Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Направление подготовки/специальность: 15.04.06 Мехатроника и робототехника

Наименование образовательной программы: Разработка компьютерных технологий управления и математического моделирования в робототехнике и мехатронике

Уровень образования: высшее образование - магистратура

Форма обучения: Очная

Оценочные материалы по дисциплине Численные методы в робототехнике

> Москва 2023

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ РАЗРАБОТАЛ:

Преподаватель (должность)

А.Н. Маслов (расшифровка подписи)

СОГЛАСОВАНО:

Руководитель образовательной программы

(должность, ученая степень, ученое звание)

Заведующий выпускающей кафедры (должность, ученая степень,

ученое звание)

MOM NEW MICH.	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»						
	Сведен	ия о владельце ЦЭП МЭИ						
	Владелец	Свириденко О.В.						
	Идентификатор	R9097b88f-SviridenkoOV-16830d5						
(подпись)								

NGGO NGGO	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»										
Sale Company and S	Сведения о владельце ЦЭП МЭИ										
MOM	Владелец	Меркурьев И.В.									
	Идентификатор	Rd52c763c-MerkuryevIV-1e4a8830									

(подпись)

O.B.

Свириденко

(расшифровка подписи)

И.В. Меркурьев (расшифровка

подписи)

ОБЩАЯ ЧАСТЬ

Оценочные материалы по дисциплине предназначены для оценки: достижения обучающимися запланированных результатов обучения по дисциплине, этапа формирования запланированных компетенций и уровня освоения дисциплины.

Оценочные материалы по дисциплине включают оценочные средства для проведения мероприятий текущего контроля успеваемости и промежуточной аттестации.

Формируемые у обучающегося компетенции:

- 1. ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности
 - ИД-1 Применяет математический аппарат численных методов, разрабатывает алгоритмы нахождения оптимального значения
- 2. ОПК-4 Способен использовать современные информационные технологии и программные средства при моделировании технологических процессов
 - Ид-1 Использует имеющиеся программные пакеты и, при необходимости, разрабатывает новое программное обеспечение, необходимое для обработки информации и управления в мехатронных и робототехнических системах, а также для их проектирования
- 3. ОПК-11 Способен организовывать разработку и применение алгоритмов и современных цифровых программных методов расчетов и проектирования отдельных устройств и подсистем мехатронных и робототехнических систем с использованием стандартных исполнительных и управляющих устройств, средств автоматики, измерительной и вычислительной техники в соответствии с техническим заданием, разрабатывать цифровые алгоритмы и программы управления робототехнических систем
 - ИД-1 Организовывает разработку математического обеспечения процедур анализа и синтеза проектных решений мехатронных и робототехнических устройств
- 4. ОПК-13 Способен использовать основные положения, законы и методы естественных наук и математики при формировании моделей и методов исследования мехатронных и робототехнических систем
 - ИД-4 Применяет численные методы и алгоритмы при проведении исследований мехатонных и робототехнических систем в процессе выполняемых ими операций

и включает:

для текущего контроля успеваемости:

Форма реализации: Письменная работа

- 1. КР№1 Тригонометрический многочлен (Контрольная работа)
- 2. КР№2 Эрмитовы кубические многочлены (Контрольная работа)
- 3. КР№3 Кубический сплайн (Контрольная работа)
- 4. КР№4 Кватернионы (Контрольная работа)
- 5. КР№5 В-сплайны (Контрольная работа)
- 6. Расчет №1 Тригонометрическая интерполяция (Расчетно-графическая работа)
- 7. Расчет №2 Планирование траекторий рабочей точки робота-манипулятора (Расчетнографическая работа)

