Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 15.04.06 Мехатроника и робототехника

Наименование образовательной программы: Разработка компьютерных технологий управления и математического моделирования в робототехнике и мехатронике

Уровень образования: высшее образование - магистратура

Форма обучения: Очная

Оценочные материалы по дисциплине Оптимальное проектирование

> Москва 2025

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

 Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

 Сведения о владельце ЦЭП МЭИ

 Владелец
 Свириденко О.В.

 Идентификатор
 R9097b88f-SviridenkoOV-16830d5

Разработчик

СОГЛАСОВАНО:

Руководитель образовательной программы

Заведующий	
выпускающей	
кафедрой	

HE MINDS	Подписано электронной подписью ФГБОУ ВО «НИУ «МЗ				
	Сведения о владельце ЦЭП МЭИ				
	Владелец Свириденко О.В.				
» <u>МЭИ</u> «	Идентификатор	R9097b88f-SviridenkoOV-16830d5			

NOSO NOSO	Подписано электрон	ной подписью ФГБОУ ВО «НИУ «МЭИ»		
100	Сведения о владельце ЦЭП МЭИ			
	Владелец	Меркурьев И.В.	11.	
» <u>МЭИ</u> «	Идентификатор	Rd52c763c-MerkuryevIV-1e4a8830	Me	

О.В. Свириденко

Свириденко

O.B.

И.В. Меркурьев

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

1. ПК-1 Способен разрабатывать техническое задание на проектирование мехатронных и робототехнических систем их подсистем, участвовать в разработке конструкторской и проектной документации в соответствии с имеющимися стандартами и техническими условиями

ИД-3 Выбирает оптимальные решения при разработке мехатронных и робототехнических систем и их подсистем на основе анализа и обобщения отечественного и зарубежного опыта в области их проектирования

и включает:

для текущего контроля успеваемости:

Форма реализации: Письменная работа

- 1. Контрольная работа 1. «Решение оптимизационных задач» (Контрольная работа)
- 2. Тест 1. Математическая постановка оптимизационных задач (Тестирование)
- 3. Тест 2. Методы одномерной оптимизации (Тестирование)
- 4. Тест 3. Методы многомерной оптимизации (Тестирование)

БРС дисциплины

3 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Тест 1. Математическая постановка оптимизационных задач (Тестирование)
- КМ-2 Тест 2. Методы одномерной оптимизации (Тестирование)
- КМ-3 Тест 3. Методы многомерной оптимизации (Тестирование)
- КМ-4 Контрольная работа 1. «Решение оптимизационных задач» (Контрольная работа)

Вид промежуточной аттестации – Экзамен.

	Веса контрольных мероприятий, %				й, %
Роспол писумуници	Индекс	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	1	2	3	4
	Срок КМ:	4	8	12	16
Математическая постановка задач оптимизации					
Математическая постановка задач оптимизации	+	+	+		
Обзор современного состояния средств решения зад оптимизации	+	+	+		

Математические методы одномерной оптимизации				
Одномерная оптимизация	+	+	+	
Математические методы многомерной оптимизации				
Симплекс-методы в задачах многомерной оптимизации	+	+	+	
Методы случайного поиска в задачах многомерной оптимизации	+	+	+	
Методы последовательных направлений в задачах многомерной оптимизации	+	+	+	
Метод Хука-Дживса в задачах многомерной оптимизации	+	+	+	
Градиентные методы многомерной оптимизации	+	+	+	
Ньютоновские методы многомерной оптимизации	+	+	+	
Линейное программирование	+	+	+	
Основные методы решения задач с активными и пассивными ограничениями				
Оптимизация в задачах с пассивными ограничениями	+	+	+	+
Многокритериальная оптимизация	+	+	+	+
Применение методов оптимизации к решению задач оптимального проектирования типовых конструкций				
Оптимальное проектирование стержня постоянного и переменного сечения с целью отстройки первой собственной частоты колебаний от опасных резонансов с учетом минимизации массы				+
Оптимальное проектирование кольцевой пластины переменной толщины при осесимметричном изгибе				+
Проектирование равнопрочных конструкций				+
Bec KM:	15	25	25	35

