Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 15.04.06 Мехатроника и робототехника

Наименование образовательной программы: Разработка компьютерных технологий управления и математического моделирования в робототехнике и мехатронике

Уровень образования: высшее образование - магистратура

Форма обучения: Очная

Оценочные материалы по дисциплине Электропневмогидравлические модули робототехнических систем

Москва 2024

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

 Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»

 Сведения о владельце ЦЭП МЭИ

 Владелец
 Меркурьев И.В.

 Идентификатор
 Rd52c763c-MerkuryevIV-1e4a8830

СОГЛАСОВАНО:

Руководитель образовательной программы

Разработчик

	a necessarion per	Подписано электронн	ои подписью ФГБОУ ВО «НИУ «МЭИ»
		Сведен	ия о владельце ЦЭП МЭИ
	New Mem	Владелец	Свириденко О.В.
		Идентификатор	R9097b88f-SviridenkoOV-16830d5

О.В. Свириденко

Меркурьев

И.В.

Заведующий выпускающей кафедрой

C NO NO	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»		
	Сведения о владельце ЦЭП МЭИ		
	Владелец	Меркурьев И.В.	
» <u>МЭИ</u> «	Идентификатор	Rd52c763c-MerkuryevIV-1e4a883(

И.В. Меркурьев

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ПК-1 Способен разрабатывать техническое задание на проектирование мехатронных и робототехнических систем их подсистем, участвовать в разработке конструкторской и проектной документации в соответствии с имеющимися стандартами и техническими условиями
 - ИД-2 Определяет технические и технико-экономические характеристики при проектировании мехатронных и робототехнических систем их подсистем и отдельных устройств с использованием стандартных исполнительных и управляющих устройств, средств автоматики, измерительной и вычислительной техники, а также новых устройств и подсистем
 - ИД-3 Выбирает оптимальные решения при разработке мехатронных и робототехнических систем и их подсистем на основе анализа и обобщения отечественного и зарубежного опыта в области их проектирования
- 2. ПК-2 Способен организовывать и проводить исследования мехатронных и робототехнических систем и их подсистем с учетом требований заказчиков ИД-1 Разрабатывает действующие макеты и опытные образцы управляющих, информационных и исполнительных модулей мехатронных и робототехнических систем и проводит эксперименты с применением современных информационных технологий и технических средств

и включает:

для текущего контроля успеваемости:

Форма реализации: Письменная работа

- 1. Классификация, схемотехнические исполнения, статические и динамические характеристи-ки гидромеханических следящих приводов с дроссельным управлением для силовых систем МРтС (Решение задач)
- 2. Морфологические «портреты» электропневмогидравлических модулей (ЭпгМ) для силовых систем мехатронных и робототехнических систем (МРтС). (Решение задач)
- 3. Расчёт энергетических, регулировочных характеристик и зоны нечувствительности следящего привода с дроссельным управлением для заданных законов движения и структуры нагрузки регулируемых органов (РО) МРтС. (Контрольная работа)
- 4. Схемотехнические исполнения, энергетические, регулировочные и динамические характеристики шаговых приводов, приводов с насосным, моторным и частотным управлением и автономных гидроприводов. Перспективы применения в приводах новых решений. (Контрольная работа)

БРС дисциплины

2 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по дисциплине:

- КМ-1 Морфологические «портреты» электропневмогидравлических модулей (ЭпгМ) для силовых систем мехатронных и робототехнических систем (МРтС). (Решение задач)
- КМ-2 Классификация, схемотехнические исполнения, статические и динамические характеристи-ки гидромеханических следящих приводов с дроссельным управлением для силовых систем МРтС (Решение задач)
- КМ-3 Расчёт энергетических, регулировочных характеристик и зоны нечувствительности следящего привода с дроссельным управлением для заданных законов движения и структуры нагрузки регулируемых органов (РО) МРтС. (Контрольная работа)
- КМ-4 Схемотехнические исполнения, энергетические, регулировочные и динамические характеристики шаговых приводов, приводов с насосным, моторным и частотным управлением и автономных гидроприводов. Перспективы применения в приводах новых решений. (Контрольная работа)

Вид промежуточной аттестации – Экзамен.

	Веса контр	ольны	х меро	прияти	й, %
D.,	Индекс	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	1	2	3	4
	Срок КМ:	4	8	12	16
Назначение ЭпгМ в составе МРтС. Морфологически	й метод				
генерирования вариантов модулей. Исходная и расчё	тная				
структуры ЭпгМ. Законы движения регулируемых ор	оганов				
МРтС. Статические характеристики. Критерии					
энергодостаточности, чувствительности и статическо	ой точности.				
Расчёт базовых параметров энергетического контура	модулей				
Назначение ЭпгМ в составе МРтС. Морфологически					
генерирования вариантов модулей. Исходная и расчё	тная				
структуры ЭпгМ. Законы движения регулируемых ор	оганов	+			
МРтС. Статические характеристики. Критерии					
энергодостаточности, чувствительности и статическо					
Расчёт базовых параметров энергетического контура	модулей				
Гидромеханический следящий привод с дроссельным					
управлением потоками жидкости как базовый исполн	нительный				
модуль силовой системы МРтС					
Гидромеханический следящий привод с дроссельным					
управлением потоками жидкости как базовый исполн	нительный		+		
модуль силовой системы МРтС					
Электрогидравлический следящий привод с дроссель					
управлением потоками жидкости как комбинированн	ный				
исполнительный модуль силовой системы МРтС					
Электрогидравлический следящий привод с дроссель					
управлением потоками жидкости как комбинированный				+	
исполнительный модуль силовой системы МРтС					
Шаговые электрогидростатические следящие приводы.					
Объёмные гидроприводы с машинным и частотным					
правлением. Автономные моноблочные					
электрогидростатические следящие приводы. Надёжность					
приводов. Современное состояние и перспективы раз	вития				