БРС дисциплины

1 семестр

		Beca	контрол	іьных м	ероприя	ятий, %		
Раздел дисциплины	Индекс	КМ-	КМ-	КМ-	КМ-	КМ-	КМ-	КМ-
газдел дисциплины	KM:	1	2	3	4	5	6	7
	Срок КМ:	3	4	6	8	10	12	15
Тригонометрическая интер								
Тригонометрическая интер	+	+						
Интерполяция кусочными								
многочленами.								
Интерполяция кусочными			+	+	+			
многочленами.			ı	ı	ı			
Кватернионы в вычислите	льной							
механике.								
Кватернионы в вычислите	льной						+	
механике.							'	
В-сплайны в практике при								
функций.								
В-сплайны в практике приближения								+
функций.								T
	Bec KM:	10	20	10	20	20	10	10

^{\$}Общая часть/Для промежуточной аттестации\$

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

I. Оценочные средства для оценки запланированных результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Индекс	Индикатор	Запланированные	Контрольная точка
компетенции	-	результаты обучения по	-
		дисциплине	
ОПК-1	ИД-1 _{ОПК-1} Применяет	Знать:	КР№1 Тригонометрический многочлен (Контрольная работа)
	математический аппарат	Основные алгоритмы,	Расчет №1 Тригонометрическая интерполяция (Расчетно-графическая
	численных методов,	реализующие численные	работа)
	разрабатывает алгоритмы	методы инженерных	
	нахождения оптимального	расчётов (включая	
	значения	алгоритмы решения задачи	
		Коши линейными	
		многошаговыми методами	
		численного	
		интегрирования) и	
		условия, при соблюдении	
		которых их применение	
		является оправданным.	
		Уметь:	
		Разрабатывать и успешно	
		применять, пользуясь	
		приобретёнными	
		математическими	
		знаниями и освоенным	
		арсеналом численных	
		методов, а также	
		получаемыми	
		самостоятельно при	
		помощи современных	
		информационных	

	-		
		технологий новыми	
		знаниями, умениями и	
		методами исследования,	
		алгоритмы решения	
		практических задач в	
		области робототехники.	
ОПК-4	Ид-10ПК-4 Использует	Знать:	КР№2 Эрмитовы кубические многочлены (Контрольная работа)
	имеющиеся программные	Теоретические основы	Расчет №2 Планирование траекторий рабочей точки робота-
	пакеты и, при	применяемых при решении	манипулятора (Расчетно-графическая работа)
	необходимости,	задач робототехники	КР№3 Кубический сплайн (Контрольная работа)
	разрабатывает новое	численных методов и	
	программное обеспечение,	лежащего в основе данных	
	необходимое для	методов математического	
	обработки информации и	аппарата (включая	
	управления в мехатронных	необходимый материал из	
	и робототехнических	общей и линейной	
	системах, а также для их	алгебры).	
	проектирования	Уметь:	
		Находить, обобщать и	
		анализировать	
		информацию о	
		робототехнических	
		системах и условиях их	
		эксплуатации, планировать	
		ход исследования и пути	
		достижения поставленных	
		целей.	
ОПК-11	ИД-1 _{ОПК-11}	Знать:	КР№4 Кватернионы (Контрольная работа)
	Организовывает	Порядок применения	
	разработку	теоретического аппарата	
	математического	(теорию и методы	
	обеспечения процедур	интерполяции и	
	анализа и синтеза		
L		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

	проектных решений	тригонометрическими	
	мехатронных и	многочленами и	
	робототехнических	сплайнами, методы	
	устройств	планирования траекторий	
		и построения	
		программного движения	
		роботов, методы алгебры	
		кватернионов в	
		применении к кинематике	
		систем твёрдых тел,	
		основы теории линейных	
		многошаговых методов	
		численного	
		интегрирования	
		обыкновенных	
		дифференциальных	
		уравнений) в важнейших	
		практических	
		приложениях.	
		Уметь:	
		Пользоваться	
		современными	
		информационными	
		технологиями для	
		совершенствования и	
		развития своего	
		интеллектуального,	
		профессионального и	
		общекультурного уровня.	
ОПК-13	ИД-4 _{ОПК-13} Применяет	Знать:	КР№5 В-сплайны (Контрольная работа)
	численные методы и	Основные алгоритмы,	
	алгоритмы при	реализующие численные	
	проведении исследований	методы инженерных	

расчётов (включая мехатонных робототехнических систем алгоритмы в процессе выполняемых тригонометрической ими операций интерполяции, интерполяции и аппроксимации сплайнами) и условия, при соблюдении которых их применение является оправданным. Уметь: Выделять при анализе робототехнических систем и условий их эксплуатации задачи, требующие применения численных методов и проведения вычислительных экспериментов, планировать и реализовывать решение данных задач, пользуясь общесистемными средствами программного назначения, современными программными продуктами и информационными технологиями, системами компьютерной математики, инструментальными средствами

	компьютерного	
	моделирования.	