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	_	результаты обучения по	
		дисциплине	
ПК-1	ИД-3пк-1 Выбирает	Знать:	КМ-1 Тест 1. Математическая постановка оптимизационных задач
	оптимальные решения при	Методы решения задач	(Тестирование)
	разработке мехатронных и	многокритериальной	КМ-2 Тест 2. Методы одномерной оптимизации (Тестирование)
	робототехнических систем	оптимизации, методы	КМ-3 Тест 3. Методы многомерной оптимизации (Тестирование)
	и их подсистем на основе	построения множества	КМ-4 Контрольная работа 1. «Решение оптимизационных задач»
	анализа и обобщения	Парето-оптимальных	(Контрольная работа)
	отечественного и	решений	
	зарубежного опыта в	Методы многомерной	
	области их	оптимизации с учетом	
	проектирования	ограничений: теорема	
		Куна – Таккера, метод	
		Бокса, метод штрафных	
		функций, метод барьеров	
		Уметь:	
		Применять изученные	
		алгоритмы оптимизации к	
		решению прикладных	
		проектно-	
		конструкторских,	
		производственно-	
		технологических и научно-	
		исследовательских задач	
		на базе современных	
		компьютерных технологий	
		Выбирать наиболее	

эффект	гивный в данных
услови	ях метод решения
задачи	оптимизации
Осозна	авать основные
пробле	емы оптимального
проект	тирования
констр	укций, при решении
которы	их возникает
необхо	рдимость в сложных
задачах	х выбора,
требую	ощих использования
количе	ественных и
качест	венных методов

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Тест 1. Математическая постановка оптимизационных задач

Формы реализации: Письменная работа

Тип контрольного мероприятия: Тестирование **Вес контрольного мероприятия в БРС:** 15

Процедура проведения контрольного мероприятия: Тестирование.

Краткое содержание задания:

Письменные ответы на вопросы

Контрольные вопросы/задания:	
Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	
Знать: Методы многомерной оптимизации	1.Понятие оптимального проектирования.
с учетом ограничений: теорема Куна –	Примеры оптимально спроектированных
Таккера, метод Бокса, метод штрафных	объектов
функций, метод барьеров	2.Суть задачи оптимизации. Пример задачи
	оптимизации
	3.Параметры проектирования. Примеры
	4.Критерии завершения поиска
	оптимального решения
	5.Классификация задач оптимизации
	6.Целевая функция задачи оптимизации.
	Принцип выбора целевой функции.
	Примеры
	7. Активные ограничения в задачах
	оптимизации. Примеры
	8.Пассивные ограничения в задачах
	оптимизации. Примеры
	9.Основной принцип поисковых методов
	оптимизации
	10.Задачи линейного программирования.
	Распространенность на практике, примеры
Уметь: Выбирать наиболее эффективный в	1.Сформулировать задачу оптимизации по
данных условиях метод решения задачи	заданным критериям для предложенного
оптимизации	объекта
	2.Сформулировать целевую функцию для
	предложенной задачи оптимизации и
	обосновать решение
	3.Поставить ограничения в предложенной
	задаче оптимизации, исходя из
	физических, технологических и
	экономических соображений
	4.Перечислить параметры проектирования
	в предложенной задаче оптимизации.
	Выделить управляемые параметры
	5.Сформулировать критерий завершения
	поиска. Обосновать выбор

Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	
	6.Классифицировать предложенную задачу
	оптимизации

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Студент полностью освоил в необходимом объеме и способен уверенно применить на практике следующие знания: 1. Постановка задачи оптимизации. Основные понятия 2. Параметры проектирования в задачах оптимального проектирования конструкций 3. Целевая функция. Целевые функции в задачах оптимального проектирования конструкций 4. Активные ограничения в задачах оптимизации 5. Пассивные ограничения в задачах оптимизации 6. Классификация оптимизационных задач 7. Критерии завершения поиска оптимального решения