Шаговые электрогидростатические следящие приводы.				
Объёмные гидроприводы с машинным и частотным				
управлением. Автономные моноблочные				+
электрогидростатические следящие приводы. Надёжность				
приводов. Современное состояние и перспективы развития				
Bec KM:	20	30	30	20

БРС курсовой работы/проекта

2 семестр

Перечень контрольных мероприятий <u>текущего контроля</u> успеваемости по курсовой работе:

- КМ-1 Оценка выполнения первого раздела КР: Расчёт приведённой нагрузки, формирова-ние эквивалентной схемы ЭГСП/Д.
- КМ-2 Оценка выполнения второго раздела КР: Расчёт законов движения эквивалентного гидродвигателя, скоростных и тяговых характеристик, диаграммы нагрузки, расчёт привода по критерию энергодостаточности, подбор комплектующих привода. Соблюдение графика выполнения КР.
- КМ-3 Оценка выполнения третьего раздела КР: Формирование математической модели, расчёт частотных и временных характеристик ненагруженного и нагруженного ЭГСП/Д. Расчёт зоны нечувствительности, точности слежения, добротности привода по скорости. Соблюдение графика выполнения КР.
- КМ-4 Оценка выполнения четвёртого раздела КР: Определение частных ПР, ПК, расчёт относительных безразмерных ПК и ОФК, формирование сводной таблицы ПР, ПК, ОФК, построение лепестковых диаграмм, выбор предпочтительного проектного ва-рианта привода. Оценка качества оформления КР.

Вид промежуточной аттестации – защита КР.

	Веса контр	ольны	х мероі	прияти	й, %
Doo wood waxaayaayaaya	Индекс	КМ-	КМ-	КМ-	КМ-
Раздел дисциплины	KM:	1	2	3	4
	Срок КМ:	4	8	12	16
Ознакомление с заданием на КР. Расчёт приведённо	й нагрузки,				
формирование эквивалентной схемы ЭГСП/Д		+			
Расчёт законов движения эквивалентного гидродвиг	ателя,				
скоростных и тяговых характеристик, диаграммы на	грузки,		+		
расчёт привода по критерию энергодостаточности, г	юдбор				
комплектующих привода					
Формирование математической модели, расчёт частотных и					
временных характеристик ненагруженного и нагруж	временных характеристик ненагруженного и нагруженного			+	
ЭГСП/Д. Расчёт зоны нечувствительности, точности слежения,				'	
добротности привода по скорости.					
Определение частных ПР, ПК, расчёт относительны					
безразмерных ПК и ОФК, формирование сводной таблицы ПР,					
ПК, ОФК, построение лепестковых диаграмм, выбор					+
предпочтительного проектного варианта привода. Оформление					
KP.					
	Bec KM:	10	25	35	30

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	_	результаты обучения по	
		дисциплине	
ПК-1	ИД-2пк-1 Определяет	Знать:	КМ-2 Классификация, схемотехнические исполнения, статические и
	технические и технико-	методы получения	динамические характеристи-ки гидромеханических следящих
	экономические	расчётных схем	приводов с дроссельным управлением для силовых систем МРтС
	характеристики при	эквивалентного	(Решение задач)
	проектировании	замещения, принципы и	КМ-3 Расчёт энергетических, регулировочных характеристик и зоны
	мехатронных и	способы формирования	нечувствительности следящего привода с дроссельным управлением
	робототехнических систем	рас-чётных структур	для заданных законов движения и структуры нагрузки регулируемых
	их подсистем и отдельных	1	органов (РО) МРтС. (Контрольная работа)
	устройств с	обликов эквивалентных	
	использованием	схем ЭпгМ и их частей.	
	стандартных	Уметь:	
	исполнительных и	осуществлять расчёт ЭпгМ	
	управляющих устройств,	по критериям	
	средств автоматики,	энергодостаточности,	
	измерительной и	чувствительности,	
	вычислительной техники,	статической и динамиче-	
	а также новых устройств и	ской точности,	
	подсистем	быстродействию,	
		статической и динами-	
		ческой жёсткости,	
		формировать	
		математические модели	
		отдельных	
		функциональных частей и	
		ЭпгМ в целом	

ПК-1	ИД-3 _{ПК-1} Выбирает оптимальные решения при разработке мехатронных и робототехнических систем и их подсистем на основе анализа и обобщения отечественного и зарубежного опыта в области их проектирования	современное состояние и	КМ-1 Морфологические «портреты» электропневмогидравлических модулей (ЭпгМ) для силовых систем мехатронных и робототехнических систем (МРтС). (Решение задач) КМ-4 Схемотехнические исполнения, энергетические, регулировочные и динамические характеристики шаговых приводов, приводов с насосным, моторным и частотным управлением и автономных гидроприводов. Перспективы применения в приводах новых решений. (Контрольная работа)
HIC 2		технического, эксплуатационного, экономического характера в многомерной постановке;	
ПК-2	ИД-1 _{ПК-2} Разрабатывает действующие макеты и опытные образцы управляющих, информационных и исполнительных модулей мехатронных и робототехнических систем и проводит эксперименты с применением современных информационных технологий и технических средств	Уметь: исследовать влияние различных нагружающих факторов, а также особенностей построения ЭпгМ на энергетические, регулировочные и динамические показатели привода, находить способы нейтрализации негативного и усиления положительного влияния данных факторов на требуемые ПР и ПК привода.	КМ-4 Схемотехнические исполнения, энергетические, регулировочные и динамические характеристики шаговых приводов, приводов с насосным, моторным и частотным управлением и автономных гидроприводов. Перспективы применения в приводах новых решений. (Контрольная работа)

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. Морфологические «портреты» электропневмогидравлических модулей (ЭпгМ) для силовых систем мехатронных и робототехнических систем (МРтС).