II. Содержание оценочных средств. Шкала и критерии оценивания

КМ-1. КР№1 Тригонометрический многочлен

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Контрольная работа

Краткое содержание задания:

```
Вычислить тригонометрическую интерполяцию на равномерной сетке. с заданными значениями в узлах  \text{Dano:} \begin{pmatrix} \text{Xi} & 1 & 3 & 5 & 7 \\ \text{Fi} & -2 & -5 & 4 & -3 \end{pmatrix}
```

Контрольные вопросы/задания:

Контрольные вопросы/задания:	
Знать: Основные алгоритмы,	1.1.Пятая производна тригонометрической
реализующие численные методы	интерполяции разрывная функция?
инженерных расчётов (включая	2.2. Какое минимальное число узлов нужно для
алгоритмы решения задачи	тригонометрической интерполяции?
Коши линейными	
многошаговыми методами	
численного интегрирования) и	
условия, при соблюдении	
которых их применение является	
оправданным.	
Уметь: Разрабатывать и успешно	1. Найти период тригонометрической интерполяции
применять, пользуясь	на трех узлах с шагом 3Рі/2?
приобретёнными	
математическими знаниями и	
освоенным арсеналом	
численных методов, а также	
получаемыми самостоятельно	
при помощи современных	
информационных технологий	
новыми знаниями, умениями и	
методами исследования,	
алгоритмы решения	
практических задач в области	
робототехники.	

Описание шкалы оценивания:

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 65 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-2. Расчет №1 Тригонометрическая интерполяция

Формы реализации: Письменная работа

Тип контрольного мероприятия: Расчетно-графическая работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Письменно. Самостоятельная работа.

Краткое содержание задания:

Тригонометрическая интерполяция

лабораторная работа

Постановка задачи

Для заданной гладкой функции f(x), определенной на отрезке [-4,4], выполнить тригонометрическое интерполирование для ряда равномерных сеток с n=4, 8, 12, ..., 48. Вывести начальные коэффициенты интерполяционного тригонометрического многочлена (до 18-й гармоники включительно) при n=48. Вычислить погрешность интерполяции

 $\mathcal{E}_{n} = \max_{\mathbf{x} \in [-4.4]} |\mathbf{f}(\mathbf{x}) - \mathbf{F}_{n}(\mathbf{x})|$

Контрольные вопросы/задания:

Знать: Основные алгоритмы, реализующие численные методы инженерных расчётов (включая алгоритмы решения задачи Коши линейными	1.1. Как поведет себя тригонометрическая интерполяция, если исходная функция не гладкая? 2.2. Как поведет себя тригонометрическая интерполяция, если исходная функция разрывная?
многошаговыми методами численного интегрирования) и	
условия, при соблюдении	
которых их применение является	
оправданным.	
Уметь: Разрабатывать и успешно	$1.1.$ Найти коэффициент $a_{ m 0}$ тригонометрической
применять, пользуясь	интерполяции для четного числа узлов
приобретёнными	
математическими знаниями и	
освоенным арсеналом	
численных методов, а также	
получаемыми самостоятельно	
при помощи современных	
информационных технологий	
новыми знаниями, умениями и	
методами исследования,	
алгоритмы решения	
практических задач в области	
робототехники.	

