Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 15.04.06 Мехатроника и робототехника

Наименование образовательной программы: Разработка компьютерных технологий управления и математического моделирования в робототехнике и мехатронике

Уровень образования: высшее образование - магистратура

Форма обучения: Очная

Оценочные материалы по дисциплине Методы искусственного интеллекта в мехатронике и робототехнике

Москва 2024

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Разработчик

Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»		
Сведения о владельце ЦЭП МЭИ		
Владелец	Маслов А.Н.	
Идентификатор	Rf8f2f741-MaslovAN-736ea3ef	

А.Н. Маслов

СОГЛАСОВАНО:

Руководитель образовательной программы

NECESIONALY PROPERTY	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»	
	Сведения о владельце ЦЭП МЭИ		
NOM V	Владелец	Свириденко О.В.	
	Идентификатор	R9097b88f-SviridenkoOV-16830d5	

О.В. Свириденко

Заведующий
выпускающей
кафедрой

NOSO POSO	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»	
MOM	Сведения о владельце ЦЭП МЭИ		
	Владелец	Меркурьев И.В.	
	Идентификатор	Rd52c763c-MerkuryevIV-1e4a883(

И.В. Меркурьев

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ОПК-4 Способен использовать современные информационные технологии и программные средства при моделировании технологических процессов
 - ИД-2 Применяет современные программные средства для моделирования мехатронных и робототехнических систем, их подсистем, включая исполнительные, информационносенсорные и управляющие модули, с применением методов искусственного интеллекта, нечеткой логики, искусственных нейронных и нейро-нечетких сетей
- 2. ОПК-13 Способен использовать основные положения, законы и методы естественных наук и математики при формировании моделей и методов исследования мехатронных и робототехнических систем
 - ИД-3 Разрабатывает математические модели мехатронных и робототехнических систем, их подсистем, включая исполнительные, информационно-сенсорные и управляющие модули, с применением методов формальной логики, методов конечных автоматов, сетей Петри, методов искусственного интеллекта, нечеткой логики, генетических алгоритмов, искусственных нейронных и нейро-нечетких сетей

и включает:

для текущего контроля успеваемости:

Форма реализации: Письменная работа

- 1. Задачи №12, 20, 13, 14 (Контрольная работа)
- 2. Задачи №18, 22, 23 (Контрольная работа)
- 3. Задачи №6, 7, 9, 11 (Контрольная работа)
- 4. Задачи №8,10,17,19 (Контрольная работа)

БРС дисциплины

3 семестр

	Beca	Веса контрольных мероприятий, %			
Dan	Индекс	KM-1	KM-2	KM-3	KM-4
Раздел дисциплины	KM:				
	Срок КМ:	4	8	10	15
Нейронные сети.					
Нейронные сети.		+			
Сеть Хопфилда. Синхронная и асинхронная					
реализация.					
Сеть Хопфилда. Синхронная и асинхронная			+		
реализация.			T		

Сеть Кохонена. Кластеризация.				
Сеть Кохонена. Кластеризация.		+		
Муравьиный алгоритм. Алгоритм отжига.				
Муравьиный алгоритм.			+	
Алгоритм отжига.			+	
Генетический алгоритм.				
Генетический алгоритм.			+	
Нечёткие множества.				
Нечёткие множества.				+
Bec KM:	20	20	30	30

^{\$}Общая часть/Для промежуточной аттестации\$

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

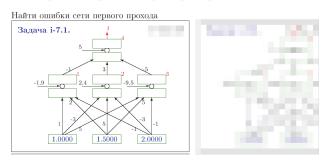
Индекс	Индикатор	Запланированные	Контрольная точка
компетенции		результаты обучения по	
		дисциплине	
ОПК-4	ИД-20ПК-4 Применяет	Знать:	Задачи №6, 7, 9, 11 (Контрольная работа)
	современные	Генетический алгоритм.	Задачи №8,10,17,19 (Контрольная работа)
	программные средства для	Алгоритм отжига.	Задачи №12, 20, 13, 14 (Контрольная работа)
	моделирования	Сеть Кохонена.	Задачи №18, 22, 23 (Контрольная работа)
	мехатронных и	Сеть Хопфилда,	
	робототехнических	Структуру нейронных	
	систем, их подсистем,	сетей. Основные способы	
	включая исполнительные,	обучения сетей.	
	информационно-	Уметь:	
	сенсорные и управляющие	Применять нечеткий	
	модули, с применением	регулятор.	
	методов искусственного	Применять методы	
	интеллекта, нечеткой	обучения нейронных сетей	
	логики, искусственных	без учителя	
	нейронных и нейро-	Применять методы	
	нечетких сетей	обучения нейронных сетей	
		с учителем.	
		Составлять входные и	
		выходные элементы и	
		матрицы весов со	
		смещением нейронных	
		сетей в задачах	
		фильтрации и	
		классификации.	
ОПК-13	ИД-3 _{ОПК-13} Разрабатывает	Знать:	Задачи №6, 7, 9, 11 (Контрольная работа)