Формы реализации: Письменная работа

Тип контрольного мероприятия: Решение задач

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Ответы в письменной форме на заданные вопросы и решения задач по индивидуальным билетам.

Краткое содержание задания:

Ответить на вопросы:

- 1. Что такое показатели работоспособности, конкурентоспособности и побочные показатели технической системы, каков их перечень применительно к КАГП и КАПП.
- 2.В чём заключается специфика, преимущества и недостатки таких популярных методов оценки степени совершенства рассматриваемого решения, как метод морфологической комбинаторики и метод построения круговых лепестковых диаграмм.
- 3. Какова функциональная структура автоматизированного исполнительного модуля технического объекта, в частности, РтС.

Решить задачу:

В процессе разработки гидромеханического следящего привода с дроссельным управлением на этапе структурного синтеза данной системы решается задача выбора вида гидроусилителя (ГУ). В качестве альтернативных вариантов рассматриваются следующие виды ГУ:

- цилиндрические 4-х щелевые золотниковые пары (ЗГУ4.Ц);
- цилиндрические 2-х щелевые золотниковые пары (ЗГУ2.Ц;
- золотниковых пар с 4-х щелевыми золотниками шайбами (ЗГУ.Ш);
- золотниковые пары с 4-х щелевыми плоскими золотниками на торсионном подвесе (ЗГУ.ПТ);
- симметричные усилители типа сопло-заслонка с подвижной заслонкой и неподвижными соплами (C3);
- симметричные усилители типа струйная трубка с подвижной трубкой (СТ). Известно, что основными требованиями (частными показателями конкурентоспособности ПК), предъявляемыми к ЗГУ, являются:
- экономичность работы, т.е. отсутствие непроизводительного расхода рабочей жидкости ПК1;
- жёсткость расходно-перепадных характеристик (РПХ) ПК2;
- высокие значения коэффициента усиления ЗГУ по давлению ПКЗ;
- чувствительность ЗГУ ПК4;
- статическая точность усилителя ПК5;
- способность работать при повышении рабочего давления в гидросистеме (при её последующей модернизации) ПК6;
- pecypc ΠΚ7;
- надёжность ПК8;
- живучесть ПК9;
- минимальные массогабаритные показатели (компактность) ПК10;
- минимальная стоимость изготовления ПК11;
- технологичность изготовления ПК12;
- удобство компоновки в составе ГМСП/Д ПК13.

Весовые коэффициенты ai, оценивающие значимость перечисленных выше частных требований к ЗГУ, определённые на основе статистических данных об использовании ГМСП/Д в составе конкретных технических объектов (ТО), таковы: a1=0,08;a2=0,10;a3=0,13;a4=0,12;a5=0,10;a6=-,05;a7=0,05;a8=0,12;a9=0,06;a10=0,06;a11=0,05;a12=0,03;a13=0,05. Используя метод морфологической комбинаторики, необходимо определить перспективность установки в составе ГМСП/Д для конкретного ТО того или иного типа гидроусилителя. Построить график зависимости степени конкурентоспособности различных ГУ из предложенного перечня.

Контрольные вопросы/задания:

Контрольные вопросы/задания:	
Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	
Знать: методы комплексной оценки,	1.В чём заключается специфика системно-
анализ работоспособности и	креативного подхода при исследовании
конкурентоспособности ЭпгМ по	свойств и разработке технической системы
совокупности частных показателей	для рыночного общества
технического, эксплуатационного,	2. Что такое показатели работоспособности,
экономического характера в многомерной	конкурентоспособности и побочные
поста-новке;	показатели технической системы, каков их
	перечень применительно к КАГП и КАПП
	3. Каким образом возможно учесть степень
	важности того или иного частного
	показателя конкурентоспособности при
	решении расчётно-проектной задачи
	4.Можно ли утверждать, что методы
	морфологической комбинаторики и
	лепестковых диаграмм являются методами
	оценки не только структуры, но параметрии
	решения
	5. Каковы преимущества и недостатки
	введения обобщённого функционала
	конкурентоспособности для оценки степени
	совершенства проектных вариантов решения
	6.Какие существуют подходы к решению
	обратной параметрической задачи при
	наличии конфликтных частных показателей
	конкурентоспособности (ПК)
	7. Каким требованиям должны удовлетворять
	весовые коэффициенты частных ПК
	8.Почему при решении задач
	параметрического синтеза не
	рассматриваются показатели
	работоспособности, обеспечивающие
	необходимое условие существования товара,
	т.е. показатели функциональной
	востребованности (назначения) будущего
	решения
	9.Почему изначально непрерывная задача
	параметрического синтеза на практике
	всегда превращается в дискретную, а
	зачастую и в комплексную, т.е. в дискретно-

Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	
	целочисленную задачу
	10.В чём преимущество решения обратной
	параметрической задачи при наличии
	конфликтных частных ПК в пространстве
	Парето

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если на все вопросы даны верные ответы, задача решена верно и решение сопровождается пояснениямикомментариями

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто. Задача решена верно, но комментарии-пояснения отсутствуют

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если даны верные ответы на большинство вопросов, представлен ход (алгоритм) решения задачи, но само решение не получено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если на большинство вопросов не дан верный ответ и не решена задача

КМ-2. Классификация, схемотехнические исполнения, статические и динамические характеристи-ки гидромеханических следящих приводов с дроссельным управлением для силовых систем MPTC

Формы реализации: Письменная работа

Тип контрольного мероприятия: Решение задач

Вес контрольного мероприятия в БРС: 30

Процедура проведения контрольного мероприятия: Ответы в письменной форме на заданные вопросы и решения задач по индивидуальным билетам.