Описание шкалы оценивания:

Оценка: зачтено

Описание характеристики выполнения знания:

Оценка: не зачтено

Описание характеристики выполнения знания:

КМ-3. КР№2 Эрмитовы кубические многочлены

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Контрольная работа

Краткое содержание задания:

Вычислить коэффициенты эрмитовых кубических многочленовнов с заданными значениями в узлах
$$\text{Dano:} \begin{pmatrix} \text{Xi} & 1 & 3 & 4 & 6 \\ \text{Fi} & -5 & 1 & -4 & 5 \\ \text{Fi}' & -1 & 1 & -\frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

0

Контрольные вопросы/задания:

контрольные вопросы/задания:	
Знать: Теоретические основы	1.1.Система эрмитовых кубических многочленов не
применяемых при решении задач	разрывная функция какого порядка?
робототехники численных	2.2. Чему равна 7я производная кубического
методов и лежащего в основе	интерполянта?
данных методов	
математического аппарата	
(включая необходимый материал	
из общей и линейной алгебры).	
Уметь: Находить, обобщать и	1.1.Чему равен коэффициент D0?
анализировать информацию о	
робототехнических системах и	
условиях их эксплуатации,	
планировать ход исследования и	
пути достижения поставленных	
целей.	

Описание шкалы оценивания:

Оценка: зачтено

Описание характеристики выполнения знания:

Оценка: не зачтено

Описание характеристики выполнения знания:

КМ-4. КР№3 Кубический сплайн

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Контрольная работа

Краткое содержание задания:

Составить кубический сплайн с различными типами граничных условий.

	{1-й тип					{2-й тип						{3-й тип									
		х	101	201	301	401	.]		х	101	201	301	401			х	101	201	301	401	
	,	F	3	7 2	9 2	3	}	,	F	3	7 2	9 2	3	}	,	F	3	7 2	9 2	3	}
		F'	- 1/2			1/3	ľ		F''	1			2			F'					
- 1			- 6			- 3	1	ı							I						

применяемых при решении задач	конечном узле с третьим типом граничных условий?
робототехники численных	2.2.Производные во внутренних узлах зависят от типа
методов и лежащего в основе	граничных условий?
данных методов	
математического аппарата	
(включая необходимый материал	
из общей и линейной алгебры).	
Уметь: Находить, обобщать и	1.1. Какая зависимость значений производных в
анализировать информацию о	крайних узлах для интерполяции с третьим типом
робототехнических системах и	краевых условий?
условиях их эксплуатации,	
планировать ход исследования и	
пути достижения поставленных	
целей.	

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 80 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 65 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-5. Расчет №2 Планирование траекторий рабочей точки роботаманипулятора

Формы реализации: Письменная работа

Тип контрольного мероприятия: Расчетно-графическая работа

Вес контрольного мероприятия в БРС: 20

Процедура проведения контрольного мероприятия: Письменно. Самостоятельная работа.

Краткое содержание задания:

Построить уравнения движения рабочей точки робота-манипулятора двумя способами:

а) линейными сплайнами

b) кубическими сплайнами с граничными условиями типа1.

Дано:

а) обстановка (препятствия);

б) начальное и конечное положение рабочей точки робота-манипулятора.

Требуется представить отчет с решением задачи в виде:

 а) одного рисунка трех траекторий рабочей точки робота-манипулятора (с линейными сплайнами, с кубическими сплайнами черновой вариант, с кубическими сплайнами конечный вариант) и обстановки;

б) графиков уравнений движения x(t), y(t) и скорости x'(t), y'(t);

Знать: Теоретические основы	1.1.Как влияет порядок сплайна траектории на
применяемых при решении задач	характер управления манипулятором?
робототехники численных	2.2.Влияет ли время прохождения дистанции на
методов и лежащего в основе	форму траектории?

данных методов	
математического аппарата	
(включая необходимый материал	
из общей и линейной алгебры).	
Уметь: Находить, обобщать и	1.1.Как подобрать узлы для исключения пересечения
анализировать информацию о	траектории с препятствиями?
робототехнических системах и	
условиях их эксплуатации,	
планировать ход исследования и	
пути достижения поставленных	
целей.	