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Студент освоил в достаточном объеме и способен применить на практике следующие знания или имеет недостаток знаний по одному из пунктов: 1. Постановка задачи оптимизации. Основные понятия 2. Параметры проектирования в задачах оптимального проектирования конструкций 3. Целевая функция. Целевые функции в задачах оптимального проектирования конструкций 4. Активные ограничения в задачах оптимизации 5. Пассивные ограничения в задачах оптимизации 6. Классификация оптимизационных задач 7. Критерии завершения поиска оптимального

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Студент частично освоил и может с трудом применить на практике следующие знания или имеет существенный недостаток знаний по двум пунктам: 1. Постановка задачи оптимизации. Основные понятия 2. Параметры проектирования в задачах оптимального проектирования конструкций 3. Целевая функция. Целевые функции в задачах оптимального проектирования конструкций 4. Активные ограничения в задачах оптимизации 5. Пассивные ограничения в задачах оптимизации 6. Классификация оптимизационных задач 7. Критерии завершения поиска оптимального решения

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-2. Тест 2. Методы одномерной оптимизации

Формы реализации: Письменная работа

Тип контрольного мероприятия: Тестирование **Вес контрольного мероприятия в БРС:** 25

Процедура проведения контрольного мероприятия: Тестирование.

Краткое содержание задания:

Письменные ответы на вопросы

Запланированные	результаты	обучения	ПО	Вопросы/задания для проверки
дисциплине				

Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	
Уметь: Выбирать наиболее эффективный в	1.Применение четырехточечных
данных условиях метод решения задачи	алогоритмов к решению предложенной
оптимизации	задачи
	2.Применение метода Хука-Дживса к
	предложенной задаче
	3. Сравнение скорости сходимости
	четырехточечных алгоритмов

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Студент в полной мере в соответствии с предложенной информацией освоил знания по следующим пунктам и способен их применять: 1. Метод перебора на сетке 2. Метод дихотомии 3. Метод золотого сечения 4. Метод Фибоначчи 5. Метод Хука-Дживса 6. Метод полиномиальной аппроксимации

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Студент в достаточной мере освоил знания по следующим пунктам и способен их применять или имеет существенный недостаток знаний по одному из пунктов: 1. Метод перебора на сетке 2. Метод дихотомии 3. Метод золотого сечения 4. Метод Фибоначчи 5. Метод Хука-Дживса 6. Метод полиномиальной аппроксимации

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Студент частично освоил знания по следующим пунктам и способен их применять с переменным успехом или недостаточной эффективностью или имеет существенный недостаток знаний по двум пунктам: 1. Метод перебора на сетке 2. Метод дихотомии 3. Метод золотого сечения 4. Метод Фибоначчи 5. Метод Хука-Дживса 6. Метод полиномиальной аппроксимации

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-3. Тест 3. Методы многомерной оптимизации

Формы реализации: Письменная работа

Тип контрольного мероприятия: Тестирование **Вес контрольного мероприятия в БРС:** 25

Процедура проведения контрольного мероприятия: Тестирование.

Краткое содержание задания:

Выполнение тестов по тематике раздела 3

Запланированнь	іе результаты	обучения	ПО	Вопросы/задания для проверки
дисциплине				
Знать: Методы	многомерной	оптимизации	и с	1.Метод покоординатного спуска
учетом огранич	ений: теорема	Куна – Такк	epa,	2.Метод ортогональных
метод Бокса, м	етод штрафных	функций, ме	тод	направлений (метод вращающихся

Запланированные дисциплине	результаты	обучения	ПО	Вопросы/задания для проверки
барьеров				координат) 3.Метод сопряженных направлений (метод Пауэлла) 4.Метод Хука-Дживса 5.Метод Нелдера-Мида (метод деформируемого многогранника) 6.Метод наискорейшего спуска 7.Метод тяжелого шарика 8.Метод сопряженных градиентов 9.Метод Ньютона 10.Понятие о квазиньютоновских методах 11.Методы решения задач линейного программирования
Уметь: Выбирать данных условиях оптимизации	наиболее метод р	эффективныі решения за,	й в дачи	1.Аппроксимация градиента целевой функции 2.Аппроксимация матрицы Гессе целевой функции 3.Оптимальное использование ресурсов при применение квазиньютоновских методов 4.Применение метода Нелдера-Мида к решению предложенной задачи 5.Применение метода Хука-Дживса к решению предложенной задачи 6.Применение метода наискорейшего спуска к решению предложенной тредложенной задачи 7.Применение метода Ньютона к решению предложенной задачи

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Студент в полной мере в соответствии с предложенной информацией освоил знания по следующим пунктам и способен успешно их применять: 1. Метод покоординатного спуска 2. Метод ортогональных направлений 3. Метод сопряженных направлений 4. Метод Хука-Дживса 5. Метод Нелдера-Мида 6. Метод наискорейшего спуска 7. Метод сопряженных градиентов 8. Метод Ньютона

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Студент в достаточной мере в соответствии с предложенной информацией освоил знания по следующим пунктам и способен успешно их применять или имеет недостаток знаний по одному пункту: 1. Метод покоординатного спуска 2. Метод ортогональных направлений 3. Метод сопряженных направлений 4. Метод Хука-Дживса 5. Метод Нелдера-Мида 6. Метод наискорейшего спуска 7. Метод сопряженных градиентов 8. Метод Ньютона

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Студент частично освоил знания по следующим пунктам и способен применять их с переменным успехом или имеет недостаток знаний по двум пунктам: 1. Метод покоординатного спуска 2. Метод ортогональных направлений 3. Метод сопряженных направлений 4. Метод Хука-Дживса 5. Метод Нелдера-Мида 6. Метод наискорейшего спуска 7. Метод сопряженных градиентов 8. Метод Ньютона

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

КМ-4. Контрольная работа 1. «Решение оптимизационных задач»

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 35

Процедура проведения контрольного мероприятия: Работа выполняется в письменном виде. Отдельные элементы допускается выполнять с применением ЭВМ с обязательным предоставлением кода, таблиц, графиков, использованных в процессе работы.

Краткое содержание задания:

Необходимо решить поставленные задачи предложенными методами и выполнить требуемые процедуры по анализу эффективности. Дать заключение

Контрольные вопросы/задания:				
Запланированные результаты обучения по	Вопросы/задания для проверки			
дисциплине				
Знать: Методы решения задач	1.Целевые функции в задачах			
многокритериальной оптимизации, методы	оптимального проектирования			
построения множества Парето-оптимальных	конструкций			
решений	2.Подходы к решению задач поиска			
	глобального минимума			
	3. Метод множителей Лагранжа для			
	решения задач с ограничениями-			
	равенствами			
	4. Теорема Куна-Таккера и ее			
	применение к решению задач с			
	ограничениями-неравенствами			
	5.Суть метода штрафных функций.			
	Виды штрафов			
	6.Суть метода барьеров. Виды барьеров			
	7. Метод Бокса и его отличия от метода			
	Нелдера-Мида			
Уметь: Осознавать основные проблемы	1.Применение метода Бокса			
оптимального проектирования конструкций,	2.Составление штрафных функций			
при решении которых возникает	3.Составление барьерных функций			
необходимость в сложных задачах выбора,	4.Сформулировать способ построения			
требующих использования количественных и	множества Парето-оптимальных			
качественных методов	решений			
Уметь: Применять изученные алгоритмы	1.Сформулировать целевую функцию и			
оптимизации к решению прикладных	ограничения для задачи оптимального			
проектно-конструкторских, производственно-	проектирования стержня с			
технологических и научно-исследовательских	ограничением на собственные частоты			

Запланированные результаты обучения по	Вопросы/задания для проверки
Запланированные результаты обучения по дисциплине задач на базе современных компьютерных технологий	Вопросы/задания для проверки 2.Сформулировать целевые функции и ограничения для проектирования стержня тонкого профиля для минимизации стоимости изготовления, массы, объема, площади листового материала 3.Предложить критерий отбора квазиоптимального решения из Паретооптимального множества
	4.Формулировка задачи проектирования равнопрочного стержня при наличии ограничений 5.Формулировка задачи проектирования равнопрочной круговой/кольцевой пластины при наличии ограничений 6.Проектирование равнопрочного резервуара при наличии ограничений

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 85

Описание характеристики выполнения знания: Студент в полной мере в соответствии с предложенной информацией освоил знания по следующим пунктам и способен успешно их применять: Знания по разделам 1-5. Метод множителей Лагранжа. Теорема Куна-Таккера. Метод Бокса. Метод штрафных функций. Метод барьеров. Подходы к решению задач многокритериальной оптимизации. Построение множества Парето-оптимальных решений. Проектирование равнопрочных конструкций.