Краткое содержание задания:

Ответить на вопросы:

- 1.По каким критериям выполняется классификация современных исполнительных модулей.
- 2. Можно ли утверждать, что реальные статические характеристики привода это масштабированные статические характеристики ЗГУ, входящего в состав привода
- 3.Почему исследовать устойчивость следует для модели ГМСП/Д без позиционной составляющей нагрузки, хотя анализ динамических ПК требуется выполнять для реального сочетания нагружающих факторов

Решить задачу:

При экспериментальном исследовании ненагруженного ГМСП/Д с единичными коэффициентами входа и обратной связи было установлено, что амплитудно-частотная

характеристика привода на частоте f0=40 Γ ц имеет ординату L0= -3 дБ, а смещение золотника ЗГУ относительно втулки соответствует предельной РПХ усилителя и равно xm=0,2 мм.

Исследования данного привода в тормозном режиме показали, что при давлении в линии гидропитания $p_{\rm II}=21~{\rm MHa}$ и давлении в гидролинии слива $p_{\rm II}=1~{\rm MHa}$ динамометр, присоединённый к заторможенному штоку привода, зафиксировал усилие $R_{\rm II}=20~{\rm kH}$. Определить:

- рабочую площадь поршня гидроцилиндра,
- скорость холостого хода штока ГМСП/Д,
- потребную подачу насосной станции, которой следует комплектовать привод при его эксплуатации в системе объекта,
- собственную частоту, постоянную времени ненагруженного привода и добротность привода по скорости.

При решении задачи использовать линейную математическую модель привода.

Контрольные вопросы/задания:

Контрольные вопросы/задания:	I /
Запланированные результаты обучения	Вопросы/задания для проверки
по дисциплине	
Знать: методы получения расчётных схем	1.Какие характеристики ГМСП/Д и ЗГУ
эквивалентного замещения, принципы и	называются статическими
способы формирования рас-чётных	2.Для какого состояния привода
структур модулей, определения обликов	(разомкнутого или замкнутого)
эквивалентных схем ЭпгМ и их частей.	рассматриваются его статические
	характеристики
	3.Почему при моделировании статических характеристик ЗГУ и ГМСП/Д не
	учитываются условные утечки жидкости
	4.В чём разница между идеальными и
	реальными статическими характеристиками
	четырёхщелевого ЗГУ и ГМСП/Д,
	укомплектованного данным усилителем
	5. Можно ли утверждать, что реальные
	статические характеристики привода – это
	масштабированные статические
	характеристики ЗГУ, входящего в состав
	привода
	6.Какой статической характеристике ЗГУ
	(расходной, перепадной, расходно-
	перепадной) соответствует механическая,
	нагрузочная и скоростная характеристика
	ГМСП/Д
	7.Зависит ли зона нечувствительности
	привода от перепада давлений по
	гидропитанию
	8.Почему расчёт параметров ГМСП/Д из
	условия обеспечения требуемой точности
	слежения необходимо выполнять,
	ориентируясь на предельную РПХ
	гидроусилителя, входящего в состав привода
	9. Можете ли Вы дать физическое объяснение
	того факта, что даже ненагруженный
	ГМСП/Д имеет динамические

Запланированные	результаты	обучения	Вопросы/задания для проверки
по дисциплине			
			характеристики, отличающиеся от
			соответствующих характеристик идеального
			привода
			10.Почему исследовать устойчивость следует
			для модели ГМСП/Д без позиционной
			составляющей нагрузки, хотя анализ
			динамических ПК требуется выполнять и для
			реального сочетания нагружающих факторов

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если на все вопросы даны верные ответы, задача решена верно и решение сопровождается пояснениямикомментариями

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто. Задача решена верно, но комментарии-пояснения отсутствуют

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если даны верные ответы на большинство вопросов, представлен ход (алгоритм) решения задачи, но само решение не получено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если на большинство вопросов не дан верный ответ и не решена задача

КМ-3. Расчёт энергетических, регулировочных характеристик и зоны нечувствительности следящего привода с дроссельным управлением для заданных законов движения и структуры нагрузки регулируемых органов (PO) МРтС.

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 30

Процедура проведения контрольного мероприятия: Ответы в письменной форме на заданные вопросы и решения задач по индивидуальным билетам.

Краткое содержание задания:

Ответить на вопросы:

- 1. Как формулируется критерий энергетической достаточности, а также критерий чувствительности ГМСП/Д.
- 2.В чём смысл перехода от реальной совокупности гидродвигателей и гидроусилителя ГМСП/Д к эквивалентному двигателю и эквивалентному гидроусилителю.
- 3.Почему анализ энергодостаточности достаточно выполнить для первого и третьего квадрантов поля, на котором определяется диаграммы нагрузки (ДН) и механические характеристики (МХ).

Решить задачу:

Известно, что выходное звено ГМСП/Д, имеющее инерционную и позиционную нагрузки, совершает симметричные гармонические колебания с амплитудой Ay=14 мм и частотой f = 2 Гц. ГМСП/Д получает гидропитание от насоса постоянной подачи с переливным клапаном, отрегулированным на давление рп=16 МПа, давление в гидролинии слива привода составляет pсл=1,2 МПа. Масса нагрузки, приведённая к выходному звену привода, равна m=200 кг, жёсткость позиционной нагрузки — C=105H/M.

Получить аналитические выражения для усилия и мощности N, развиваемых приводом в указанном режиме, найти соотношения для экстремума этой мощности и моментов времени tэ, в которые имеет место данный режим, а также выражения для развиваемых усилия и скорости движения выходного звена привода в моменты времени tэ. Из условия оптимизации привода по критерию энергодостаточности рассчитать усилие торможения привода, скорость холостого хода его выходного звена, рабочую площадь гидроцилиндра ГМСП/Д и потребную подачу насосной станции.

