сколько раз индукция поля в веществе больше индукции в вакууме

Во сколько раз модуль наряженность поля в веществе больше индукции в вакууме Верный ответ: Во сколько раз индукция поля в веществе больше индукции в вакууме

2.Имеется вертикальный бесконечный прямой провод с током I, текущим вверх. Циркуляция магнитной индукции, вычисленная по окружности радиусом r, лежащей в плоскости, перпендикулярной проводу, и имеющей центр в точке пересечения провода с плоскостью, в направлении против часовой стрелки (если смотреть сверху)

Ответы:

Пропорциональна току

Обратно пропорциональна току

Обратно пропорциональна радиусу окружности

Пропорциональна квадрату силы тока

Верный ответ: Пропорциональна току

2. Компетенция/Индикатор: ОПК-3(Компетенция)

Вопросы, задания

1

- 1. 1. Две концентрические сферы радиусами R1 и R2>R1 имеют заряды q1 и q2 соответственно. Найдите напряженность и потенциал, как функцию расстояния от центра сфер. Постройте графики Er(r) и f(r). Принять f(r)=0. Вычислите потенциал центра системы.
 - 2. Магнитный момент. Действие магнитного поля на контур с током. Контур с током в однородном и неоднородном магнитном поле. Энергия контура с током во внешнем магнитном поле.
 - 3. Вынужденные электромагнитные колебания. Явление резонанса (для последовательного колебательного контура).

Материалы для проверки остаточных знаний

1. Диэлектрическая проницаемость среды показывает...

Ответы:

Во сколько раз наряженность электростатического поля в вакууме больше напряженности в веществе

Во сколько раз модуль электрического смещения электростатического поля в веществе больше напряженности в вакууме

Во сколько раз модуль электрического смещения электростатического поля в веществе больше модуля электрического смещения в вакууме

Верный ответ: Во сколько раз наряженность электростатического поля в вакууме больше напряженности в веществе

2.По бесконечно длинному проводящему цилиндру течёт ток силой I. Модуль индукции магнитного поля вне цилиндра в зависимости от расстояния от его центра...

Ответы:

Возрастает по линейному закону

Убывает обратно пропорционально расстоянию

Не изменяется

Равен нулю во всех точках

Верный ответ: Убывает обратно пропорционально расстоянию

3. Компетенция/Индикатор: ОПК-5(Компетенция)

Вопросы, задания

- 1.1. Магнитное поле и его силовая характеристика магнитная индукция. Закон Ампера. Взаимодействие длинного прямого тока и квадратной рамки, обтекаемой током.
- 2. Обобщенный закон Ома, ЭДС, разность потенциалов, напряжение.
- 3. В плоском конденсаторе пространство между обкладками заполнено диэлек-триком с диэлектрической проницаемостью ε =2. Емкость конденсатора равна C0. На конденсатор подано напряжение U0, затем конденсатор отключен от источника. Как изменится разность потенциалов при удалении диэлектрика? Какая работа при этом будет совершена внешними силами?

Материалы для проверки остаточных знаний

1.Полый металлический бесконечно длинный цилиндр заряжен по поверхности. Модуль напряженности E электрического поля внутри цилиндра в зависимости от расстояния от его центра...

Ответы:

Возрастает

Убывает

Убывает обратно пропорционально расстоянию

Равен нулю во всех точках

Верный ответ: Равен нулю во всех точках

2. Вектор скорости положительно заряженной частицы и вектор магнитной индукции поля перпендикулярны друг другу. Определите направление силы, действующей на частицу.

Ответы:

Сила Лоренца параллельна вектору скорости

Сила Лоренца параллельна вектору магнитной индукции

Сила Лоренца перпендикулярна вектору магнитной индукции и вектору магнитной индукции

Сила Лоренца параллельна вектору магнитной индукции и параллельна вектору скорости

Верный ответ: Сила Лоренца перпендикулярна вектору магнитной индукции и вектору магнитной индукции

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 65

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 50 Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно.

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.

4 семестр

Форма промежуточной аттестации: Зачет с оценкой

Пример билета

- 1. Какие источники излучения называют когерентными? Дайте определение понятиям когерентность, временная когерентность, пространственная когерентность.
- 2. Два когерентных источника, расположенных на одинаковом расстоянии L=4 м от экрана испускают монохроматический свет с длиной волны $\lambda=400$ нм. Расстояние между источниками d=1 мм. Найдите расстояние между соседними максимумами освещенности.

Процедура проведения

- студент получает билет для подготовки ответа; - студент готовит ответ по вопросам билета в течение не менее 30 минут, делая необходимые записи на листе подготовки ответа; - преподаватель устно опрашивает студента по вопросам билета, задавая при необходимости дополнительные вопросы

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ОПК-5(Компетенция)

Материалы для проверки остаточных знаний

1. Правило частот Бора состояло в том, что

Ответы:

Энергия излученного фотона равна сумме энергий начального и конечного состояний, Энергия излученного фотона равна среднему арифметическому энергий начального и конечного состояний,

Энергия излученного фотона равна среднему геометрическому энергий начального и конечного состояний,

Энергия излученного фотона равна разности энергий начального и конечного состояний Верный ответ: Энергия излученного фотона равна разности энергий начального и конечного состояний

2.Внешний фотоэффект не наблюдается, если

Ответы:

Происходит нагрев вещества,

Происходит охлаждение вещества,

Энергия фотона меньше работы выхода,

Мощность излучения меньше 50 Вт

Верный ответ: Энергия фотона меньше работы выхода

2. Компетенция/Индикатор: ПК-10(Компетенция)

Вопросы, задания

- 1.1. Приведите известные Вам способы получения когерентных волн от некогерентного источника. Деление амплитуды, деление фронта.
- 2. Найдите радиус 4-го темного кольца Ньютона, если радиус линзы R=25 мм, а длина волны света $\lambda=400$ нм.
- 2.1. Оптическая длина пути, оптическая разность хода. Связь между разностью фаз и разностью хода двух световых волн.
- 2. Радиус 9-го темного кольца Ньютона, наблюдаемого в отраженном свете с длиной волны $\lambda = 400$ нм, оказался равным r9 = 0.3 мм. Найдите радиус R линзы.

Материалы для проверки остаточных знаний

1.Бета-распад характеризуется испусканием

Ответы:

Протонов и антипротонов,

Электронов и позитронов,

Нейтронов и протонов,

Нейтрино и антинейтрино

Верный ответ: Электронов и позитронов

2. Когерентные источники

Ответы:

Имеют большую мощность,

Излучают в инфракрасном диапазоне,

Излучают волны с постоянной во времени разностью фаз,

Имеют сплошной спектр излучения

Верный ответ: Излучают волны с постоянной во времени разностью фаз

3.При дифракции

Ответы:

Выполняются законы геометрической оптики,

Не выполняются законы геометрической оптики,

Наблюдается испускание электронов из металла,

Происходят фазовые превращения облучаемого вещества

Верный ответ: Не выполняются законы геометрической оптики

II. Описание шкалы оценивания

Оценка: зачтено

Описание характеристики выполнения знания: Выполнены все работы согласно текущему контролю успеваемости в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ».

Оценка: не зачтено

Описание характеристики выполнения знания: Не выполнена одна и более работы согласно текущему контролю успеваемости в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ».

III. Правила выставления итоговой оценки по курсу

Оценка определяется по совокупности результатов текущего контроля успеваемости в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ».