

Министерство науки и высшего образования РФ ФГБОУ ВО «НИУ «МЭИ» Институт дистанционного и дополнительного образования

АННОТАЦИИ РАБОЧИХ ПРОГРАММ ДИСЦИПЛИН (МОДУЛЕЙ) ДОПОЛНИТЕЛЬНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

повышения квалификации «Основы искусственного интеллекта»,

Раздел(предмет) Основы искусственного интеллекта

Наименован	Содержание дисциплин	Форма ТК	Количество
ие	(модулей)		часов
дисциплин			
(модулей)			
История	Основные свойства	Hem	34
становления	человеческого интеллекта.		
u	Основные этапы развития		
современное	ИИ. ГОСТ Р 59276-2020		
состояние	Системы ИИ		
ИИ,			
Доверенный			
ИИ			
Направления	Основные задачи и	Hem	
и задачи ИИ	направления исследований в		
	области ИИ: бионическое		
	(коннекционистское) и		
	символьное (логическое)		
	направления, интеграция		
	направлений.		
Основные	Основные понятия и	Тестирование	
понятия в	определения ИИ и		
области ИИ	интеллектуальных систем		
	(ИС). Основные отличия		
	данных и знаний. Модели		
	представления знаний:		
	логические, продукционные,		
	структурированные на		
	основе семантических сетей,		
	фреймов, онтологий.		
	Модели и методы поиска		
	решений в ИС.]
Интеллекту	Этапы исследования данных	Hem	
альный	с помощью методов Data		
анализ	Mining. Типы		

Наименован	Содержание дисциплин	Форма ТК	Количество
ие	(модулей)	Форма ТК	часов
дисциплин	(модулен)		пасов
(модулей)			
данных /	закономерностей. Методы		
Data Mining	Data Mining. Data Mining как		
Baia mining	моделирование и как KDD.		
	Принцип Бонферрони.		
	Процесс разработки с		
	использованием Data		
	Mining. Задачи		
	классификации, регрессии и		
	сегментации		
	(кластеризации). Смесь		
	нормальных распределений.		
	EM-алгоритм. K-means и его		
	модификации. Многомерное		
	нормальное распределение.		
	Maximum Likelihood.		
	Альтернативные функции		
	расстояния. «Проклятие		
	размерности». Байесовская		
	классификация.		
	Апостериорное		
	распределение параметров.		
	Иерархическая		
	классификация. Расстояние		
	между кластерами.		
	Неевклидовы пространства.		
	Оценка результатов		
	классификации. Метрики		
	качества для вероятностных		
	моделей.		
Задача	Понятие регрессии. Простая	Hem	
регрессионн	линейная взаимосвязь.		
ого анализа	Уравнение регрессии.		
	Подгонка линии регрессии.		
	Понятие корреляции и		
	ковариации.		
Задача	Расстояние между	Hem	
кластерного	кластерами. Выбор		
анализа	количества кластеров.		
	Алгоритм DBSCAN.		
	Модификации алгоритма		
	DBSCAN		
Задача	Бинарная, мультиклассовая,	Hem	
классификац	иерархическая		
ии	классификация объектов		
Интеллекту	ИС (экспертные системы),	Hem	
альные и	как системы, основанные на		

Наименован	Содержание дисциплин	Форма ТК	Количество
ие	(модулей)	Topma Tit	часов
дисциплин	(медулен)		14000
(модулей)			
Экспертные	знаниях. Типы ИС как		
системы в	систем, основанных на		
Энергетике	знаниях: экспертные		
1	системы, системы принятия		
	и поддержки принятия		
	решений, обучающие		
	системы и другие.		
	Статические и		
	динамические ИС. ИС		
	реального времени.		
Что такое	Введение в искусственные	Hem	
искусственн	нейронные сети (НС).		
ые	Биологические прототипы		
нейронные	нейронов. Математическая		
сети?	модель нейрона.		
Архитектур	Однослойные и	Нет	
ы НС	многослойные НС.		
	Современные архитектуры		
	нейронных сетей (НС).		
Обучение	Алгоритмы обучения НС.	Hem	
HC			
Инструмен	Программные библиотеки и	Нет	
ты для	фреймворки для работы с		
работы с	HC (Keras, PyTorch,		
НС	TensorFlow и др.).		
Области	Задачи компьютерного	Hem	
применения	зрения, обработки		
современных	естественного языка,		
искусственн	планирования,		
ых НС	прогнозирования и		
	обнаружения аномалий при		
	функционировании		
<i>F</i>	энергосистем.		
Генеративн	Роль генеративных НС в	Нет	
ый ИИ	науке и технике.		
	Применение отечественных		
	больших языковых моделей (GigaChat, Vanday GPT) и		
	(GigaChat, YandexGPT) и		
	генеративных моделей (Kandinsky, YandexART) для		
	,		
	задач генерации и извлечения информации.		
Применение	Примеры расчетных задач: –	Нет	
Применение НС в	примеры расчетных задач. – примеры разработки модели	116111	
энергетике	НС и ее обучение для		
эперсенике	прогнозированию спроса на		
	прогнозированию спроса на		

Наименован	Содержание дисциплин	Форма ТК	Количество
ие	(модулей)		часов
дисциплин			
(модулей)			
	тепловую энергию		
	объектами массового		
	строительства; –		
	классификация аномальных		
	показателей с		
	использованием НС по		
	данным мониторинга		
	состояния оборудования		
	энергосистем в реальном		
	времени.		

Руководитель ОДПО, ЦПП УВО

NCM NCM	Подписано электронной подписью ФГБОУ ВО «НИУ «МЭИ»	
	Сведения о владельце ЦЭП МЭИ	
	Владелец	Орельяна Урсуа М.И.
	Идентификатор F	kbdeb1209-OrelyanaursMI-e22f7ed

М.И. Орельяна Урсуа

Начальник	ОЛПО

NOSO VE	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»
	Сведения о владельце ЦЭП МЭИ	
NCM	Владелец	Селиверстов Н.Д.
	Идентификатор	Rf19596d9-SeliverstovND-39ee0b7

Н.Д. Селиверстов