Контрольные вопросы/задания:	
Запланированные результаты обучения по	Вопросы/задания для проверки
дисциплине	
Уметь: осуществлять расчёт ЭпгМ по критериям	1. Каков сценарий определения ДН
энергодостаточности, чувствительности,	для заданного закона движения
статической и динамиче-ской точности,	регулируемого органа привода
быстродействию, статической и динами-ческой	2.Сформируйте алгоритм
жёсткости, формировать математические модели	определения базового параметра
отдельных функциональных частей и ЭпгМ в	гидродвигателя для условно
целом	вогнутой ДН
	3.Сформируйте алгоритм
	определения базового параметра
	гидродвигателя для условно
	выпуклой ДН
	4.Как определить точку
	наибольшей располагаемой
	мощности ГМСП/Д при
	реализации "двухточечного"
	сценария нахождения базового
	параметра ЭкД привода
	5.Как оценить энергетическую
	эффективность системы "ГМСП/Д - ДН привода"
	6.Каким образом можно оценить
	эффективность системы "ГМСПД
	- насосная станция с насосом
	постоянной подачи и переливным
	клапаном"
	7.Приведите сценарий учёта
	инерционности жидкости в
	соединительных гидролиниях
	между гидроусилителем и
	гидродвигателем ГМСП/Д
	8.Каков алгоритм пересчёта
	механической характеристики
	ГМСП/Д при округлении

Запланированные	результаты	обучения	ПО	Вопросы/задания для проверки
дисциплине				
				параметров гидродвигателя и
				усилителя привода
				9. Как связаны статическая
				точность ГМСП/Д для режима
				холостого хода и для режима
				работы с наибольшей
				располагаемой мощностью
				10. Каков алгоритм нахождения
				комплексной диаграммы нагрузки
				при условии отработки следящим
				привлдом сразу нескольких
				законов движения регулируемых
				органов

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если на все вопросы даны верные ответы, задача решена верно и решение сопровождается пояснениямикомментариями

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто. Задача решена верно, но комментарии-пояснения отсутствуют

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если даны верные ответы на большинство вопросов, представлен ход (алгоритм) решения задачи, но само решение не получено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если на большинство вопросов не дан верный ответ и не решена задача

KM-4. Схемотехнические исполнения, энергетические, регулировочные и динамические характеристики шаговых приводов, приводов с насосным, моторным и частотным управлением и автономных гидроприводов. Перспективы применения в приводах новых решений.

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Ответы в письменной форме на заданные вопросы и решения задач по индивидуальным билетам.

Краткое содержание задания:

Ответить на вопросы:

- 1. Можно ли считать, что насосное управление гидроприводом равноценно моторному управлению.
- 2.На основании каких соображений можно сделать вывод о том, что приводы с частотным управлением не имеют видимых преимуществ по диапазонам регулирования скоростей движения выходных звеньев, экономичности работы, суммарным массовым и габаритным показателям.
- 3. Какие диапазоны по скорости и развиваемому моменту на выходном звене имеет гидропривод с насос-моторным управлением при отсутствии и при наличии потерь энергии

Решить задачу:

Для вращения бора диаметром D=450 мм с частотой 120 об/мин угледобывающего комбайна спроектирована гидрообъёмная передача, состоящая из насоса постоянной подачи, гидромотора, вал которого соединён с бором, открытого гидробака и переливного клапана.

Усилие резания породы одним зубом равно 1,5 кH, число режущих зубьев бора составляет 20, давление настройки предохранительного клапана (ПК) составляет $p\kappa$ = 32 МПа.

Считая, что полный КПД каждой гидромашины равен 0.85, а объёмный -0.95, пренебрегая потерями гидравлической энергии в гидролиниях передачи, определить:

- теоретический и фактический моменты на валу гидромотора;
- выходную, входную мощности и потребную объёмную постоянную гидромотора, величину фактического расхода жидкости через мотор;
- объёмную постоянную, теоретические и фактические значения подач и моментов на валу насоса, если частота вращения вала составляет 2950 об/мин;
- затраты на оплату электроэнергии за одну 12- часовую смену работы передачи при вращении вала насоса электродвигателем с полным КПД, равным 0,89 и тарифе 0,05 у.е/кВт.ч.

Решить задачу для следующих вариантов:

- потери давления в соединительной гидролинии между напорным патрубком насоса и входным патрубком гидромотора составляют для указанного режима работы передачи 1,50 МПа;
- в сливной гидролинии гидромотора установлен подпорный клапан, настроенный на давление открытия 0,7 МПа;
- гидромотор установлен выше насоса на 20 м, а плотность рабочей жидкости равна 850 кг/м3.

Что изменится в работе передачи и в решении задачи, если вместо предохранительного клапана установить клапан переливной, настроенный на давление *р*к и пропускающий расход 15 л/мин?