Задачи №12, 20, 13, 14 (Контрольная работа) Сеть обратного математические модели распространения ошибок, Задачи №18, 22, 23 (Контрольная работа) мехатронных робототехнических Алгоритм муравья. Алгоритмы нечеткой систем, их подсистем, логики в управлении включая исполнительные. информационносистем и обработке сенсорные и управляющие информации. Уметь: модули, с применением Строить граф пути, его методов формальной оптимизацию, эвристику. логики, методов конечных Обрабатывать и автоматов, сетей Петри, распознавать изображения, методов искусственного осуществлять фильтрацию интеллекта, нечеткой и коррекцию логики, генетических геометрических алгоритмов, искусственных нейронных изображений. и нейро-нечетких сетей

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Задачи №6, 7, 9, 11

Формы реализации: Письменная работа


Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Контрольная работа

Краткое содержание задания:

Алгоритм обратного распространения ошибок

Контрольные вопросы/задания:

контрольные вопросы/задания:	
Знать: Структуру нейронных	1.
сетей. Основные способы	1. 2. Свойства функции активации?
обучения сетей.	
Знать: Сеть обратного	1.
распространения ошибок,	1. 1. Где в алгоритме изменяются веса персептрона?
	2.3. Условие сходимости?
Уметь: Применять методы	1.1.Как выбирать коэффициент обучаемости?
обучения нейронных сетей без	
учителя	
Уметь: Применять методы	1.2.Что изменяется при обратном проходе сети
обучения нейронных сетей с	обратного распространения ошибок?
учителем.	
Уметь: Обрабатывать и	1.3.Как выбрать функцию активации в двухслойном
распознавать изображения,	персептроне?
осуществлять фильтрацию и	
коррекцию геометрических	
изображений.	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 65

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-2. Задачи №8,10,17,19

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Контрольная работа

Краткое содержание задания:

Гетероассоциативная память

Даны четыре образца закодированные 1 (закрашенный квадрат) и -1 (пустой квадрат) слева направо, сверху вниз, ассоциированные с биполярной формой номера. Найти десятичную форму ассоциации образца y после первого цикла обработки данных. Использовать функцию $\mathrm{sgn}(x)=1$, при x>0, $\mathrm{sgn}(x)=0$, при $x\leq 0$.

Контрольные вопросы/задания:

Знать: Сеть Кохонена.	1.2. Можно ли использовать гетероассоциативные
	сети для восстановления входных элементов по
	выходу?
	2.3. Может ли размерность входного элемента быть
	меньше размерности элемента на выходе?
Знать: Сеть Хопфилда,	1.1.Сеть Хопфилда является ассоциативной?
Уметь: Составлять входные и	1.1.Перевод биполярной кодировки в логическую
выходные элементы и матрицы	2.2. Какое параметр останова в сете Хопфилда?
весов со смещением нейронных	
сетей в задачах фильтрации и	
классификации.	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 65

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

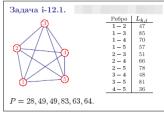
КМ-3. Задачи №12, 20, 13, 14

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 30

Процедура проведения контрольного мероприятия: Контрольная работа


Краткое содержание задания:

Муравьиный алгоритм

Задача коммивояжера решается с помощью муравьиного алгоритма. Первый муравей выходит из вершины 1 по ребрам графа с равномерным слоем феромона $\tau_{k,j}=1$. После прохождения гамильтонова цикла по следу муравья добавляется феромон интенсивностью $100/L_1$, где L_1- длина его пути. Второй муравей также выходит из вершины 1. Дана последовательность P случайных чисел, выпавших в при выборе очередной вершины и расстояния $L_{k,j}$ между вершинами k,j. Секторы вероятности перехода сортировать по возрастанию номеров вершин. Использовать формулу вероятности перехода из вершины k в j

$$P_{k,j} = 100 \frac{\eta_{k,j}^{\alpha} \tau_{k,j}^{\beta}}{\Sigma \eta_{k,i}^{\alpha} \tau_{k,i}^{\beta}}$$

при $\alpha=1,\,\beta=1,\,\eta_{k,j}=1/L_{k,j}.$ Найти длину пути L_2 второго муравья.