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 80 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 65
Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-6. КР№4 Кватернионы

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Контрольная работа

Краткое содержание задания:

Знать: Порядок применения	1.1. Чему равна норма кватерниона поворота?
теоретического аппарата	2.2. Какая последовательность перемножения
(теорию и методы интерполяции	кватернионов поворота при последовательном
и аппроксимации функций	двойном повороте?
тригонометрическими	
многочленами и сплайнами,	
методы планирования	
траекторий и построения	
программного движения	
роботов, методы алгебры	
кватернионов в применении к	
кинематике систем твёрдых тел,	

основы теории линейных	
многошаговых методов	
численного интегрирования	
обыкновенных	
дифференциальных уравнений) в	
важнейших практических	
приложениях.	
Уметь: Пользоваться	1.1. Чему равняется кватернион поворота во круг
современными	второй оси на угол α ?
информационными	
технологиями для	
совершенствования и развития	
своего интеллектуального,	
профессионального и	
общекультурного уровня.	

Оценка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 65 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

КМ-7. КР№5 В-сплайны

Формы реализации: Письменная работа

Тип контрольного мероприятия: Контрольная работа

Вес контрольного мероприятия в БРС: 10

Процедура проведения контрольного мероприятия: Контрольная работа

Краткое содержание задания:

Найти интерполяцию и аппроксимацию функции по узлам используя В-сплайны

Знать: Основные алгоритмы,	1.В-сплайн первого порядка?
реализующие численные методы	
инженерных расчётов (включая	
алгоритмы тригонометрической	
интерполяции, интерполяции и	
аппроксимации сплайнами) и	
условия, при соблюдении	
которых их применение является	
оправданным.	
Уметь: Выделять при анализе	1.

робототехнических систем и	1. Сколько В-сплайнов нулевого порядка имеют не нулевое
условий их эксплуатации задачи,	значение в узлах сетки?
требующие применения	
численных методов и	
проведения вычислительных	
экспериментов, планировать и	
реализовывать решение данных	
задач, пользуясь	
общесистемными средствами	
программного назначения,	
современными программными	
продуктами и	
информационными	
технологиями, системами	
компьютерной математики,	
инструментальными средствами	
компьютерного моделирования.	

Оценка: 5

Нижний порог выполнения задания в процентах: 90 Описание характеристики выполнения знания: Оценка "отлично" выставляется если задание выполнено в полном объеме или выполнено преимущественно верно

Оценка: 4

Нижний порог выполнения задания в процентах: 80 Описание характеристики выполнения знания: Оценка "хорошо" выставляется если большинство вопросов раскрыто. выбрано верное направление для решения задач

Оценка: 3

Нижний порог выполнения задания в процентах: 65 Описание характеристики выполнения знания: Оценка "удовлетворительно" выставляется если задание преимущественно выполнено

СОДЕРЖАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

1 семестр

Форма промежуточной аттестации: Экзамен

Пример билета

```
Вопрос №1: Лемма о суммах спиусов и коспиусов кратных аргументов.
Вопрос №2: Кубические V-сплаїны Шенберга
Задача:

ВАР. 1 Выпислить коэффициенты эрмитовых кубических звиогочленовнов
с заданивам значениями в узлах

X1 1 3 4 6
Dano: 

X1 1 3 4 6
Fi -3 0 5 2
Fi -1 0 -1 1/2
```

Процедура проведения

Письменный ответ. Дополнительные вопросы.

- I. Перечень компетенций/индикаторов и контрольных вопросов проверки результатов освоения дисциплины
- **1. Компетенция/Индикатор:** ИД-1_{ОПК-1} Применяет математический аппарат численных методов, разрабатывает алгоритмы нахождения оптимального значения

Вопросы, задания

- 1.1.Интерполяционный тригонометрический многочлен.
- 2.2.Интерполяция эрмитовыми кубическими многочленами

Материалы для проверки остаточных знаний

1.1.Может ли тригонометрический интерполянт составлен только из суммы косинусов с различными аргументами?

Ответы:

1.да;

2.нет;

3.да, если период интерполяции равен 2Рі

Верный ответ: 1.

