

Министерство науки и высшего образования РФ ФГБОУ ВО «НИУ «МЭИ» Институт дистанционного и дополнительного образования

АННОТАЦИИ РАБОЧИХ ПРОГРАММ ДИСЦИПЛИН (МОДУЛЕЙ) ДОПОЛНИТЕЛЬНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

повышения квалификации «Специалист по работе на электронно-лучевых комплексах»,

Раздел(предмет) Специалист по работе на электронно-лучевых комплексах

Наименован	Содержание дисциплин	Форма ТК	Количество
ие	(модулей)		часов
дисциплин			
(модулей)			
КПЭ и	Источники энергии	Hem	70
физические	термических процессов.		
основы их	Современное представление		
генерации	об источниках энергии при		
	сварке и обработке		
	материалов. Основные		
	понятия и определения.		
	Источники энергии для		
	термических процессов.		
	Сравнительная		
	характеристика термических		
	источников энергии.		
	Электронная оптика.		
	Электронно-лучевые		
	источники энергии. Оптико-		
	механическая аналогия.		
	Движение электронов в		
	электростатическом поле.		
	Движение электронов в		
	магнитном поле. Ускорение		
	электронов. Электронно-		
	лучевые источники энергии.		
	Формирование		
	электронного луча.		
	Функциональная схема		
	электронной пушки.		
	Физические процессы,		
	протекающие в		
	пространстве дрейфа.		
	Действие собственного		

Наименован	Содержание дисциплин	Форма ТК	Количество
ие	(модулей)	Форми ТК	часов
дисциплин	(meginen)		14000
(модулей)			
	пространственного заряда в		
	электронных пучках.		
	Изменение контура пучка		
	введенного в		
	эквипотенциальное		
	пространство.		
Теоретическ	Концентрированные и	Нет	
ие основы	неконцентрированные		
обработки	источники энергии.		
материалов	Основные закономерности		
КПЭ	взаимодействия		
	концентрированных потоков		
	энергии (электронный луч,		
	луч лазера, струя		
	низкотемпературной		
	плазмы, сжатая		
	электрическая дуга, ионные		
	пучки) с твердым телом при		
	осуществлении процессов		
	сварки, резки, сверления,		
	модифицирования.		
	Автоколебания		
	температурного поля в зоне		
	обработки КПЭ, динамика		
	формирования глубокого		
	канала в материале;		
	физическое моделирование		
	процесса нагрева твердого		
	тела в автоколебательном		
	режиме; схема типичной		
	автоколебательной системы.		
	Физические процессы при воздействии КПЭ на		
	материалы. Гидродинамические		
	процессы в зоне		
	воздействия КПЭ на		
	материалы. Закономерности		
	сварки металлов больших		
	толщин с глубоким		
	проплавлением.		
	Закономерности удаления		
	вещества из зоны обработки		
	при резке и сверлении		
	материалов КПЭ,		
	закономерности испарения и		
	1 1		ı

Наименован	Содержание дисциплин	Форма ТК	Количество
ие	(модулей)		часов
дисциплин			
(модулей)			
	выброса конденсированной		
	фазы из зоны обработки.		
Оборудовани	Общая характеристика	Нет	
е для	установки. Структура,		
электронно-	состав и компоновка ЭЛУ.		
лучевой	Генерация электронного		
сварки	пучка. Типовые		
	конструкции катодов. Срок		
	службы катодов. Траектория		
	электронов в		
	осесимметричном		
	электрическом поле.		
	Электронные линзы.		
	Иммерсионный объектив.		
	Типовые схемы генераторов		
	электронных пучков.		
	Методы расчета генераторов		
	электронных пучков.		
	Конструкции электронных		
	пушек. Способы		
	регулирование мощности		
	электронного пучка.		
	Фокусировка и отклонение		
	пучка. Движение электронов		
	в однородном и аксиальном		
	магнитных полях.		
	Магнитные линзы.		
	Магнитные отклоняющие		
	системы. Расчет магнитной		
	линзы. Эксплуатация		
	электронно-лучевого		
	оборудования. Источники		
	питания электронных		
	пушек. Высоковольтные		
	пробои. Системы		
	автоматического управления		
	процессом сварки.		
	Основные понятия		
	вакуумной техники.		
	Простейшая вакуумная		
	система. Основные		
	характеристики вакуумных		
	насосов. Объемная откачка.		
	Конструкции объемных		
	насосов. Молекулярные		
	насосы. Турбомолекулярные		