11

Контрольные вопросы/задания:

Знать: Алгоритм отжига.	1.3. Какие параметры влияют на вероятность выбора пути?
Знать: Генетический алгоритм.	1.4. Какие типы эволюции используются в генетическом алгоритме?
Знать: Алгоритм муравья.	1.1. Как изменяется функция "ферамон" после прохождения каждого муравья? 2.2. Какое минимальное число муравьев-агентов должно быть в задаче коммивояжера?
Уметь: Строить граф пути, его	1.1.Как уменьшить время работы алгоритма отжига?
оптимизацию, эвристику.	2.2.Как уменьшить время работы алгоритма муравья?

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 65

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-4. Задачи №18, 22, 23

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 30

Процедура проведения контрольного мероприятия: Контрольная работа

Краткое содержание задания:

Марковские цепи. Стационарное распределение

Дана матрица переходов цепи Маркова. Найти стационарное распределение пепи.

ЦЦ

Контрольные вопросы/задания:

Знать: Алгоритмы нечеткой	1.1.Почему Марковские цепи называют цепи с
логики в управлении систем и	короткой памятью?
обработке информации.	2.2. Что такое матрица переходов?
Уметь: Применять нечеткий	1.1.Как определить полно связную цепь?
регулятор.	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 65

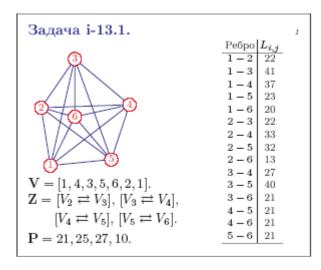
Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

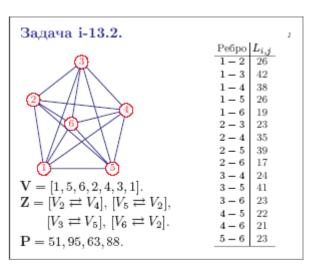
Оценка: 2

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

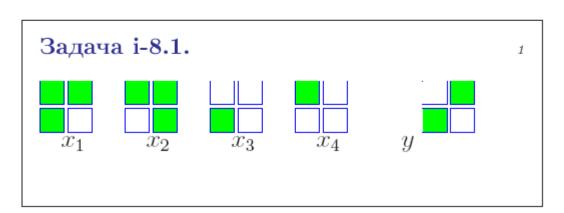
3 семестр

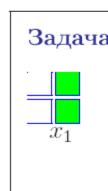

Форма промежуточной аттестации: Экзамен


Пример билета

- 1. Сеть Кохонена.
- 2. Задача.№13. Алгоритм Отжига.
- 1. Задача.№8. Двунаправленная ассоциативная сеть

Алгоритм отжига


Найти длину гамильтонова цикла S_4 в полном графе K_6 после четырех циклов решения задачи методом отжига. Даны расстояния $L_{i,j}$ между вершинами. Даны также: начальная последовательность вершин L_0 , последовательность замен вершин Z и выпавшие при этом вероятности перехода P_k , k=1,...,4. Переход на худшее $(\Delta S_k=S_k-S_{k-1}>0)$ решение допустим, если $P_*=100e^{-\Delta S_k/T_k}>P_k$, где снижение температуры происходит по закону $T_{k+1}=0.5T_k$ от $T_1=100$ независимо от того, принято решение или нет. Если $\Delta S_k \leq 0$, то новое решение принимается.



Гетероассоциативная памя

Даны четыре образца закодированные 1 (закрашенный киквадрат) слева направо, сверху вниз, ассоциированные мой номера. Найти десятичную форму ассоциации образцикла обработки данных. Использовать функцию sgn(x) = 0, при $x \le 0$.

Процедура проведения

Письменный ответ. Дополнительные вопросы.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-2_{ОПК-4} Применяет современные программные средства для моделирования мехатронных и робототехнических систем, их подсистем, включая исполнительные, информационно-сенсорные и управляющие модули, с применением методов искусственного интеллекта, нечеткой логики, искусственных нейронных и нейронечетких сетей

Вопросы, задания

- 1.3. Метод обратного распространения ошибок.
- 2.4. Сеть Кохонена.
- 3.5. Сеть Хопфильда.
- 4.6. Двунаправленная ассоциативная сеть.
- 5.10. Алгоритм Муравья.
- 6.11. Алгоритм Отжига.
- 7.12. Генетический алгоритм.
- 8.13. Сеть Хемминга.

Материалы для проверки остаточных знаний

- 1.1. Размерность матриц весов двухслойного персептрона первого слоя 3x3, второго слоя 3x2. Какие размерности входных и выходных векторов сети?
- 1. любые 2. 3 и 2 соответственно. 3. 2 и 2 соответственно. 4. 2 и 3 соответственно.