2.9. Отличия интерполяции и аппроксимации?

Ответы

функция интерполяции проходит через узлы, а функция аппроксимации может и не проходить через узлы.

2. Компетенция/Индикатор: Ид-1_{ОПК-4} Использует имеющиеся программные пакеты и, при необходимости, разрабатывает новое программное обеспечение, необходимое для обработки информации и управления в мехатронных и робототехнических системах, а также для их проектирования

Вопросы, задания

- 1.3.Интерполяция кубическими сплайнами
- 2.4. Метод прогонки

Материалы для проверки остаточных знаний

1.5.Граничные условия типа 1 для кубических сплайнов?

F(X0)=F0; F(Xn)=Fn

Ответы:

```
F'(X0)=DF0: F'(Xn)=DFn
2.4. Какой должна быть матрица А в СЛАУ АХ=В для сходимости метода прогонки?
   Ответы:
1. Треугольная;
2. Наддиагональная;
3.С диагональным преобладанием.
   Верный ответ: 3.
3.2. Какое минимальное количество узлов с известными значениями самой функции и ее
производной необходимо для построения эрмитово кубического сплайна?
   Ответы:
1.1;
2.2:
3.4
   Верный ответ: 2.
4.3. Чему равняется дефект сплайнов?
   Ответы:
1.1;
```

3. Компетенция/Индикатор: ИД- $1_{O\Pi K-11}$ Организовывает разработку математического обеспечения процедур анализа и синтеза проектных решений мехатронных и робототехнических устройств

Вопросы, задания

Верный ответ: 1.

2.2; 3.4

- 1.5. Кватернионы и основные операции над ними
- 2.6. Кинематическое уравнение для кватерниона поворота

Материалы для проверки остаточных знаний

- 1.6. Из скольких независимых параметров состоит кватернион Ответы:
 1.1;
 2.2;
 3.4
 Верный ответ: 3.
- 2.7. Что такое параметры Родрига-Гамильтона?

Ответы:

 $x0=e1 \sin(fi/2)$

 $x1=e2 \sin(fi/2)$

 $x2=e3 \sin(fi/2)$

 $x3 = \cos(fi/2)$

4. Компетенция/Индикатор: ИД- $4_{O\Pi K-13}$ Применяет численные методы и алгоритмы при проведении исследований мехатонных и робототехнических систем в процессе выполняемых ими операций

Вопросы, задания

- 1.7.Определение В-сплайнов
- 2.8. Формула Кокса де Бора
- 3.9. Решение задач интерполяции с помощью кубических В-сплайнов
- 4.10.Простейший способ локальной аппроксимации сплайнами
- 5.11. Кубические V-сплайны Шенберга

Материалы для проверки остаточных знаний

1.8.В-сплайн нулевого порядка?

Ответы:

- 1.Единичный импульс на одном интервале;
- 2. Единичный импульс на трех интервале;
- 3. функция в виде треугольника на двух интервалах.

Верный ответ: 1.

- 2.10.В какой производной происходит дефект интерполяции в кубических В-сплайнах? Ответы:
- 1.1;
- 2.2;
- 3.3

Верный ответ: 3.

II. Описание шкалы оценивания

Оиенка: 5

Нижний порог выполнения задания в процентах: 90

Описание характеристики выполнения знания: Работа выполнена в рамках "продвинутого" уровня. Ответы даны верно, четко сформулированные особенности практических решений

Оценка: 4

Нижний порог выполнения задания в процентах: 80

Описание характеристики выполнения знания: Работа выполнена в рамках "базового" уровня. Большинство ответов даны верно. В части материала есть незначительные недостатки

Оценка: 3

Нижний порог выполнения задания в процентах: 65

Описание характеристики выполнения знания: Работа выполнена в рамках "порогового" уровня. Основная часть задания выполнена верно. на вопросы углубленного уровня

III. Правила выставления итоговой оценки по курсу

Оценка выставляется по формуле 0.3*"оценка текущей аттестации"+0.7*"оценка промежуточной аттестации" с математическим округлением