Наименован	Содержание дисциплин	Форма ТК	Количество
ие	(модулей)	Форми ТК	часов
дисциплин	(megymen)		I TOO D
(модулей)			
(/)	насосы. Пароструйная		
	откачка. Измерение общих		
	давлений. Вакуумная		
	арматура. Вакуумные		
	вводы. Внутрикамерные		
	манипуляторы. Типовые		
	схемы вакуумных систем.		
	Цикл вакуумной откачки.		
	Выбор насосов для		
	высоковакуумной системы.		
	Проверочный расчет		
	вакуумных систем.		
Физические	Термодеформационные	Нет	
процессы в	процессы при обработке		
металлах	кПЭ.		
при	Термодеформационные		
обработке	процессы в металлах,		
КПЭ	возникающие при		
	воздействии на них		
	источников теплоты.		
	Изменение прочности		
	материалов в области		
	высоких температур.		
	Остаточные напряжения,		
	возникающие при сварке		
	материалов, не		
	испытывающих		
	полиморфных превращений		
	Взаимодействие		
	обрабатываемого материала		
	с окружающей средой.		
	Обозначения, основные		
	определения и законы.		
	Кипение расплавов при		
	сварке. Испарение.		
	Испарение элементов из		
	бинарных сплавов.		
	Активность и летучесть.		
	Испарение элементов из		
	многокомпонентных		
	сплавов. Порядок расчета		
	состава пара над жидким		
	сплавом. Диффузионные процессы в зоне обработки		
	и их влияние на свойства		
	сварных соединений.		
	сварных соединении.		

Наименован	Содержание дисциплин	Форма ТК	Количество
ие	(модулей)	Форма ТК	часов
дисциплин	(wogysien)		пасов
(модулей)			
(модулен)	Шлаковая фаза. Свойства и		
	состав шлаков.		
	Взаимодействие материала с		
	кислородом, азотом,		
	водородом, сложными		
	газами в процессе обработки		
	КПЭ. Сварочная ванна,		
	кристаллизация металла при		
	сварке и формирование		
	первичной структуры		
	металла шва. Особенности		
	кристаллизации металла		
	сварочной ванны. Схемы		
	кристаллизации сварочной		
	ванны. Влияние режимов		
	сварки и условий		
	кристаллизации на		
	формирование первичной		
	структуры и образование		
	химической неоднородности		
	металла шва.		
	Закономерности		
	образования горячих		
	трещин. Способы		
	повышения		
	сопротивляемости сварных		
	соединений образованию		
	горячих трещин. Фазовые и		
	структурные превращения в		
	металлах при обработке		
	КПЭ. Стабильность		
	размеров и формы сварных		
	конструкций. Особенности		
	фазовых и структурных		
	превращений в металле		
	сварных соединений.		
	Причины образования		
	трещин на этапе		
	структурных и фазовых		
	превращений (холодные		
	трещины, трещины		
	повторного нагрева и др).		
	Способы повышения		
	сопротивляемости сварных		
	соединений образованию		
	холодных трещин.		

Наименован	Содержание дисциплин	Форма ТК	Количество
ие	(модулей)	Форма ТК	часов
дисциплин	(модулен)		псов
(модулей)			
(модулен)	Размерная нестабильность		
	сварных конструкций.		
	Методы стабилизации		
	структуры, формы и		
	размеров сварных		
	конструкций		
Технология	Формирование сварных	Нет	
обработки	соединений. Свариваемость		
материалов	и ее критерии.		
КПЭ	Свариваемость металлов и		
	сплавов на их основе.		
	Формирование сварочной		
	ванны и влияние условий		
	сварки на геометрию и		
	размеры шва. Виды сварных		
	соединений и подготовка		
	кромок под сварку.		
	Металлургия сварки сплавов		
	на основе титана.		
	Технология электронно-		
	лучевой обработки		
	материалов. Сварка		
	вертикальным и		
	горизонтальным		
	электронным лучом. Виды		
	сварных соединений.		
	Технологические схемы		
	сварки электронным лучом.		
	Отклонение и сканирование		
	луча. Разработка технологии		
	и расчетные модели для		
	определения параметров		
	режима электронно-лучевой		
1/	сварки.	II	
Контроль и	Электронно-лучевые	Hem	
автоматиза	установки (ЭЛУ) как		
ция	объекты управления.		
электронно-	Источники анодного		
лучевых	питания, защита от перенапряжений и		
технологиче	технологических коротких		
CKUX VCM GHOROV	замыканий. Управление		
установок	мощностью электронного		
	пучка, отклонением и		
	разверткой в ЭЛУ		
	разверткой в элтэ		
	разли пого пазначения		

Наименован	Содержание дисциплин	Форма ТК	Количество
ие	(модулей)		часов
дисциплин			
(модулей)			
	(плавильных, для сварки и		
	размерной обработки).		
	Комплексное управление		
	ЭЛУ с применением		
	компьютерных и микро-		
	процессорных средств.		
	Задачи и алгоритмы		
	управления сварочными,		
	плавильными и		
	испарительными ЭЛУ.		

Руководитель ТМ

А.Л. Гончаров

Начальник ОДПО

NGO NGO	Подписано электронн	ой подписью ФГБОУ ВО «НИУ «МЭИ»
2 100 100 100 100 100 100 100 100 100 10	Сведения о владельце ЦЭП МЭИ	
	Владелец	Крохин А.Г.
» <u>МэИ</u> «	Идентификатор	R6d4610d5-KrokhinAG-aa301f84

А.Г. Крохин