Верный ответ: 2.

2.2.Имеется два эталонных входа для сети Хопфилда. $X1=\{1,-1,1\}$ и $X2=\{-1,1,-1\}$. Найти матрицу весов сети.

Ответы:

 $(X1^T.X1+X2^T.X2)$; dig=0

Верный ответ: 0 -2 2 -2 0 -2 2 -2 0

3.3. Какая функция активации используется в алгоритме обратного распространения ошибки?

Ответы:

- 1. Сигмоидальная 2. Линейная 3. Импульсная 4. Тригонометрическая Верный ответ: 1.
- 4.4.В ассоциативной сети можно получить на выходе входной вектор?

Ответы:

1. нет 2. да 3. можно при определенных условиях

Верный ответ: Нет. т.к., если размерность входного и выходного векторов равны, то данная сеть превращается в сеть Хопфилда.

5.5. Что такое биполярная кодировка?

Ответы:

1. 0,1 2. 0,1,2 3. -1,0,1 4.-1,1

Верный ответ: 4.

6.7. Что такое список "Табу" муравьином алгоритме.

Ответы

1. Список всех узлов 2. Список муравьев 3. Список запретных узлов 4. Список случайных узлов

Верный ответ: 3.

7.8.К чему приводит быстрое затухание функции температуры с каждым шагом в алгоритме отжига?

Ответы:

1. Убыстряет работу сети в целом. 2. Быстрее уменьшается вариативность выбора решения на каждом шаге алгоритма 3. Повышается вероятность принятия не правильного решения

Верный ответ: 1.,2.,3.

- 8.9. Как изменится популяция в генетическом алгоритме при перекрестном скрещивании? Ответы:
- 1. Не изменится 2. Изменится количество ген. 3. Появятся новые хромосомы со старым набором ген. 4. Появятся новые хромосомы с новым набором ген.

Верный ответ: 3.

- 9.10.К чему приводит использование мутации в генетическом алгоритме? Ответы:
- 1. Гены не изменяются 2. Гены изменяются 3. Появляются новые решения с новыми характеристиками

Верный ответ: 2.,3.

2. Компетенция/Индикатор: ИД-3_{ОПК-13} Разрабатывает математические модели мехатронных и робототехнических систем, их подсистем, включая исполнительные, информационно-сенсорные и управляющие модули, с применением методов формальной логики, методов конечных автоматов, сетей Петри, методов искусственного интеллекта, нечеткой логики, генетических алгоритмов, искусственных нейронных и нейро-нечетких сетей

Вопросы, задания

1.1. Понятие искусственного интеллекта.

- 2.2. Нейронные сети. Виды нейронных сетей. Нейрон.
- 3.7. Нечеткие множества. Логические и арифметические операции.
- 4.8. Построение функций принадлежности на основе парных сравнений.
- 5.9. Нечеткий логический вывод.
- 6.14. Марковские цепи.

Материалы для проверки остаточных знаний

1.6.Даны два нечетких множества A=0.9/a+0.3/b+0.9/c, B=0.1/a+0.8/b+0.5/c. Найти арифметическую операцию A+B и логическую операцию AUB.

Ответы:

m(A+B)=m(A)+m(B)-m(A)m(B)

m(AUB)=max(m(A),m(B))

Верный ответ: m(A+B)=0.91/a+0.86/b+0.95/c m(AUB)=0.9/a+0.8/b+0.9/c

II. Описание шкалы оценивания

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Задание выполнено полностью. На дополнительные вопросы даны полные ответы. Допускается две арифметические или другие не значительные ошибки не связанные на прямую со знанием дисциплины.

Оценка: 4

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Допускается выполнение заданий с одной ошибкой связанной со знанием дисциплины. На дополнительные вопросы даны полные или с небольшими неточностями ответы.

Оценка: 3

Нижний порог выполнения задания в процентах: 65

Описание характеристики выполнения знания: Допускается выполнение заданий не в полном объеме или с двумя грубыми ошибками связанными со знанием дисциплины. Не на все дополнительные вопросы даны полные ответы.

Оценка: 2

Описание характеристики выполнения знания: Сделано только одно из трех заданий или допущено более двух ошибок связанных со знанием дисциплины. На дополнительные вопросы даны не правильные или с неточные ответы.

ІІІ. Правила выставления итоговой оценки по курсу

Оценка выставляется по формуле 0.3*"оценка текущей аттестации"+0.7*"оценка промежуточной аттестации" с математическим округлением