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Студент в полной мере в соответствии с предложенной информацией освоил знания по разделам 1-5. Студент в достаточной мере освоил знания по следующим пунктам и способен успешно их применять или имеет существенный недостаток знаний по одному пункту: Метод множителей Лагранжа. Теорема Куна-Таккера. Метод Бокса. Метод штрафных функций. Метод барьеров. Подходы к решению задач многокритериальной оптимизации. Построение множества Парето-оптимальных решений. Проектирование равнопрочных конструкций.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Студент частично освоил знания по разделам 1-5. Студент частично освоил знания по следующим пунктам и способен их применять с переменным успехом или имеет существенный недостаток знаний по двум пунктам: Метод множителей Лагранжа. Теорема Куна-Таккера. Метод Бокса. Метод штрафных функций. Метод барьеров. Подходы к решению задач многокритериальной оптимизации. Построение множества Парето-оптимальных решений. Проектирование равнопрочных конструкций.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется если задание выполнено неверно или преимущественно не выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

3 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

- 1. Общая схема решения оптимизационных задач. Критерии завершения поиска.
- 2. Градиентные методы многомерной безусловной оптимизации. Суть метода сопряжённых градиентов.
- 3. Выполнить несколько шагов алгоритма Нелдера-Мида (минимизация) с начальным приближением (-1, 0; 1,0; 0, 1) применительно к функции Розенброка двух переменных:

Процедура проведения

После успешного выполнения контрольных мероприятий и РГР студент проходит опрос, по результатам которого выставляется оценка

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД- $3_{\Pi K-1}$ Выбирает оптимальные решения при разработке мехатронных и робототехнических систем и их подсистем на основе анализа и обобщения отечественного и зарубежного опыта в области их проектирования

Вопросы, задания

- 1.Описать процесс составления оптимизационной задачи. Указать необходимые составляющие
- 2. Классифицировать предложенную задачу оптимизации
- 3. Объяснить принципы выбора целевых функций и функций-ограничений в задачах оптимального проектирования конструкций
- 4. Применить три шага метода золотого сечения для минимизации предложенной целевой функции
- 5. Выполнить три шага метода Хука-Дживса для минимизации предложенной целевой функции
- 6.Выполнить три шага метода Нелдера-Мида для минимизации предложенной целевой функции
- 7.Выполнить три шага выбранного градиентного метода для минимизации предложенной целевой функции
- 8.Объяснить суть методов штрафных функций и барьеров. Объяснить ключевые различия
- 9. Объяснить особенности решения задачи минимизации мультимодальной функции. Сделать выводы о пригодности изученных методов к решению подобной задачи 10. Дать понятие оптимальности по Парето. Предложить способ построения Паретооптимального множества решений

Материалы для проверки остаточных знаний

1. Что требуется для постановки задачи оптимального проектирования конструкции? Ответы:

Необходимо перечислить необходимые составляющие задачи оптимизации и последовательность действий

Верный ответ: Для постановки задачи оптимизации необходимо: - определить границы изучаемой системы - выбрать критерий, на основе которого можно оценить систему - выбрать независимые переменные, описывающие систему - построить математическую модель системы - сформулировать целевую функцию - задать прямые ограничения - задать функциональные ограничения

2. Точка x0, для которой выполняется неравенство f(x) < f(x0) для любого x из области определения, отличного от x0, называется

Ответы:

- а. точкой глобального минимума;
- б. точкой глобального максимума;
- в. точкой локального минимума;
- г. точкой локального максимума.

Верный ответ: а. точка глобального минимума

3.Внутренние параметры модели, которые могут меняться в процессе оптимизации, и являющиеся аргументами целевой функции, называются:

Ответы:

- а. проектными переменными;
- б. параметрами качества;
- в. выходными параметрами;
- г. управляемыми параметрами.