Контрольные вопросы/задания:

Запланированные результаты обучения	ПО	Вопросы/задания для проверки
дисциплине		
Знать: современное состояние	И	1.Какие гидроприводы являются
перспективы развития ЭпгМ для МРтС		приводами с машинным и частотным
		управлением
		2.Какие преимущества и недостатки
		имеют ОГП с машинным и частотным
		управлением по сравнению с
		дроссельными гидроприводами
		3. Можно ли считать, что насосное и
		моторное управление равноценно (ответ
		следует обосновать)

Запланированные результаты обучения по дисциплине	Вопросы/задания для проверки
Уметь: исследовать влияние различных нагружающих факторов, а также особенностей построения ЭпгМ на энергетические, регулировочные и динамические показатели привода, находить способы нейтрализации негативного и усиления положительного влияния данных факторов на требуемые ПР и ПК привода.	4.Какие основные контуры образую структуру ОГП-НУ, ОГП-МУ, ОГП-МУ 5.Какие преимущества и недостатки имеют приводы с разомкнутым и замкнутым потоками жидкости 6.Зачем в конуры энергетики (КЭ) гидроприводов с машинным и частотным управлением часто вводят гидроаккумуляторы 7.Каково назначение подпиточного насоса в ОГП-НУ, почему вместо такого насоса в ОГП-ЧУ часто используют аккумулятор 8.Какие характеристики ОГП с машинным и частотным управлением называются статическими 9.Работоспособна ли схема ОГП, состоящая только из насоса и гидромотора (ответ необходимо обосновать) 10.можно ли утверждать, что КЭ гидропривода с машинным управлением это гидрообъёмный редуктор, заменяющий механический редуктор в традиционных электромеханических приводах 1.Сформируйте структуру ОГП-НУ и гидромотором 2.Какая принципиальная гидравлическая схема должна быть у электрогидравлического механизма управления рабочим объёмом насоса в ОГП-НУ 3.Как обеспечить подпитку силовых гидролиний в ОГП-МУ 4.Каким образом можно избежать "динамической подкачки" силовых гидролиний ОГП-НУ при отработке приводом гармонических управляющих сигналов 5.Сформируйте алгоритм расчёта скорости движения и тягового момента выходного звена ОГП-НУ при известных скорости движения и тягового момента выходного звена ОГП-НУ при известных скоростях и моментах на валу насоса 6.Сформируйте принципиальную гидравлическую схему ОГП-НУ, способного накапливать энергию жидкости от насоса в режимах малого энергопотребления 7.Сформируйте принципиальную

Запланированные результаты	обучения	ПО	Вопросы/задания для проверки
дисциплине			
			гидравлическую схему ОГП-НУ,
			способного накапливать энергию
			жидкости от гидромотора, работающего с
			помогающими нагрузками
			8.Предложите алгоритм расчёта
			объёмных, гидромеханических и полных
			потерь в КЭ для ОГП-ЧУ
			9.Приведите соотношения, позволяющие
			сравнить ОГП-НУ и ОГП-ЧУ по широте
			диапазона бесступенчатого
			регулирования скорости движения
			выходного звена
			10. Каков сценарий определения широты
			диапазона регулирования скорости ОГП-
			МУ при заданной величине объёмной
			постоянной машины и приведённом к
			валу мотора моменте сил контактного
			трения покоя

Описание шкалы оценивания:

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется, если на все вопросы даны верные ответы, задача решена верно и решение сопровождается пояснениямикомментариями

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 70

Описание характеристики выполнения знания: Оценка "хорошо" выставляется, если большинство вопросов раскрыто. Задача решена верно, но комментарии-пояснения отсутствуют

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 50

Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется, если даны верные ответы на большинство вопросов, представлен ход (алгоритм) решения задачи, но само решение не получено

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Оценка "неудовлетворительно" выставляется, если на большинство вопросов не дан верный ответ и не решена задача

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

2 семестр

Форма промежуточной аттестации: Экзамен

Процедура проведения

Студент выбирает экзаменационный билет из предложенного перечня. Каждый билет содержит два теоретических вопроса и задачу. Тематика вопросов и задач подобрана таким образом, чтобы в рамках билета было затронуто максимально возможное количество вопросов, относящихся к содержанию дисциплины. Время подготовки к ответу составляет 60 минут, время ответа по билету - не более 20 минут, общее время пребывания студента в аудитории не более 1 ч.30 мин.

После взятия студентом билета экзамен для этого студента считается начавшимся и может за-кончиться только оценкой.

Студент может взять другой билет с потерей одного балла.

При необходимости выхода студента из аудитории по какой-либо уважительной причине после получения им билета экзаменатор вправе заменить билет на другой с сохранением прежнего времени на подготовку, либо дать дополнительную задачу.

После получения билета какие-либо звонки на мобильные телефоны и иные средства связи с «внешним миром» не допускаются и рассматриваются как подсказка. В этом случае по усмотрению преподавателя студенту может быть предложено взять другой билет (с сохранением прежнего вре-мени на подготовку к ответу), решить дополнительно ещё одну задачу, либо понижена оценка за ответ на один балл.

I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины

1. Компетенция/Индикатор: ИД-2_{ПК-1} Определяет технические и технико-экономические характеристики при проектировании мехатронных и робототехнических систем их подсистем и отдельных устройств с использованием стандартных исполнительных и управляющих устройств, средств автоматики, измерительной и вычислительной техники, а также новых устройств и подсистем

Вопросы, задания

- 1. Модели и структурные схемы одноканального электрогидравлического следящего привода с дроссельным управлением (ЭГСП/Д) с электрической и механической обратными связями
- 2.Оценка устойчивости линейной модели одноканального гидромеханического следящего привода с дроссельным управлением (ГМСП/Д) с помощью критерия Гурвица, Найквиста, методом изолиний динамических показателей в пространстве варьируемых параметров модели привода
- 3. Алгоритм расчёта базовых параметров гидромеханического следящего привода с дроссельным управлением (ГМСП/Д) заданной (неизменной) простейшей структуры по критерию энергодостаточности, статической точности и чувствительности
- 4. Функциональная структура гидромеханического следящего привода с дроссельным управлением (ГМСП/Д). Понятие физической и математической моделей привода. Система условных обозначений физических элементов ГМСП/Д и их математическое представление
- 5. Электрогидравлические следящие приводы (ЭГСП) как вид автоматизированных комбинированных гидроприводов. Укрупнённая функциональная структура ЭГСП.