Верный ответ: г. управляемыми параметрами.

4.Методы минимизации функции, в которых используют значения функции в точках рассматриваемого промежутка и не используют значения ее производных, называют

Ответы:

- а. методами оптимизации;
- б. методами прямого поиска;
- в. методами пассивного поиска;
- г. методами последовательного поиска.

Верный ответ: б. методы прямого поиска

- 5. Применим ли классический метод Ньютона к отысканию экстремума функции f = |x|? Ответы:
- а. применим;
- б. неприменим;
- в. только на определённом отрезке;
- г. при дополнительных условиях.

Верный ответ: б. неприменим

- 6. Какие из ниже перечисленных методов относятся к методам одномерной оптимизации? Ответы:
- а. методы Розенброка, Хука-Дживса, Нелдера-Мида, случайного поиска;
- б. методы быстрого спуска, сопряженных градиентов, переменной метрики;
- в. методы быстрого спуска, Розенброка, Хука-Дживса, метод золотого сечения;
- г. метод дихотомии, метод золотого сечения, метод чисел Фибоначчи, метод полиномиальной аппроксимации.

Верный ответ: г. метод дихотомии, метод золотого сечения, метод чисел Фибоначчи, метод полиномиальной аппроксимации.

7. Применить метод золотого сечения к $f(x) = 0.5*ch(x)+x^3-3*x^2,x\in[0,5]$

Ответы:

Пошаговое выполнение алгоритма золотого сечения приводит к последовательности значений

x0 =

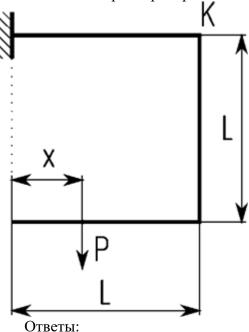
x1 =

x2 =

. . .

Верный ответ: Приведена последовательность вычислений. В пределах точности аргумента 0.01 точка стремится к $x^* = 1.74$ $y^* = -2.35$

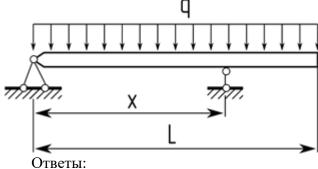
8. Применить метод Ньютона для минимизации функции $f(x)=x^2-3*x+4$. Начальное приближение выбрать произвольно. Объяснить происходящее.


Ответы:

Студент применяет метод Ньютона. Должно быть четко указано, что для квадратичных функций одной переменной метод дает точное решение за одну итерацию.

Верный ответ: $x^* = 1,5$, для предложенной целевой функции метод сходится за одну итерацию независимо от выбора начального приближения

9.Определить положение точки приложения силы P, при котором абсолютное значение перемещения точки K минимально.


Недостающие параметры принять самостоятельно.

Студент получает формулу, описывающую перемещение точки К как параметра координаты х точки приложения силы Р (например, применив интеграл Максвелла-Мора). Эта формула принимается в качестве целевой функции. Также ставятся прямые ограничения на координату х. Полученная задача оптимизации решается любым известным способом (приоритетным является самый малозатратный).

Верный ответ: x = L/3, результат получен при незначительных вычислительных затратах

10.Определить положение опоры x с точки зрения минимизации нормальных напряжений в балке, нагруженной равномерно распределённой нагрузкой q. Недостающие параметры принять самостоятельно.

Студент получает эпюру изгибающих моментов как функцию координаты (параметра) x. При EJ=const в качестве целевой функции можно принять максимум абсолютного

значения изгибающего момента. Далее выполняются действия по нахождению минимума целевой функции.

Допустимо определять оптимальное положение опоры исходя из равенства максимальных значений изгибающего момента в пролете и на свесе балки, но требуется пояснение, из каких соображений выбран этот подход.

Верный ответ: x составляет приблизительно 0,71*L или предоставлен результат в символьном виде

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

III. Правила выставления итоговой оценки по курсу

Оценка определяется по совокупности результатов текущего контроля успеваемости в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ». В приложение к диплому выносится оценка за 3 семестр.