ЭГСП с дроссельным управлением (ЭГСП/Д). Состав контура управления и энергетического контура ЭГСП/Д

Материалы для проверки остаточных знаний

- 1. Какие характеристики КАГП являются статическими Ответы:
- расходная характеристика и перепадная характеристика; -расходно-перепадная характеристика; диаграмма нагрузки (ДН); механическая характеристика (МХ) и диаграмма нагрузки; скоростная, нагрузочная и механическая характеристики

Верный ответ: скоростная, нагрузочная и механическая характеристики 2.Какова функциональная структура комбинированного автоматизированного гидро- или пневмопривода (КАГП или КАПП)

Ответы:

- регулируемый орган, гидроусилитель, гидродвигатель; - гидроусилитель, качалка обратной связи, комплекс нагружающих факторов; - исполнительная, логиковычислительная, информационная подсистемы; - информационно-вычислительная, силовая, усилительная подсистемы; - регулирующий блок, электромеханический преобразователь, соглсующая аппаратура

Верный ответ: исполнительная, логико-вычислительная, информационная подсистемы

- 3. Каков алгоритм расчёта базовых параметров КАГП по критерию энергодостаточности Ответы:
- формируется эквивалентная структура привода, определяются законы движения регулируемого органа (PO), находится ДН, рассчитывается МХ, определяется искомый параметр; определяются законы движения PO, строится МХ, определяется искомый параметр; формируется эквивалентная структура привода, строится нагрузочная характеристика и МХ, определяется искомый параметр; строится скоростная и нагрузочная характеристики, находится ДН, задаётся требуемая зона нечувствительности, определяется искомый параметр; задаётся требуемая точность слежения и статическая жёсткость привода, строятся графики законов движения PO, из сопоставления данных графиков и требований по точности и жёсткости определяется искомый параметр

Верный ответ: формируется эквивалентная структура привода, определяются законы движения регулируемого органа (PO), находится ДН, рассчитывается МХ, определяется искомый параметр

4. Модели каких основных технических частей входят в состав математической модели одноканального ЭГСП/Д- моноблока

Ответы:

- электромеханического преобразователя, гидродвигателя, силовой проводки, регулируемого органа (PO); - сумматора, электронного усилителя-корректора (ЭУК), блока согласующей аппаратуры (CA), гидродвигателя, PO; - сумматора, ЭУК, CA, PO, датчика обратной связи ДОС), электрогидравлического усилителя (ЭГУ); - ЭГУ, ЭУК, гидродвигателя, PO, деформации фундамента, сумматора, ДОС, CA; - сумматора, деформации фундамента, гидродвигателя, ДОС, CA

Верный ответ: ЭГУ, ЭУК, гидродвигателя, РО, деформации фундамента, сумматора, ДОС, СА

2. Компетенция/Индикатор: ИД-3_{ПК-1} Выбирает оптимальные решения при разработке мехатронных и робототехнических систем и их подсистем на основе анализа и обобщения отечественного и зарубежного опыта в области их проектирования

Вопросы, задания

- 1. Функции, выполняемые гидро- и пневмосистемами в роботах. Сравнительные характеристики, преимущества и недостатки гидравлических, пневматических и электромеханических систем с автоматизированными исполнительными модулями для силового управления органами роботов
- 2.Типовые показатели функциональной пригодности (работоспособности), конкурентоспособности, побочные показатели, ресурсные факторы и дестабилизирующие воздействия комбинированных автоматизированных электропневмогидравлических модулей робототехнических систем конкурентоспособности
- 3.Общий аналитический обзор современного состояния и перспектив развития гидро- и пневмосистем технических объектов и их аппаратно-машинной базы
- 4.Шаговые электрогидравлические приводы с дроссельным управлением. Принцип действия, составные части шаговых приводов с вращательным, поворотным и поступательным движением выходного звена. Решение задачи устранения люфтов в механических узлах приводов. Преимущества и недостатки приводов по сравнению с электрогидравлическими следящими приводами с дроссельным управлением аналогового принципа действия
- 5.Понятие эквивалентного гидродвигателя (ЭГД), приведённой нагрузки, закона движения исполнительного звена привода и диаграммы нагрузки привода. Определение вида ЭГД, методы приведения инерционной, позиционной нагрузок и нагрузки скоростного трения к выходному звену привода

Материалы для проверки остаточных знаний

1. Какое сочетание требований по быстродействию у составляющих частей реализуется в ЭГСП/Д

Ответы:

- равное быстродействие всех основных частей прямого тракта прохождения управляющего сигнала; - повышение быстродействия каждого последующего блока по ходу управляющего сигнала; - снижение быстродействия каждого последующего блока по ходу управляющего сигнала; - равное быстродействие блока СА и ЭГУ; - большее быстродействие ЭГУ, чем СА, большее быстродействие СА чем ДОС

Верный ответ: снижение быстродействия каждого последующего блока по ходу управляющего сигнала

2. Каковы основные преимущества шаговых электрогидравлических приводов по сравнению с ЭГСП/Д

Ответы:

- существенно меньшие массогабаритные показатели; - большее быстродействие; - возможность моноблочного и разнесённого исполнения; - возможность комплектации как гидроцилиндрами, так и гидромоторами; - повышенная динамическая устойчивость

Верный ответ: повышенная динамическая устойчивость

3. Каковы основные области применения автономных моноблочных электрогидравлических приводов

Ответы:

- технические объекты с повышенным быстродействием; - медицинская техника, фармакологическое производство; - рулевые системы летательных аппаратов и приводы манипуляторов; - вместо электромеханических автоматизированных приводов; - при наличии нескольких источников гидроэнергии в составе технического объекта

Верный ответ: вместо электромеханических автоматизированных приводов

3. Компетенция/Индикатор: ИД-1_{ПК-2} Разрабатывает действующие макеты и опытные образцы управляющих, информационных и исполнительных модулей мехатронных и робототехнических систем и проводит эксперименты с применением современных информационных технологий и технических средств

Вопросы, задания

- 1.Особенности расчёта надёжности комбинированных автоматизированных гидро- и пневмоприводов методом структурных схем надёжности
- 2. Динамическая жёсткость одноканального гидромеханического следящего привода с дроссельным управлением (ГМСП/Д). Предельные случаи жёсткости. Оценка устойчивости по частотным характеристикам динамической жёсткости ГМСП/Д
- 3. Анализ влияния приведённой массы нагрузки на динамическое качество линейной модели одноканального гидромеханического следящего привода с дроссельным управлением
- 4. Анализ влияния группы «энергетических» параметров на устойчивость и динамическую конкурентоспособность привода. Практические способы изменения параметров данной группы. Необходимость итерационных процедур при решении задачи определения параметров привода по совокупности энергетических и динамических показателей
- 5.Устойчивость линейной модели одноканального гидромеханического следящего привода с дроссельным управлением (ГМСП/Д). Физико-энергетическая природа возможной потери устойчивости привода

Материалы для проверки остаточных знаний

- 1. Какие соотношения входят в исходную математическую модель моноблочного ГМСП/Д для описания нестационарного состояния привода Ответы:
- уравнения: динамического баланса расходов системы "гидроусилитель (ГУ) гидродвигатель (ГД)", равновесия выходного звена, движения РО; уравнения: динамического баланса расходов системы "гидроусилитель гидродвигатель", равновесия выходного звена, движения РО; уравнения: баланса расходов "ГУ-ГД", деформации фундамента, обратной связи, движения выходного звена; уравнения: динамического баланса расходов системы "гидроусилитель гидродвигатель", равновесия выходного звена, движения РО, обратной связи; уравнения: баланса расходов "ГУ-ГД", деформации фундамента, обратной связи, движения выходного звена, силовой проводки, расходно-перепадной характеристики ГУ

Верный ответ: уравнения: баланса расходов "ГУ-ГД", деформации фундамента, обратной связи, движения выходного звена

- 2. Линейная математическая модель ГМС/Д используется потому, что: Ответы:
- она позволяет исследовать динамику привода с помощью временных процессов и частотных характеристик; она проще; она обладает худшими запасами по устойчивости; она формирует своеобразную "точку" для сравнения характеристик реального и идеального привода; она позволяет оценить динамику привода почти без вычислительной работы

Верный ответ: - она проще

- 3. Как влияет на устойчивость следящего привода приведённая масса нагрузки Ответы:
- не влияет на устойчивость; увеличение массы сопровождается ухудшением устойчивости; увеличение массы приводит к улучшению устойчивости; всё зависит от

доминирования того или иного диссипативного фактора; - не влияет на устойчивость при упругой силовой проводке и ухудшает устойчивость при наличии жёсткой проводки Верный ответ: всё зависит от доминирования того или иного диссипативного фактора

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: При ответах на заданные вопросы продемонстрировано уверенное владение материалом, хотя на отдельные вопросы, предполагающие расширенное изучение предмета, студент затруднялся ответить

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: При ответах на ряд заданных вопросов студент затруднялся с ответом, но в целом верно ориентировался в дисциплине.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 65

Описание характеристики выполнения знания: Ответы на вопросы преподавателей характеризовались неуверенностью, но продемонстрировано знания основ дисциплины.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Верные ответы даны на менее, чем 65 % вопросов

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.

Для курсового проекта/работы:

2 семестр

Форма проведения: Защита КП/КР

І. Процедура защиты КП/КР

Защита КР производится в составе комиссии, состоящей не менее, чем из двух преподавателей. Студент формирует текст доклада и набор слайдов для демонстрации основных расчётно-проектных этапов работы. В течение 5 - 8 минут студент излагает постановку задачи и её решение, после чего отвечает на вопросы преподавателей. По результатам сделанного доклада ответов на вопросы, качества выполнения КР проставляется оценка.

II. Описание шкалы оценивания

Оценка: 5 («отлично»)

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Работа выполнена в полном объёме и надлежащим образом оформлена с соблюдением действующих стандартов. Качество доклада и графика соответствуют современным требованиям к квалификационным работам данного вида. При ответах на заданные вопросы продемонстрировано уверенное владение материалом, хотя на отдельные вопросы, предполагающие расширенное изучение предмета, студент затруднялся ответить

Оценка: 4 («хорошо»)

Нижний порог выполнения задания в процентах: 75

Описание характеристики выполнения знания: Работа выполнена в полном объёме и надлежащим образом оформлена с соблюдением действующих стандартов. Качество доклада и графика в основном соответствуют современным требованиям к квалификационным работам данного вида. При ответах на ряд заданных вопросы студент затруднялся с ответом, но в целом верно ориентировался в материале.

Оценка: 3 («удовлетворительно»)

Нижний порог выполнения задания в процентах: 65

Описание характеристики выполнения знания: Работа выполнена не в полном объёме и оформлена с отступлениями от требований стандартов. В целом получено работоспособное, но малоконкурентоспособное решение. Ответы на вопросы преподавателей характеризовались неуверенностью, но основные расчётно-проектные реализованы корректно.

Оценка: 2 («неудовлетворительно»)

Описание характеристики выполнения знания: Работа не выполнена или выполнена преимущественно неправильно

III. Правила выставления итоговой оценки по курсу

Оценка определяется в соответствии с Положением о балльно-рейтинговой системе для студентов НИУ «МЭИ» на основании семестровой и аттестационной составляющих.